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Abstract:Thispaper presents a novel method for electroencephalography (EEG) based motor imagery 

classification for brain computer interface (BCI) implementation using the potential features extracted band-

specific common spatial pattern (CSP). The recorded EEG signal is bandpass-filtered into multiple subbands to 

capture the related rhythmic components of brain signals. The CSP features are then extracted from each of 

these bands. The linear discriminant analysis (LDA) based classifier is subsequently used to classify the 

relevant subband of EEG using the features extracted by CSP. Then the highest discrimination score among all 

the subbands is used as the norm for overall EEG classification. The experimental results show that the 

proposed method yields comparatively superiorclassification performance compared to prevailing methods. 
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I. Introduction 
Brain-computer interface (BCI) is a communicating system between a brain and a device that enables 

signals from the brain to direct some external devices, such as a computer, wheelchairs [1], robotic arms, 

prostheses [2] etc. The interface translates human thoughts into command to control the external devices.The 

keytarget of the BCI is to restore or repair useful function to people disabled by neuromuscular disorders such as 

Amyotrophic Lateral Sclerosis (ALS), cerebral palsy, stroke, or spinal cord injury.Although people may become 

totally paralyzed through these types of disorders their minds are un-affected. Considering this issue brain 

computer interface translates human thoughts directly to the external world [3]. Electroencephalography (EEG) 

is a widely used non-invasive BCI due to its low expense and high-temporal resolution[4]. The feature 

extraction stage is responsible for forming discriminative set of features in the form of frequency patterns, 

temporal patterns, time-frequency patterns, autoregressive models, or spatial patterns for each task performed[5, 

6, 7]. The features extracted are used to train a classifier to decode the users‟ intent and subsequently translate 

the features into a set of output commands for operating an external device.  

The common spatial pattern (CSP) is an algorithm commonly used in BCI systems to preprocess the 

electroencephalogram (EEG) signals [8, 9, 10].The algorithm finds optimal spatial filters that are functional in 

discriminating two classes of EEG signals in motor imagery based BCI. The effectiveness of the spatial filters 

depends on its subject specificfrequency band i.e. the performance varies with subjects as well as frequency 

bands.If the EEG signalsis unfiltered or have been filtered with badly chosen frequency rangethen the 

classification of that signals using CSP shows poor accuracies [11]. Consequently, subjectspecific frequency 

bands are generally used with the CSP algorithm [12]. 

To overcome the limitation of manually selecting the subject specific frequency bands for the CSP, the 

common spatio– spectral pattern (CSSP) algorithm has been proposed where simple filters are optimized 

together with the CSP algorithm [13]. The common sparse spectral-spatial pattern (CSSSP) algorithm improves 

the performance of CSSP algorithm. It allows concurrent optimization of an arbitrary finite impulse response 

(FIR) filter within CSP analysis [12]. Another approach called SPECtrally weighted common spatialpattern 

(SPEC-CSP) algorithm [14] optimizes the temporal filter in the frequency domain and after that the spatial filter 

in an iterative method [15]. However, due to the inherent nature of optimization problem, the solution of filter 

coefficients significantlydepends on the selection of initial parameters [11].  

Sub-band CSP (SBCSP) method [11] was alternatively proposed and has been shown better 

classification accuracy compared against CSSP and CSSSP. In this method publicly available dataset from BCI 

competition III in 2005 has been used. As a substitute of temporal FIR filter within the CSP algorithm, SBCSP 

uses a filter bank that decomposes the EEG signals into sub-bands. The CSP algorithm is then employed on 

each of these sub-bands to obtain sub-band scores. To fuse the sub-band score two fusion methods namely 

recursive band elimination (RBE) and meta-classifier (MC) are used. An additional classifier is then usedto 

classify the fused sub-band scores. In [11] comparative study of using different sub-band score fusion 

techniques and classification algorithms are not available.The filter bankcommon spatial pattern (FBCSP) 

algorithm is proposed to classify EEG signals[16] in which the EEG signals are bandpass-filtered into some 
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frequency bands and CSP features are extracted from each of these bands. Finally, a classification algorithm is 

used to classify the selected CSP features.The FBCSP algorithm used the typical estimation ofmultivariate 

covariance matrices from the EEG signals for a filter bank of CSP. Usually EEG signals are contaminated with 

artifacts or different types of noise sources. Due to the contamination the normal pattern of the majority of the 

EEG data are differed [17].  In the case of large amount of contamination, the multivariate covariance estimates 

typically varies significantly from the estimate without the contamination [17]. Therefore, the FBCSP algorithm 

is sensitive to artifacts in the trainingdata [14]. 

