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Abstract  : Laboratory experiments were used to investigate the potential of using ground penetrating radar 

(GPR) to detect problems in the underground distribution system. Surface geophysical methods are noninvasive, 

trenchless tools used to characterize the physical properties of the subsurface material. This characterization is 

then used to interpret the geologic and hydro geologic conditions of the subsurface. Many geophysical 

techniques have been suggested among them Ground penetrating radar (GPR) is one of the common sensor 

systems for underground inspection. GPR is a reflection technique which uses high frequency electromagnetic 

waves to acquire subsurface information. GPR responds to changes in electrical properties, which are a 

function of soil and rock material and moisture content. It emits electromagnetic signals which can pass through 

objects are recorded, digitized and then, the B-scan images are formed. Depending upon the properties of 

scanning object, GPR creates different intensity values on the object regions. Thus, these changes in signal 

represent the properties of scanning object. This paper proposes a three step method to detect and discriminate 

buried pipes : N-row average-subtraction (NRAS), Min-max normalization and image scaling. Proposed method 

has been tested using three common algorithms from the literature. Results shows increased object detection 

ratio and positive object discrimination (POD) significantly.  
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I. Introduction 
Ground-penetrating radar (GPR) uses radar pulses to image the subsurface and can be used in a variety 

of media, including rock, soil, ice, fresh water, pavements etc,. This method uses electromagnetic signals 

UHF/VHF frequencies range of the radio spectrum to detect the reflected signals from subsurface structures. It 

can detect objects, changes in material, and voids  cracks. Many methods
1
 are there for detecting buried objects. 

Among them, detection using GPR has attracted many researchers attention due to its various advantages. Mine 

detection using GPR data and signal processing techniques has a long history
5,10

. Sezgin and Kurugollu
8
 state 

that GPR offers better detection possibilities.  The signals gathered from sensing devices are processed using 

different signal and image processing techniques. Some methods applied for mine detection are background 

removal
11

, hidden Markov models (HMMs)
12,13

 using frequency domain features
3
, Fuzzy K-nearest neighbours

4
, 

edge histogram descriptors
14

, and adaptive approaches for anomaly detection
15

, etc. Due to the real-time 

requirements many researchers developed two staged algorithms: pre-screening and feature-processing stages.  

In this paper, a three step method is proposed to locate and discriminate buried pipe lines: Processing B-scan 

images according N-row average subtraction, Using Min-max normalization for the intensity values and Scaling 

images. Then, the paper tests/analyses proposed method using three common algorithms from the literature. 

 
 

II. Methodology 
2.1 Data set used 

The data has been collected using soft soil and 1 GHz GPR signals for two types of objects i.e concrete 

and plastic of 10 cm - 25 cm diameter for different object depths i.e 3 cm, 10 cm, 20 cm, 30 cm and 40 cm. 

Finally for different antenna heights: 5 cm, 10 cm, 15 cm, and 20 cm. A-scan signals are captured
16,17 

as shown 

in Fig 1, there is high fluctuation in the first few rows in depth direction where the signal passes from air to the 

ground which is called ground bounce. It is also important to note that the average intensity is very high 

represented by dashed line. 
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Figure1. A-Scan signal 

     

To have better signal to noise ratio (SNR), every point is scanned several times usually 4 or 8. Later, the signal 

is digitized and averaged by using equation-1
16

. For better detection, the signals have been digitized using 2-

byte intensity resolution (from 0 to 65535). 
 

aA(x,y,z) = (1/R)∑ a (x,y,z)  ….(1) 
 

where R is the number of A-scan signals taken and aA (x , y , z) is the averaged A-scan signal over R 

scans. Finally, A-scan signals are combined together to form B-scan images. Fig 2 shows two B-scan images 

where image (b) contains dashed rectangle to highlight the object region from the image (a). Thus, 10 B-scan 

images have been collected for every object depth and antenna height then the images have been classified into 

three categories. True positive (TP) images: images which contain query object whose type and position are 

known, True negative (TN) images: images which do not contain any query object, and Images which contain a 

query object but whose position are not recorded. 
 

