
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 2, Ver. V (Mar.-Apr. 2017), PP 70-75

www.iosrjournals.org

DOI: 10.9790/0661-1902057075 www.iosrjournals.org 70 | Page

Big Data Analysis on Heterogeneous Distributed Systems using

Remote Method Invocation

Dr. Mamta C. Padole

Department of Computer Science and Engineering, The Maharaja Sayajirao University of Baroda, India

Abstract: Big Data Analysis has become very essential for organizations to arrive at timely decisions, for

progressive growth and keeping with the competition. To analyse huge amount of data generated through

various business processes, require High Performance Computing machines. But, owning HPC machines and

maintaining them, requires large investment and experienced skill set. Moreover, it is difficult to install any

proprietary and customized software, on special purpose HPC machines. To overcome all these issues,

Distributed Systems can be implemented with the help of cumulative processing power available from large

number of under-utilized individual workstations that are commonly available in all organizations. The paper

emphasises on executing applications over heterogeneous distributed systems using Java Remote Method

Invocation.

Keywords:Big Data Analysis, Heterogeneous Distributed Systems, Remote Method Invocation, Java RMI

I Introduction

 Big data analysis is inevitable to attain efficient decisions. Efficiency in decisions can be achieved only

when analysis reports are accurate, timely and provide future insight. But business processes generate huge

amount of data also referred as “Big Data”. Any data that is huge in volume, comprising of variety of data, is

generated at great velocity or is of great value provided its veracity i.e. accuracy can be assured, may be referred

as Big data [1]. Big data may consist of structured, unstructured and semi structured data. The data may be of

various types like text be it alphabets or numeric, images, audio, video [2]. Big data includes massive structured

and unstructured data which is beyond the capacity of commonly used software tools to collect, curate, manage,

and process in a definite time [3].

 The source of Big Data may be variety of applications that include commercial applications like stock

market, scientific applications like atomic reactions, gene/DNA sequencing, statistical data, Defence

applications like border surveillance through radars that detect movements of objects, Health care applications

generating cardiograms, mammograms, MRI scan reports, Production applications like Production pipeline

information and work in progress, Delivery Logistics like FeDex, DHL parcel delivery status tracking,

Government applications like consensus data, Aadhar data, tax estimation/computation, land mapping, Internet

Search, Social Media communications, Internet of Things (IoT) etc. Sources are innumerable. The size of data

generated may be of the scale of petabytes, exabytes or zetabytes, in just few seconds. The variety of data may

be text consisting of alphabets, numbers and dates, images like photographs, biometric data like thumb

impression, IRIS scan from a single application like Aadhar. It may be possible that in future they may also

incorporate person‟s voice or DNA sequencing data in Aadhar for health, security or forensics purpose.

Graphical data like Cardiograms from health care applications etc. Thus, a single application like Aadhar

Identity, for an entire nation, generates enormous amount of data with variety of data sets, each type having the

need for accurate creation and secured storage.

 To implement all the analysis on this variety of voluminous data, one needs to have a very good

resource setup that is computationally cost effective, memory storage efficient, and easy to maintain.

Computational processing power based High Performance Computational machines are available but they are

cost intensive and difficult to maintain. To avoid overheads, the computational power provided by Distributed

Computing Systems should be exploited.

 A Distributed Computing System (DCS) is a collection of processors that exist in ordinary office

computers and are connected over network. These processors communicate to each other by message passing

and are used for the execution of resource intensive applications [4]. Traditionally, DCS involves computing or

processing using spatially distributed systems [5] implemented over the homogeneous set of computers. Each of

these computer may have similar hardware architecture and operating system, also referred as Homogeneous

Distributed Computing System (HDCS). But, practically distributed systems are comprising of machines

having different processors, memory and an operating system, each connected via a high-speed network. Such

distributed computing system with different type of hardware architecture and the operating systems is known as

Heterogeneous Distributed Computing System (HeDCS), also referred as Heterogeneous Distributed System

(HeDS).

Big Data Analysis on Heterogeneous Distributed Systems using Remote Method Invocation

DOI: 10.9790/0661-1902057075 www.iosrjournals.org 71 | Page

 Large number of software are available to execute Big Data applications and manage Heterogeneous

Distributed Systems such as Apache Hadoop, Apache Spark, HTCondor from Wisconsin University, Matlab

Parallel and Distributed toolbox etc. But, these software need specific setup to implement. Eg: It is required to

convert all algorithms on MapReduce format in Apache Hadoop. Apache Spark has very rich library in python,

but many applications that are in use, may not be convertible into Python, thus making it inconvenient to use.

 The RMI programming in Java and multi-threading concept of Java are very useful in development and

implementation of applications on distributed systems [6].

 Java is a platform independent, open source programming language having rich collection of APIs

useful in variety of applications. It also has efficient web application development APIs. The multithreading

capabilities of Java is competitive. Java RMI is a very efficient API to implement applications that need to be

distributed. Since, Java is platform independent, it is very useful in Heterogeneous Distributed Systems.