Arobust filter bank commonspatial pattern (RFBCSP) algorithm was proposed [18] where theminimum 

covariance determinant (MCD) estimator is used to estimate the covariance matrices. Likewise, to estimate the 

variance of the projected EEG signals the median absolute deviation (MAD) is used. The classification 

performance of the RFBCSP is better in some specific subjects but the overall results are not statistically 

significant.  

In this paper, a novel approach is proposed for EEG signal classification in motor imagery-based BCI 

implementation. The proposed approach is subdivided into three stages. The EEG signal is first divided into 

multiple frequency bands using bandpass filter considering to capture the relevant brain rhythmic components, 

the CSP features are extracted from each of these frequency bands. A LDA based classification algorithm is 

used to classify the specific subband using the CSP features.  The overall EEG classification is achieved by 

selecting the maximum LDA classification scores over that of the subbands.  

The paper is organized as follows– Section 2 discusses a feature extraction technique called with CSP, the 

basics of LDA technique is explained in section 3, the section 4 contains the description of the proposed method, 

the experimental results are illustrated in section 5 and the section 6 include discussion and some concluding 

remarks.  

 

II. Feature Extraction with CSP 
Common Spatial Pattern (CSP) is a feature extraction technique used in signal processing for 

separating a multivariate signal into additive sub-components.The technique used to design spatial filters such 

that the variance of the filtered data from one class is maximized while the variance of the filtered data from the 

other class is minimized. Thus, the resulting feature vectors increase the discriminability between the two 

classes by means of minimize the intra class variance and maximize the inter class variance [19]. This property 

builds CSP as one of the most effective spatial filters for EEG signal processing. The method of CSP was first 

introduced to EEG analysis for detection of abnormal EEG [20] and effectively applied on movement-related 

EEG for the classification purpose [8, 10]. The target of the CSP is to project the multichannel EEG data into 

low dimensional spatial subspace with a projection matrix using linear transformation [21]. 

For details explanation of the CSP algorithm, assume the original EEG data matrix i
kE from trial i for class k. 

The dimension of each i
kE is TD , where D is the number of channels and T is the number of samples per 

channel. For the explanation, the EEG data of a single trial )1( i is represented as 
),( fhkE 
where h denotes 

hand and f denotesfoot movement. The normalized spatial covariance of the EEG for hand movement, 
hC  and 

for the foot movement, 
fC can be calculated as: 
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where
hE  and 

fE represent the original EEG matrices for hand and foot movement respectively, )(  is the 

transpose operator and  tr represents the sum of the diagonal elements of any given matrix. The composite 

spatial covariance, C is the sum of the averaged normalized spatial covariance 
hC and 

fC . The 
hC  and

fC are 

estimated by averaging over all the trials of each class. The composite spatial covariance, C is calculated as 

 fh CCC    (2) 

whereis the matrix of Eigenvectorsand is the diagonal matrix of Eigenvalues.The averaged normalized 

spatial covariance 
hC  and 

fC are transformed as 

XCXJ hh
 and XCXJ ff

 (3) 

where /X is the whitening transformation matrix. 
hJ and

fJ share common eigenvectors and the sum of 

corresponding eigenvalues for the two matrices will always be one. If YYJ hh
 and YYJ ff

 then 

Ifh  , where I is the identity matrix. Since the sum of two corresponding eigenvalues is always one, a 

high eigenvalue for 
hJ means that a high variance for EEG in hand movement and a low variance for the EEG in 
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foot movement (low eigenvalue for
fJ ) and vice versa. The classification operation is done based on this 

property. The projection of whitened EEG onto the eigenvectors Y corresponding to the largest 
h and

f will 

give feature vectors that significantly enhance the discrimination ability.  