 
Figure 2: B-Scan image captured for a concrete object which is buried under 3 cm 

 

The objects are usually buried less than 10 inches deep
7,12,19

. But in this study, there are some objects 

which are buried 30 cm and 40 cm deep. When an object goes beyond the sensing limits of GPR sensors, the 

object cannot be captured in the image. Images in which the object depths are 20 cm - 30 cm and antenna 

heights are10 cm, 15 cm, and 20 cm is as shown in Fig 3. It is clear that for the same object depth (rows), when 

the height of antenna changes (columns), the object is detected in deeper positions in the image. In the figure, 

although the object used in all scans is the same object, it is captured in deeper positions in the images. After a 

point the object disappears from the visible scene of the image. Thus, the images which are out of the detection 

limits of GPR have been used as TN images and we have the following number of images in tests: 310 TP 

images (250 concrete pipes and 60 Plastic pipes) and 180 TN images. 
 

2.2 N-Row Average Subtraction (NRAS) 

Row mean subtraction (RMS)
20,21

 provides lower results compared to N-row average subtraction 

(NRAS) for many algorithms tested. When GPR signals pass through a medium with the same properties, they 

are reflected back with same signal levels produce same signals like beam bands for the entire row which can be 

seen in Fig 4 on the rows from 140 to 200. When beams pass through a different medium, they are returned with 

different peaks or holes in the signal. These peaks and holes serve as a signature of the object being captured. 
 

 
Figure 3: GPR signal taken from different depths and antenna heights 



GPR System to Inspect Underground Distribution Systems  

DOI: 10.9790/0661-1904025359                                     www.iosrjournals.org                                         55 | Page 

Using these parallel bands, the images can be normalized. As an example, for processing according to 

3-row average, the average of the current, preceding and the next rows is subtracted from every pixel intensities 

of the current row. Then, the real object information i.e peaks & holes are left and extra information is removed 

from the signal. (where µr   is the average of r
th

  row and cra. is the average of current, preceding and the next 

row averages. Later, cra is subtracted from every element of the current row). 

 

cra = µ (µr - 1, µr, µr +1) a (x, zr) = a (x, zr) – cra    ….(2) 

 

 
Figure 4: coloring images according to the intensity levels 

  

Fig 5 shows images (a, b, and c) before and after processing. 3-row average subtraction method 

preserves most of signal properties while removing extra information. Furthermore, the signatures are preserved 

even after significant image scaling.  

                                   
5(a) a concrete object buried under 10cm                                5(b) after processing according to 3-row average 

 

 
5(c) after resizing image to 50% 

5: images before and after processing 

 

2.3 Runtime Complexity  

N-row average subtraction calculates the average of every row. Then, N-row average is subtracted 

from row of every element. Therefore, it uses 2 hw operations where h and w are the dimensions of 2D B-scan 

image. After NRAS, data is Min-max normalized 2hw operations. As a result, the runtime complexity of the 

proposed uses 4 hw operations. Thus, the runtime complexity is O (hw ). As a result, the method shows 

reasonably better runtime performance. By the use of image scaling, the method is promising for online 

detection. 
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III. Implementation And Results 
The effects of NRAS have been analyzed using three common algorithms: ANN, SVM, and K-Means. For 

comparison of the results, algorithms have been tested using four test settings: 

1. No Normalization (NN): Raw images without operations. 

2.  Min-max Normalization (MM): The image intensity is normalized to the range from 0 to 1 and these 

images crops are taken for testing. 

3. NRAS: (where n is an odd number between 1 and 7). Entire image is processed according to NRAS. Then, 

the image crops are taken. 

4. 3-row average+ Min-max normalization (3RM): Entire image is first processed according to 3-row average 

subtraction. Then, the image is Min-max normalized to the range from 0 to 1 and the image crops are taken. 

 

TABLE 1 Object classification for K-means 
 

 
 

 

 

 
There are 180 negative (TN) B-scan images, 250 B-scan images which contain a concrete pipeline 

object, and 60 B- scan images which contain a plastic pipeline object. Every B- scan image is 256-by-180 pixel 

image where the 256 rows represent the depth. Objects usually create a 60-by-90 signature in the image. 

Because dataset is small, 60-by-90 image crops have been taken from the existing negative images. Hence entire 

image is negative, any part of the image can be cropped as a new negative image. Thus, 6 image crops have 

been taken from random coordinates of each TN image. As a result, a set of (180 × 6) =1080 TN images have 

been produced. However, TP images cannot be reproduced with the way negative images have been reproduced. 

To produce more test sets, the program was run 10 times. In every run, the orders of images have been shuffled 

randomly to construct different test and data sets: as a total of (10 × (1080 + 250 +60)) = 13900 test images. 

 

3.1. Performance Measurement and Formulas 

One of the best algorithms in data mining
23 

is K-Means, which is an unsupervised clustering algorithm. 

