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Abstract :.In this paper we obtain a lower bound on the number of parity-check digits in an (n, k) linear codes 

over GF(3) which are optimal in a specific sense i.e. the codes  are capable to correcting single errors in the 

first sub-block of length n1 and bursts of length 2 or less in the second sub-block of length n2; n = n1 + n2 
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I. Introduction 
Burst is the most common error in the history of coding theory and the literature is full with different 

type of burst error correcting codes. In many communication channels, occurrence of burst error is more 

frequent than random errors. So, from applications point of view, burst error correcting codes are more e useful 

as well as economical in digital communications. Dass and Tyagi [7] studied such codes in two sub-blocks of 

length n1 and n2, n1+n2=n by using the definition of burst due to Chien and Tang [2] . Such codes were termed as 

(1, 2) binary optimal codes. Later Buccimazza, Dass, Iembo and Jain studied these codes over GF(3), GF(5) and 

GF(7) [1], [3] and [4].  

Our objective in this paper is to explore the possibility of the existence of  linear codes of length n 

which are sub divided into two sub-blocks of length n1 and n2, n1 +n2 = n. These codes are capable of correcting 

bursts of length 1 in the first sub-block of length n1 and bursts of length 2 or less in the second sub-block of 

length n2 over GF(3).The distance between vectors as well as the weight of the vector shall be considered in the 

Hamming sense. Here, we consider the definition of  burst given by Fire [8] according to which ‘a burst of 

length b or less has been considered as an n-tuple whose only non-zero components are confined to some b 

consecutive positions, the first and the last of which is non-zero’. 

The paper is organized into five sections. In Section 2, we state necessary condition for the existence of 

such (1,2)-optimal codes whereas Section 3 presents possibilities of occurrence of these codes. In Section 4 we 

discuss these codes with the help of example. Finally we give conclusion of the paper and open problem in 

Section 5. 

 

II. NECESSARY CONDITION 
As mentioned earlier, in this section  we obtain necessary bound on the number of parity check digits 

required for the existence of (1, 2) burst-correcting optimal linear codes over GF(q) by using well known Fire’s 

bound [8]. 

Theorem: The number of parity check digits in an (n=n1+n2, k) linear code over GF(q) correcting all burst 

errors of length b1 or less in the first block of length n1 and all burst errors of length b2 or less in the second 

block of length n2 is at least  

logq . 

In other words, 

qn-k ≥  1) 

Proof: The result for (n=n1+n2, k) linear code over GF(q) will be proved by  enumerating all possible bursts of 

length b1 or less in the first block of length n1 and all possible bursts of length b2 or less in the second block of 

length n2. Then in view of the fact that all these correctable error vectors should belong to different cosets shall 

be compared with q
n-k

 which is nothing but the total number of available cosets.  

All possible bursts of length b1 or less in the first block of length n1 

Number of bursts of length 1 in the first bock of length n1 = n1(q-1). 

Number of bursts of length 2 in the first bock of length n1 = (n1-1)(q-1)
2
. 

Number of bursts of length 3 in the first bock of length n1 =(n1-2)(q-1)
2
q. 

: 

: 
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Number of bursts of length i in the first bock of length n1 =(n1-i+1)(q-1)
2
q

i-2
. 

Therefore, total number of bursts of length b1 or less in the first block of length n1, is 

 
Also the code is capable of correcting all burst errors of length b2 or less in the second block of length n2, the 

number of all such burst patterns in the different cosets is 

 

Thus, the total number of error patterns to be corrected, including the vector of all zero, is 

 
As we know that the total number of cosets is q

n-k
. So, we must have  

q
n-k

 ≥  . 

which implies that 
n-k 

≥logq . 

Hence the theorem. 

 

III. Optimal codes 
For optimality of the linear codes, the inequality (1) should be considered as equality. This gives us 

 

qn-k = (2) 

The values of the parameters that satisfy (2) results into codes that are optimal in the sense that the number of 

burst errors to be corrected length 1 in the first block of length n1 and all burst errors of length 2 or less in the 

second block of length n2 in such codes equals the total number of cosets viz. 3
n-k

. Such codes are termed as 

ternary (1,2) burst-correcting optimal linear codes . 