The goal of the CSP is to find B spatial filters to create a projection matrix W of dimension BN  (each column 

is a spatial filter). The projection matrix W is represented as 

XYW   (4) 

The projection matrix W linearly transforms the original EEG into uncorrelated components according to: 

WEZ        (5) 

The original EEG, E can be reconstructed by ZWE 1 where 
1W is the inverse matrix of W. The columns of 

1W are spatial patterns that describe the variance of the EEG. The first and last columns contain the most 

discriminatory spatial patterns that explain the high variance of one class and the low variance of the other. 

 

III. LDA Based Classification 
Linear discriminant analysis (LDA), also known as Fisher‟s linear discriminant analysis is a technique 

used to find a linear combination of features that separates two or more classes of data. It is typically used as a 

dimensionality reduction step before classification [22]. It reduces dimensionality but at the same time preserves 

as much of the class discriminatory information as possible. The goal of the LDA is to use a 

separatinghyperplane that maximally separate the data representing the different classes. The hyperplane is 

found by selecting the projection, where the same classes are projected very close to each other and the distance 

between two classes means is as maximum as possible [23].Let as assume that we have Kclasses, each 

containing N observations xi. The within-class scatter, wS
~

for all K classes can be calculated as: 
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where the within-class covariance matrix k
wS and the fraction of data kf  are calculated according to the 

following formulas:  
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whereNk is the number of observations of k
th

 classand k indicates mean of the all observationsxi for k
th

class.The 

between class scatter bS
~

for all K classes is calculated as: 
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where the between class covariance matrix, k
bS  can be estimated as  
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Where   indicates the mean of the all observationsxi for all classes. The main objective of LDA is to find a 

projection matrix that maximizes the ratio of the determinantof bS
~

 to the determinant of wS
~

. The projections 

that providing the best class separation are eigenvectors with the highest eigenvalues of matrixM[22]: 
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Since thematrix Mis asymmetric, the calculation of eigenvectors can be difficult. This difficulty can be 

minimized by using generalized eigenvalue problem [20]. Now, the aim of the LDA is to seek (K-1) projections 

 1321 ,...,,, Kyyyy by means of (K-1) projection vectors. The transformed data set y is obtained as a linear 

combination of all input features x with weights W. 

Wxy T (12) 

where  HwwwwW ,...,,, 321 is a matrix form with the H eigenvectors of matrix M associated with the highest 

eigenvalues. The LDA reduces the original feature space dimension to H.The LDA performs well when the 

discriminatory information of data depends on the mean of the data. But it does not work for the variance 
depended discriminatory informative data. Also, the performance of the LDA is not good for nonlinear classification. 
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IV. Proposed Method 
The proposed EEG signal classification approach is illustrated in Fig. 1.This approach is subdivided 

into three stages for EEG signal processing and machine learning. In the first stage, the EEG signal frequency is 

filtered into multiple pass bands using bandpass filter. In the second stage, CSP features are extracted from each 

of these frequency bands. In the third stage, the classification operation is performed by finding LDA scores, 

blending and classifying the scores. A detail of each stage is described in below. 

Subbanddecomposition: the first stage filters the EEG signal into multiple frequency passbands. The 

digital Butterworth bandpass filter is used to filter the EEG signal. Here, the most dominating rhythmic 

components alpha and beta (8-32Hz) are selected. A total of six bandpass filters 8-12Hz, 12-16Hz, 16-20Hz, 20-

24Hz, 24-28Hz and 28-32Hz are used. The filtered sixsubbands are used individually for the classification. 

Spatial filtering: The CSP algorithm is greatly successful in calculating spatial filters.In this stage, the 

CSP algorithm is used to perform the spatial filtering operation. The spatial filtering is done using the CSP 

algorithm by linearly transforming the EEG measurements using equation (5).The spatial filter thus produces 

reduced features for the particular frequency range of each of the subbands. The computed CSP features with 

optimal variances are used for discriminating the two classes ofEEG signals.  