As there are only 60 plastic test objects, the cluster with the most number of items cannot be the cluster for 

plastic objects. Later, the objects assigned to the cluster have been verified if they are assigned correctly or not. 

By this way, the clusters of K Means have been used like a classifier. Table 1 has been produced with the 

following conditions: K Means with K=3; three classes: concrete objects, plastic objects and None exists, for 

1080 TN and 310 TP (250 concrete and 60 plastic objects),60-by-90 image crops have been scaled to 25 per 

cent, program was run 10 times, using MM (test setting 2).  

K-Means has identified 1156 metal objects correctly as concrete ; 789 concrete  objects have been 

misclassified as plastic and 555 concrete objects have been misclassified as Nothing. Thus,(1156 + 85 + 6669 )= 

7910 images out of 13900 have been identified correctly. That is 56.9 per cent of all objects have been classified 

correctly. Table 2 shows the truth table for the confusion matrix When an object is identified correctly as in the 

dataset, it is count as TP or TN. If a positive image classified as negative, then it is false negative (FN). When a 

concrete object is classified as plastic object, it cannot be said to be FN or TP. Thus, in the results, they are 

assumed to be false classification (FC). 

 

TABLE 2 Truth table for the confusion matrix 
 Object Detected 

 

Actual 

object 

 Concrete Plastic Nothing 

Concrete TP FC FN 

Plastic FC TP FN 

Nothing FP FP TN 

 

Object detection ratio (ODR) is the ratio of objects detected as in the dataset (TP+TN) to the total number of 

objects. 

ODR=(TP+TN)/All objects = 7910/13900 = 56.9 %  ….(3) 

 

Positive object discrimination (POD) is the ratio of TPs to the number of all positive objects. (1156 + 85 )=1241 

of the positive images have been classified correctly. And, there are totally (10 × 310 )= 3100 positive objects 

used in 10 runs. This gives 40 per cent positive object discrimination accuracy. 

 

POD=TP/All positives = (1165+85)/3100 = 40% …(4) 

 

 

 

Actual 

object 

Object Detected 

 Concrete Plastic Nothing 

Concrete 1156 789 555 

Plastic 91 85 424 

Nothing 1850 2281 6669 
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False alarm rate (FAR) is the ratio of negative objects identified as positive (FP) to the total number of 

negatives. 

FAR=FP/All negatives =(1850+2281)/10800=38.3% ...(5) 

Then, the overall performance can be defined as follows: 

OP=(POD+ODR-FAR) / 2   …….(6) 
 

3.2 Implementation using K-Means 

The implementation details described above have been used for three different image scales. Table 3 

shows the results for K Means for the test settings given. It can be seen from the table that there is high FAR 

ratio, except NRAS test settings. Secondly, usage of MM improves POD result. However, it also increases FAR 

and thus decreases ODR. 

 

TABLE 3 Results for K-means 
 OP(%) POD(%) ODR(%) FAR(%) 

NN 25.2 66.5 21.7 35.0 

MM 35.5 59.3 33.9 30.5 

1 R 25.9 83.5 0.0 54.7 

3 R 25.9 83.5 0.0 54.7 

5 R 26.7 83.7 0.0 55.2 

7 R 25.9 83.5 0.0 54.7 

3 RM 63.2 68.6 29.9 51.0 

 

5-row average subtraction (5R) has provided the best overall performance (OP) with 55.2 %. Because 

the POD results for NRAS are very low, 3RM can also be noted for its good result. At this test setting, POD 

increases from25.2 %to 63.2 % and a relative increase in ODR is provided. The results for 1R, 3R and 7R are 

the same. But, 5-row average subtraction (5R) gives relatively better result than the others. Despite the results 

are low, applications of NRAS and 3RM increases the OP notably. The low results are mostly because K-Means 

is an unsupervised clustering algorithm. 

 

3.3 Using Support Vector Machines 

Support vector machines (SVM)
18 

is one of the well-known algorithms in Machine learning
9
 which 

provides linear and non-linear classification algorithms for binary/multi-class representations. When a new 

testing item is projected, the class is defined according to the position on the hyper-plane. This method has been 

tested using Rapidminer toolbox, using four test settings with the following conditions.  In the tests there are 

310 positive and 1080 negative image crops, Image crops have been resized to 20 %, 25% and 33 % ,  5-Fold 

cross validation has been used, and Lib SVM from Rapid miner with the following parameters has been used ( 

Kernel type: linear, C=0 an Epsilon=2,Where C is the cost and Epsilon is the tolerance of the termination 

criteria ). Table 4 shows the average results from 3 scales. Firstly, the results are better than the results using K-

Means. The decrease in FAR is notable. Furthermore, the increase in POD and ODR did not increase FAR and 

decreased to 0.22 %. Similar to K Means, usage of MM has provided some improvement on the results. And, 

application of NRAS has provided better results than MM. However, the best results have been achieved using 

3RM. While the OP for NN is 61.7 % it increases to 81.6 % with the application of3R. 1R has produced better 

results than 3R and 5R. However, the best OP is provided by 3RM which reaches to 87.7 %. 