For b1 = 1 and b2 =2, equality (2) becomes, 

q
n-k

 =  .                                                                               (3) 

For q = 3, the the equality in (3) reduces to 

3
n-k

 = 2n1 + 6n2 – 3.                                                                                                                                               (4) 
Now we examine the possibilities of the existence of codes for different values of the parameters n1, n2 and k 

satisfying (4) in such a way that   n1 + n2 ≤ 119 and r = n-k  ≤ 5.We also note that the values of n1 satisfying (4) 

should always be the multiple of 3 in order to obtain integer solution. It can be verified that for n1 = 1 , 2 , 

4,5,7,8,… etc. x ≠3n , V n ϵ N. This shows that the above equation does not have any integer solution for n2. 

Therefore (1,2)-burst error correcting optimal linear code for n1 = 1,2,4,5,7,8,….,x ≠3n , V n ϵ N, cannot exist. 

Let n1 =3.The equation (4) reduces to  

.                                                                                                                                            (5) 

Then the values of parameters n2 and k for r ≤ 5 satisfying (5) are (4, 4), (13, 12) and (40,38). 

This gives us to the possibilities of the existence of (3+4, 4), (3+13, 12) and (3+40, 38) ternary codes. 

Let n1 =6. 

The equation (4) reduces to  

.                                                                                                                                         (6) 

Then the various values of parameters n2 and k for r ≤ 5 satisfying the above equation are 

(n2 , k) = {(3,6), (12,14) and (39,40)}. 

This shows the possibilities of the existence of (3+3,6), (3+12,14) and (3+39,40) ,(1,2)-burst –error correcting  

codes over GF(3). 

                                                                                     TABLE 1 
n1 n2 k 

3 4 

13 

40 

4 

12 

38 

6 3 

12 

39 

6 

14 

40 
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9 2 

11 

38 

8 

16 

42 

12 10 

37 

18 

44 

15 9 

36 

20 

46 

18 8 

35 

22 

48 

21 7 

34 

24 

50 

24 6 

33 

26 

52 

27 5 

32 

28 

54 

30 4 

31 

30 

56 

33 3 

30 

32 

58 

36 

 

2 

29 

34 

60 

39 28 62 

42 27 64 

45 26 66 

48 25 68 

51 24 70 

54 23 72 

57 22 74 

60 21 76 

63 20 78 

66 19 80 

69 18 82 

72 17 84 

75 16 86 

78 15 88 

81 14 90 

84 13 92 

87 12 94 

90 11 96 

93 10 98 

96 9 100 

99 8 102 

102 7 104 

105 6 106 

108 5 108 

111 4 110 

114 3 112 

117 2 114 

 

IV. Discussion 

Example 1:  For various values of the parameters n1 =6, n2 =3 and k = 6, the matrix (7) may be considered as 

the parity check matrix for an (6+3, 3) code for q =3 where first sub-block n1 of length 6 corrects all bursts of 

length 1 and the second sub-block n2 of length 3 corrects all bursts of length 2 or less.  

 

H =  .                                                                                                     (7)                                                       

It can be verified from the following error pattern-syandrom table 2 that the (9,6) code corrects all burst of 

length 1 in the first block of length n1 and all burst of length2 or less in the second block of length n2 over 

GF(3). 

TABLE 2 
Error-Pattern Syndrome Error-Pattern Syndrome 

100000 000 121 000000 120 012 

010000 000 102 000000 011 112 

001000 000 200 000000 012 120 

000100 000 111 000000 220 122 

000010 000 010 000000 210 021 

000001 000 001 000000 022 221 

200000 000 212 000000 021 210 
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020000 000 201 000000 100 110 

002000 000 100 000000 010 101 

000200 000 222 000000 001 011 

000020 000 020 000000 200 220 

000002 000 002 000000 020 202 

000000 110 211 000000 002 022 

 

Example 2:  For values of the parameters n1 =12, n2 =10 and k = 18, the following matrix (8) may be 

considered as parity – check matrix for (12+10, 18) for ternary (1,2) – burst correcting optimal code . 