Classification:In the third stage, classification algorithm is implemented with LDA to classify the EEG 

trials using selected CSP features. Each subband feature is passed separately through the classifier. To validate 

the classification, QP  -foldcross validation is used. Here, Q is the number of foldsfor cross validation. The 

data set is divided into Q subsets and it repeats Q times. Each time, one of the Q subsets is used as the test set 

and the other Q-1subsets are put together to form a training set. The Q-fold cross validation is repeated P 

times.At the first step of the classification, the LDA classifier produced nLDA scores i ( Qi ,...,2,1 ) for every 

fold cross validation wheren is the total number of trials divided by the number of fold cross validation Q. 

During the score mixture, the LDA scores are mixed up by averaging the scores obtained from Q-fold cross 

validation. The score mixture of Q-fold cross validation is calculated as 





Q

i
i

n

Q 1

1
(13) 

 

where, n  denotes the mixture ofnLDA scores. The mixed LDA scores are converted to predicted classes. After 

Q-fold cross validation, accuracyistested comparing the predicted classes with the test set. The accuracy Qj  

( Pj ,...,2,1 )is determined for P times of validation. After computing QP  -fold cross validation, the 

classification scoreof individual subbandis estimated by averaging the accuracy of all P-fold cross validation as: 


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Qjb
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     (14) 

 

where, b is the classification accuracy for subbandb ),..,2,1( Bb  . Finally, the overall classification accuracy in 

of the EEG signal iscalculated by 



Multiband Common Spatial Pattern Based EEG Classification for Brain-Computer Interface 

DOI: 10.9790/0661-1902059099                                          www.iosrjournals.org                                    94 | Page 

)(maxarg b
b

accuracyC  (15) 

 

It is the maximum classification accuracy amongall ofthe subbands.The classification method is summarized as: 

1) The LDA based classifier is implemented with CSP features of each subband 

2) QP  -foldcross validation is used to validate the classification performance  

3) The classifier generates LDA scores for each ofQ-fold cross validation 

4) The score mixture operation is done by averaging the scores obtained for all Q-fold with to equation (13) 

5) The class prediction is performed using the mixed scores obtained fromQ-fold cross validation for 

individual subband. The accuracy is tested by comparing the predicted classes with the test set. 

6) Step 3 to 5 is repeated P times and the classification score for each subband is calculated by averaging the 

score for all P-fold cross validation according to equation (14) 

7) Finally, the maximum classification score among all thesubbands is the classification accuracy of the 

analysing EEG signal 

 

V. Experimental Results 
The performance of the proposed method is assessed by classifying the EEG of imagined movement.  

The proposed approach is applied to the publicly available BCI competition dataset. A filter bank is used to 

decompose the multichannel EEG signals into a desired number of subbands to capture alpha and beta rhythmic 

components (8-32Hz). The filter bank comprises six bandpass filters with frequency limits 8-12Hz, 12-16Hz, 

16-20Hz, 20-24Hz, 24-28Hz and 28-32Hz. A fourth-order Butterworth filter is used to subband the EEG data.To 

extract features from the data, the CSP algorithm with 2m (pairs of CSP features)is used in this experiment. 

 
Figure 2:The electrodes map of 10/20 EEG systemstandardized by the American EEG society. The circled 

electrodes are considered for the dataset used in this experiment. 

 

Dataset: To evaluate the performance of the proposed method, the dataset IVa from the publicly available BCI 

competition III 2005 [25] is used in this experiment. This dataset contains data from the four initial sessions 

without feedback. The dataset is recorded from five healthy subjects (labelled „aa‟, „al‟, „av‟, „aw‟, „ay‟) who 

performed right hand and right foot movement imagination [26]. The data for each subject comprises 280 trials 

from 118 EEG channels and 140 trials in each class. The visual cues at each trial last for 3.5 seconds. The 

sampling rate of the data is 100 Hz. In this experiment, the data between 0.5 seconds and 2.5 seconds from the 

visual cue (i.e. 200 time points at each trial) is extracted. 