 

TABLE 4 Results for SVM 
 OP(%) POD(%) ODR(%) FAR(%) 

NN 37.85 85.92 0.28 61.7 

MM 54.73 89.78 0.15 72.2 

1 R 74.09 94.15 0.09 84.1 

3 R 70.11 93.21 0.15 81.6 

5 R 69.25 93.05 0.12 81.1 

7 R 68.71 92.95 0.09 80.08 

3 RM 80.22 95.42 0.22 87.7 

 

3.4 Using Artificial Neural Networks  

Artificial Neural networks (ANN)
2,6

  is  another  very common Machine Learning algorithm. The tool 

uses Sigmoid activation function by default. Then, the following properties have been selected for the tests: 

 Number of training cycles: 5,  

 Learning rate: 0.7,  

 Momentum: 0.7,  

 Error epsilon: 0.02,  

 2 hidden layers with 20 Nodes. 
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The results, presented in Table 5, are better than the results for SVM.  

 

TABLE 5 Results for ANN 
 OP(%) POD(%) ODR(%) FAR(%) 

NN 77.42 94.82 0.19 86.0 

MM 78.17 94.94 0.25 86.4 

1 R 76.99 94.82 0.06 85.9 

3 R 78.82 93.24 2.62 84.7 

5 R 79.25 95.37 0.00 87.3 

7 R 78.06 95.11 0.00 86.6 

3 RM 87.74 97.00 0.34 92.2 

 

Similar to K-Means application of 5R has provided slightly better POD and ODR accuracies than NN. 

The application of 3RM has increased both POD and ODR results while providing a slender increase in FAR. 

ANN has provided better OP than the other two algorithms Even though, the OP for NN is high, 86.0%, it 

reaches to92.2 % by the application of 3RM. And, this is the best overall performance among all three 

algorithms. 

 

IV. Conclusions 
The effectiveness of GPR as a tool for detecting problems of pipes is examined in this experiment. 

Pipeline detection requires fast and accurate detection performance. This paper proposes a method which 

provides fast processing while increasing the accuracy. The algorithm consists of three steps: NRAS, Min-max 

normalization and Image scaling. Application of the proposed method not only increases ODR and POD results 

but also provides better runtime performance. 

The positive effect of NRAS is seen on all testing algorithms. For K Means algorithm, although, Min-

max normalization increases POD, but due to high FAR result, the ODR decreases to 59.3 %. However, when 

3RM is used, both ODR and POD results increase comparably. The high FAR rate for K Means is due to the 

nature of the algorithm.SVM increases POD from 37.85 %to 80.22 %. Moreover, it provides notably low FAR 

results compared to the other algorithms. Although, ANN has a bit higher FAR than SVM, it provides higher 

results than the other two testing algorithms. 

 

References 
[ 1] G. Olhoef, “Applications of ground penetrating radar,” in Proc. 6th Int. Conf. Ground Penetrating Radar (GPR’96), Sendai, Japan, 

Oct. 3, 1996, pp. 1–4. 

[ 2] J. D. Young and L. Peters, Jr., “A brief history of GPR fundamentals and applications,” in Proc. 6th Int. Conf. Ground Penetrating 

Radar (GPR’96), Sendai, Japan, Oct. 3, pp. 5–14. 

[ 3] Frigui, H. & Gader, P. Detection an discrimination of land mines in ground-penetrating radar based on edge histogram descriptors 

and a possibilistic k-nearest neighbor classifier. IEEE Trans. Fuzzy Sys., 2009, 17(1), 185-199. doi: 10.1109/TFUZZ.2008.2005249. 