Moreover, if required in the application, Java has the capability to call Native code also. This makes Java

programming language and in particular, Java RMI, the very effective technology to implement applications

involving Big Data Analysis on Heterogeneous Distributed Systems. The best feature of implementing

Heterogeneous Systems using Java RMI is its scalability and transparency. It can also distribute existing

applications running in any language with native code, without the need for modifications. Data partitioning and

distribution can also be made dynamic based on the available processing nodes at a given instance of time.

The paper discusses in detail, features of Java RMI and how it can be used in implementing distributed

applications

II Heterogeneous Distributed Systems
 The alternative solution to High Performance Computational Resources is a Distributed Systems

Approach. It has emerged as a viable alternative to specialized parallel computing or high performance

computing. By harnessing the spare clock cycles of idle machines [7], it is possible to emulate the computing

power offered by a specialized parallel machine at a fraction of the cost.

Distributed System is the collection of independent computers that appear to the users of the system as a single

computer. [8]

• It is a system in which hardware or software components located at networked computers communicate and

co-ordinate their actions only by message passing. [9]

• Modern-day distributed systems are implemented on machines having different processing capacity,

varying size of memory ability, having different hardware architectures and varying operating systems,

each connected via a high-speed network. Such distributed computing systems with different type of

hardware architecture and the operating system is known as Heterogeneous Distributed Computing Systems

(HeDCS), also referred as Heterogeneous Distributed Systems (HeDS).

The type of applications that are generally considered to be suitable for computing over distributed systems

have the capability to fully exploit „coarse-grained parallelism‟. It means that there is a possibility to

partition the application into independent tasks or processes that can be computed concurrently. Typically

these types of problems must display a high „compute-to-data‟ ratio to make it worthwhile sending the data

over a network rather than computing locally [7]

It is feasible to implement computing using distributed systems, wherever the use of idle resources over the

network is possible. The feasibility [10][11] is due to:

• Individual workstations are becoming increasingly powerful.

• The communications bandwidth between workstations is increasing as new networking technologies and

protocols are implemented.

• Individual workstations are easier to integrate into existing networks than special-purpose HPCs or parallel

computers.

• The software development tools for workstations are more mature as opposed to proprietary solutions for

parallel computers – primarily because of non-standard nature of many parallel systems.

• Individual workstation are inexpensive and readily available alternative to specialised high performance

computing platforms.

• Scalability of processing power is easier as nodes can be added easily as well as the processing power of

each node can be enhanced

III Java RMI
 The Java RMI (Java Remote Method Invocation) is an API that offers a mechanism to develop

distributed application in Java. Through RMI, it is possible to invoke methods on an object, running in another

JVM. It means that, normally method calls are transfer of control to memory addresses within the shared

memory space on a single computer. But using RMI, the method call is taking place to the memory address

Big Data Analysis on Heterogeneous Distributed Systems using Remote Method Invocation

DOI: 10.9790/0661-1902057075 www.iosrjournals.org 72 | Page

residing on a different computer i.e. unshared memory references. This remote communication between the

applications using Java RMI, is possible due to two objects stub and skeleton.

The stub is an object that acts as a gateway on the client side. All the outbound requests are transmitted through

it. It resides on the client machine and represents the remote object. When the caller invokes method on the stub

object, it does the following tasks:

1. It establishes a connection with remote JVM.

2. It marshals the parameters sent to the remote JVM.

3. It receives the result

4. It un-marshals the return value or exception, and

5. It finally, returns the result to the requesting client.

 The skeleton is an object, acts as a gateway for the server. All the incoming requests to the server, are

transmitted through it. When the incoming request is received by the skeleton, it performs as:

1. It reads the parameter for the remote method

2. It un-marshals the parameters

3. It invokes the method on the actual remote object, and

4. It receives the result value

5. It marshals result

6. It sends the marshalled result to the requestor.

Fig. 1. RMI Communication System

To implement RMI, one needs to write 4 Java Programs. These 4 Java programs may be defined as

1) Interface program

2) Implementation program

3) Server program

4) Client program

-An Interface program contains just the declaration of an Interface

-Interface contains the declaration of method which is executed on remote Server. It extends Remote Interface

of java.rmi package.

-Interface program contains the declaration of remote method which is actually running on the server side. Since

the remote method's definition, does not exist on the client side, the .class file of Interface should also be there

on the client side, with the help of whose object the remote method is invoked.

The Interface should extend (Interface to Interface inheritance is through extends keyword) the Remote interface

which is defined in java.rmi package

-An Implementation program contains the class that defines the method declared in the Interface program

- Implementation class has the actual definition of the method which is invoked from Client.

-Server is a program which listens to the requests of the Client.

- Implementation is the class which actually contains the definition of the remote method. This method extends

UnicastRemoteObject class which is defined in the java.rmi package. It also implements the Interface which we

have created of our program.

-Server listens to Client requests using:

Naming.bind or Naming.rebind("URLReferenceString, ObjectNameofImplClass);

In the Server program we create the object of Implementation class.