 

Channel selection: The motor imagery response of brain is more active in its central part [27]. In this 

experiment, out of the 118 EEG channels, from the central area 13 are selected for classification. The selected 

EEG channels are „FC3‟, „FC4‟, „Cz‟, „C1‟, „C2‟, „C3‟, „C4‟, „C5‟, „C6‟, „T7‟, „T8‟, „CP3‟, and „CP4‟. The 

spatial distribution of the channels on the scalp in 10/20 EEG system is illustratedin Fig. 2.  
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Figure 3: LDA scores as a function of trial index of subject „aa‟ for different subbands: (a) 8-12Hz, (b) 12-

16Hz, (c) 16-20Hz,(d) 20-24 Hz, (e) 24-28 Hz and (f) 28-32Hz. 

 
Figure 4: LDA scores as a function of trial index of subject „al‟ for different subbands: (a) 8-12Hz, (b) 12-16Hz, 

(c) 16-20Hz, (d) 20-24 Hz, (e) 24-28 Hz and (f) 28-32Hz. 

 

 
Figure 5: LDA scores as a function of trial index of subject „av‟ for different subbands: (a) 8-12Hz, (b) 12-

16Hz, (c) 16-20Hz, (d) 20-24 Hz, (e) 24-28 Hz and (f) 28-32Hz. 
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Figure 6:LDA scores as a function of trial index of subject „aw‟for different subbands: (a) 8-12Hz, (b) 12-16Hz, 

(c) 16-20Hz,(d) 20-24 Hz, (e) 24-28 Hz and (f) 28-32Hz. 

 

 
Figure 7:LDA scores as a function of trial index of subject „ay‟for different subbands: (a) 8-12Hz, (b) 12-16Hz, 

(c) 16-20Hz,  (d) 20-24 Hz, (e) 24-28 Hz and (f) 28-32Hz. 

 

Fig. 3 to Fig. 7 show the LDA scores graphs for the five subjects „aa‟, „al‟, „av‟, „aw‟ and „ay‟ respectively. The 

individual panel of any Figure represents the LDA scores for each of six subband(8-12Hz, 12-16Hz, 16-20Hz, 

20-24Hz, 24-28Hz and 28-32Hz) for both classes (right hand and right foot movement imagination). It is 

observed that the LDA scores for hand movement are greater than that of the foot movement. Such 

discriminative features enhance the classification accuracy of the proposed method. The topographical brain 

maps for subband 1 and subband 2 during imaginary right hand and right foot movement for the five subjects 

(„aa‟, „al‟, „av‟, „aw‟, „ay‟) are shown in Fig. 8. The letter „L‟ and „R‟ indicates left and right hemisphere 

respectively. The most significant CSP of the two subbands are used for the topographical brain maps. The first 

and second trace (Fig. 8) show the topographical brain maps of the subband 1 for imaginary right hand and right 

foot movement respectively. The topographical brain maps of subband 2 for the imaginary right hand and right 

foot are shown in third and fourth trace (Fig. 8) respectively. It is noticed that the electrodes of right hemisphere 

are more activate (with higher energy) for right hand movement imagery action. With both subbands (8-12Hz 

and 12-16Hz), the front-central region of right hemisphere illustrate more energy that express the guess of 

imaginary right hand movement. On the other hand, the electrodes of left hemisphere are moreactivate for right 

foot action as shown in the second and fourth traces of Fig. 8. In this case the parietal-occipital region of the left 

hemisphere is more active with higher energy that illustrating the imaginary right foot movement action. 
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Figure 8: Topographical map obtained by CSP features for subband 1(8-

12Hz) and subband 2(12-16Hz) of five subjects; first trace: right hand, 

second trace: right foot movement of subband 1; third trace: right hand, 

fourth trace: right foot movement of subband 2. 