[ 4] Torrione, P.A.; Throckmorton, C.S. & Collins, L.M. Performance of an adaptive feature-based processor for a wideband ground 
penetrating radar system. IEEE Trans. Aerospace Electron. Sys., 2006, 42(2), 644-658. doi: 10.1109/TAES.2006.1642579 

[ 5] U. Spagnolini, “Permittivitty measurements of multilayered media with monostatic pulse radar,” IEEE Trans. Geosci. Remote 

Sensing, vol. 35, pp. 454–563, Mar. 1997. 
[ 6] L. Gupta, M. R. Sayeh, and R. Tammana, “A neural network approach to robust shape classifications,” Pattern Recognit., vol. 23, 

pp. 563–568, 1990.  
[ 7] Daniels, D.J. Surface-penetrating radar. Electron. Commun. Eng. J., 1996, 8(4), 165-182. doi: 10.1049/ecej:19960402  

[ 8] Sezgin, M.; Kurugollu, F.; Tasdelen I. & Ozturk, S. Real-time detection of buried objects by using GPR. In Detection and 

Remediation Technologies for Mines and Minelike Targets IX, Orlando FL, 2004. doi: 10.1117/12.541128  
[ 9] Wilson, J. N.; Gader, P.; Lee, W.H.; Frigui, H. & Ho, K.C. A large-scale systematic evaluation of algorithms using ground-

penetrating radar for landmine detection and discrimination. IEEE Trans. Geosci. Remote Sensing, 2007, 45(8), 2560-2572. doi: 

10.1109/TGRS.2007.900993 
[ 10] Gader, P.D.; Mystkowski, M. & Zhao, Y. Landmine detection with ground penetrating radar using hidden Markov models. IEEE 

Trans. Geosci. Remote Sensing, 2001, 39(6), 1231-1244. doi: 10.1109/36.927446  

[ 11] Frigui, H. & Gader, P. Detection and discrimination of land mines based on edge histogram descriptors and fuzzy k-nearest 
neighbors. In IEEE International Conference in Fuzzy Systems, Vancouver, BC, 2006. doi: 10.1109/fuzzy.2006.1681906  

[ 12] M. Physics model-based signal processing of GPR for subsurface object detection and discrimination. Department of electrical and 

computer engineering, Duke University, Durham, NC, 2003.  

[ 13] Turk, A.S. Ultra-wideband Vivaldi antenna design for multisensor adaptive ground-penetrating impulse radar. icrowave Opt. 

Technol. Let., 2006, 48(5), 834-839. doi: 10.1002/mop.21491  

[ 14] Ratto, C.R.; Morton, K.D.; McMichael, I. T.; Burns, B.P.; Clark, W.W.; Collins, L.M. & Torrione, P.A. Integration of lidar with the 
NIITEK GPR for improved performance on rough terrain. SPIE Def., Security, Sensing, 2012, 5089, 1375-1382. doi: 

10.1117/12.919119  

[ 15] Iurlaro, M.; Ficz, G.; Oxley, D.; Raiber, E.-A.; Bachman, M.; Booth, M. J.; Andrews, S.; Balasubramanian, S. & Reik, W. A screen 
for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. 

Genome Biology, 2013, 14(10), R119. doi: 10.1186/gb-2013-14-10-r119 

[ 16] Liu, Z.; Zhou, F.; Chen, X.; Bai, X. & Sun, C. Iterative infrared ship target segmentation based on multiple features. Pattern 
Recognition, 2014, 47(9), 2839--2852. doi: 10.1016/j.patcog.2014.03.005  

 



GPR System to Inspect Underground Distribution Systems  

DOI: 10.9790/0661-1904025359                                     www.iosrjournals.org                                         59 | Page 

[ 17] Mesecan, I. & Bucak, I.O. Searching the effects of image scaling for underground object detection using K Means and KNN. In 

UKSim-AMSS 8th European Modelling Symposium, Pisa, 2014. doi: 10.1109/ems.2014.64  

[ 18] Wu, X. & Kumar, V. The top ten algorithms in Data Mining, Boca Raton, London, New York: Chapman & Hall/CRC Taylor & 
Francis Group, 2009.  

[ 19] Vladimir, V.N. Estimation of dependences based on empirical data. New York: Springer, 2006.  

[ 20] Hofmann, M. & Klinkenberg, R. RapidMiner: Data mining use cases and business analytics applications. CRC Press, 2013.  
[ 21] Zakar, G. Artificial Neural Networks. CreateSpace Independent Publishing Platform, 2016.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

IOSR Journal of Computer Engineering (IOSR-JCE) is UGC approved Journal with Sl. No. 

5019, Journal no. 49102. 

P. Kiran Kumar Reddy. "GPR System to Inspect Underground Distribution Systems ." IOSR 

Journal of Computer Engineering (IOSR-JCE) 19.7 (2017): 53-59. 