H =  .                              (8) 

The existence of (22,18) code can be verified from the following error pattern-syndrome table 3. 

 

Table 3 
Error-Pattern Syndrome Error-Pattern Syndrome 

100000000000 0000000000 0122 000000000000 0000000120 0101 

010000000000 0000000000 1220 000000000000 0000000012 1212 

001000000000 0000000000 1211 000000000000 2200000000 1111 

000100000000 0000000000 1222 000000000000 0220000000 1010 

000010000000 0000000000 1102 000000000000 0022000000 2211 

000001000000 0000000000 1201 000000000000 0002200000 0022 

000000100000 0000000000 1021 000000000000 0000220000 0220 

000000010000 0000000000 1022 000000000000 0000022000 2200 

000000001000 0000000000 1001 000000000000 0000002200 1221 

000000000100 0000000000 1002 000000000000 0000000220 1210 

000000000010 0000000000 1012 000000000000 0000000022 2220 

000000000001 0000000000 2202 000000000000 2100000000 0212 

200000000000 0000000000 0211 000000000000 0210000000 0222 

020000000000 0000000000 2110 000000000000 0021000000 2210 

002000000000 0000000000 2122 000000000000 0002100000 0012 

000200000000 0000000000 2111 000000000000 0000210000 0120 

000020000000 0000000000 2201 000000000000 0000021000 1200 

000002000000 0000000000 2102 000000000000 0000002100 0112 

000000200000 0000000000 2012 000000000000 0000000210 0202 

000000020000 0000000000 2011 000000000000 0000000021 2121 

000000002000 0000000000 2002 000000000000 1000000000 1020 

000000000200 0000000000 2001 000000000000 0100000000 1202 

000000000020 0000000000 2021 000000000000 0010000000 1121 

000000000002 0000000000 1101 000000000000 0001000000 0001 

000000000000 1100000000 2222 000000000000 0000100000 0010 

000000000000 0110000000 2020 000000000000 0000010000 0100 

000000000000 0011000000 1122 000000000000 0000001000 1000 

000000000000 0001100000 0011 000000000000 0000000100 1112 

000000000000 0000110000 0110 000000000000 0000000010 1011 

000000000000 0000011000 1100 000000000000 0000000001 0102 

000000000000 0000001100 2112 000000000000 2000000000 2010 

000000000000 0000000110 2120 000000000000 0200000000 2101 

000000000000 0000000011 1110 000000000000 0020000000 2212 

000000000000 1200000000 0121 000000000000 0002000000 0002 

000000000000 0120000000 0111 000000000000 0000200000 0020 

000000000000 0012000000 1120 000000000000 0000020000 0200 

000000000000 0001200000 0021 000000000000 0000002000 2000 

000000000000 0000120000 0210 000000000000 0000000200 2221 

000000000000 0000012000 2100 000000000000 0000000020 2022 

000000000000 0000001200 0221 000000000000 0000000002 0201 
 

V. Conclusion And Open Problem 
As we know that optimal codes improve the efficiency of the communication channels as well as the 

rate of transmission. So, these codes are very useful from application point of view. In this paper, we have 

investigated the solutions of the equation (4) for r ≤ 5 and for n1 ≤ 117. We noticed that equation (4) has 

solutions only for n1 = 3x, 1 ≤ x ≤ 29 and no integer solutions for n1 = 1,2,4,5,7,…………….., 116. We have 

been able to obtain two codes (6+3,3) and (12+10,18) corresponding to the solutions. This justifies existence of 

such (1, 2) burst-correcting optimal linear codes over GF(3). 

However, in view of the existence of other solutions of the equation (4), the existence of corresponding codes is 

an open problem. Also, it would be interesting to find such codes for b1 ≥ 1 and b2 ≥ 2. 
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