 

Table I: Classification accuracy (%) 
Method Subject Mean±SD 

aa al av aw ay 

CSP1[28] 71.30 88.40 48.60 89.90 79.90 75.60±15.06 

CSP2[28] 65.30 90.20 63.70 80.30 87.30 77.40±10.99 

EMD-CSP[28] 68.40 89.60 64.10 82.50 86.90 78.30±10.19 

MEMD1-CSP[28] 68.80 90.00 68.80 76.30 87.50 78.30±9.01 

MEMD2-CSP[28] 60.30 82.90 55.30 60.70 74.00 66.60±10.22 

FBCSPw[16] 93.30 98.50 66.80 93.80 93.60 89.20±11.36 

FBCSPf[16] 86.00 97.90 76.80 96.80 94.00 90.3±7.93 

Proposed MbCSP 95.40 98.40 85.20 98.20 96.40 94.72±4.89 
 

Table I shows the classification accuracy with unbiased 10×10–fold cross validations. The performance 

of the proposed method is compared with that of the other methods (CSP, EMD-CSP and MEMD-CSP) 

proposed in [28] and methods (FBCSPw, FBCSPf) proposed in [16].In CSP1, all of 118 EEG channels are used, 

whereas, selected 51-57 channels are used in CSP2. The univariate EMD is used to decompose the individual 

channels of EEG and some intrinsic mode functions (IMFs) are selected leading to use of CSP in EMD-CSP 

method. In MEMD1-CSP method, the proper IMFs are selected using heuristic method. The fractional Gaussian 

noise (fGn) is used as the reference signal in MEMD2-CSP to select the effective IMFs prior to apply CSP for 

feature selection. The wrapper-based feature selection technique (using classifier) is used FBCSP to implement 

FBCSPw, whereas, filter-based algorithm is used for FBCSPf which is independent of classifier. It is observed 
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that our proposed MbCSPmethod yields superior average classification accuracy (94.72±4.89) than all the 

reported methods. 

VI. Discussion and Conclusions 
A novel method to classify EEG of imagined right hand and right foot movement is introduced in this 

paper. The EEG is filtered into multiple subbands for the purpose of selecting an appropriate frequency bands 

corresponding to the potential rhythmic components to enhance the classification accuracy. The band-specific 

discriminative CSP features are then extracted. The CSP features of each subband are passed though LDA 

classifier. Traditionally, the LDA scores are generated and used to predict the class to measurethe accuracy. In 

the proposed MbCSP approach, the LDA scores are averaged over the cross validations. The average LDA 

scores are employed to predict the class and then accuracy is tested. There is a noticeable difference between 

LDA scoresof hand and foot actions (Fig. 3 to Fig. 7). For most of the subjects, the scores ofthe first subband(8-

12Hz) and second subband (12-16Hz) are more discriminative between the two classes compare to other 

subbands. However, for subject „av‟(in Fig. 5), the LDA scores of two actions for all subbands are very close to 

each other i.e. the two classes are not so much discriminative. That is why the relatively inferior classification 

accuracy is obtained for subject „av‟.The LDA scores are mixed up and the mixed scores are used in prediction. 

The classification accuracy of each subband is measured individually. The subband that contains the maximum 

discriminative features between classes produced maximum classification accuracy. The maximum accuracy is 

considered as the classification accuracy of the EEG signal. 

In the frequency filtering stage of FBCSP,the signal of frequency limits 4-40Hz is used for 

classification, whereas, the most dominant frequency bands alpha and beta (8-32Hz) is used in the proposed 

method (MbCSP). In FBCSP, a feature selection algorithm is used to select a reduced size of CSP features 

through FBCSPw or FBCSPf.  The reduced CSP features are then used for classification.The FBCSP algorithm 

used the typical estimation ofmultivariate covariance matrices from the EEG signals. Usually EEG signals are 

contaminated with artifacts generated from different noise sources. In the case of large amount of contamination, 

the multivariate estimated covariance typically varies significantly from the estimate without contamination [17]. 

Therefore, the FBCSP algorithm is sensitive to artifact contamination of trainingdata [14].In the proposed 

method MbCSP, the CSP features are passed to generate LDA scores leading to the score mixture. The LDA 

scores are mixed up by averaging the scores obtained from the number offolds used in cross validation. The 

effect of contamination is minimized and the common dominant features appear as prominent during the score 

mixture implemented by averaging. Hence, the improved classification accuracy of the proposed method is 

achieved.  
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