This object is bound with the URLReferenceString in the bind/rebind method described above.

bind/ rebind methods throw checked exception of type RMIException. So it is necessary to write it in try-catch

block.

Big Data Analysis on Heterogeneous Distributed Systems using Remote Method Invocation

DOI: 10.9790/0661-1902057075 www.iosrjournals.org 73 | Page

-Client is the java program which invokes the remote method.

-Client invokes the remote method with help of :

Naming.lookup("rmi://HostIPAddr:PortNo/URLReferenceString"

URLReferenceString is the string mentioned in Naming.bind(ReferenceString, ObjectNameofImplClass);

This lookup method (is a static method in Naming class of java.rmi package) is typecasted to the Interface

Object & assigned to Interface Reference.

With the help of this Interface Reference we invoke remote method whose declaration is given in Interface &

hence is known to Client.

As shown in the code below we initialise the serialVersionUID static variable to 0, stating that the while the stub

marshals the object, it uses the class definition which is available in the Class object i.e. the definition of class

whose object it is marshalling has not been changed after it was created.

/*

import java.rmi.*;

import java.rmi.server.*;

public class Implementation extends UnicastRemoteObject implements Interface

{

 static final long serialVersionUID=0;

*/

IV Implementation And Deployment Of Java Rmi Code
Once the programs are written as mentioned above,

1) Compile all 4 .java files using command:

> javac *.java

2) Create a stub & skeleton files for the remote method using:

> rmic Implementation

Here the remote method belongs to Implementation class file.

rmic is the RMI Compiler program available in JDK software.

If we use the command as above, it will create 2 files

Implementation_Stub.class

Implementation_Skel.class

If we use the command as:

> rmic -v1.2 Implementation

It will not create skeleton (_Skel) file, which is not needed after jdk 1.2 version.

3) Start the RMI Registry so as the enable the RMI protocol services.

The RMI Registry will run as services or background process in Windows or Linux respectively.

This can be done as:

> start rmiregistry - On Windows

or

> rmiregistry & - On Linux.

On Linux, it will return the pid of the process, as the return status.

Big Data Analysis on Heterogeneous Distributed Systems using Remote Method Invocation

DOI: 10.9790/0661-1902057075 www.iosrjournals.org 74 | Page

4) Once the rmiregistry has been started, start the java Server program which is written by us, as a background

program, which will listen for the client requests.

Give command as:

> start java Server - On Windows

or

> java Server &

5) Now open another terminal, & run the Client program to invoke the Server program containing the remote

method.

Give

> java Client

In above, give the set of parameters like the HostIPAddr of the machine on which the server is running & any

other parameters that the method needs.

By default the RMI Registry listens on port 1099.

If you need to change the port mention it when you run rmiregistry as:

> start rmiregistry XXXX - where XXXX is a new port no.

or

> rmiregistry XXXX &

You need to mention this port no. in Naming.lookup method in its URL as

"rmi://HostIPAddr:portno/URLReferenceString"

Deployment:

When you have to deploy the RMI programs on Client & Server,

The Server side should contain the following .class files:

Server

Interface

Implementation

Implementation_Stub,

Implementation_Skel files

Any other .class files which the server may need in the program for defining Server side Business Logic

The Client side should contain:

Client

Interface

Implementation_Stub

&

Any other .class files which the client may need in the program.

V Java Rmi Implementation Frameworks And Case Studies
The Java RMI can be implemented for various applications/cases using the following implementation

frameworks:

 An RMI Client may call RMI Server program, which contains the code for business logic.

 To implement application distribution, an RMI client, may call RMI Server programs that are available on

several nodes of processor pool of distributed systems. The call to several servers from RMI client may be

handled using Java multithreading.

 An RMI Client may call RMI Server program, which in turn may call another POJO that contains the

business logic.

 An RMI Client may invoke an RMI Server, which in turn can execute the native commands to find the set

of available resources on that node.

 An RMI client may invoke the RMI Server, which in turn can execute any 3
rd

 party code like matlab

program. The result of the Matlab program may be stored in some file, which may be then be read by the

Big Data Analysis on Heterogeneous Distributed Systems using Remote Method Invocation

DOI: 10.9790/0661-1902057075 www.iosrjournals.org 75 | Page

Java Server program and returned to the RMI Client which in turn may compile the final result and return to

the client.

 The Web Client may request the Web Server for some process intensive application. To enable faster

execution, the Web Server may further distribute the application. To implement distribution, the Web

Server may call an RMI client, which is also part of the Web Container. The RMI Client in turn may call

RMI Server programs that are available on several nodes of processor pool of distributed systems.

 The simplest of all case studies is Matrix Multiplication, where each row-column product can be performed

on a separate node, in case of large sized or multi-dimensional matrices.

 An application having many independent functions to be executed, can be implemented using Java RMI.

Eg: In Railway Reservation System, function for searching a train and making a reservation on some

different train are independent of each other. These two requests can be handled using two different

function calls performed from different RMI Servers.

 In case of Big Data, where the data is too large, it can be partitioned into different sets of data. The

processing can be done on each partitioned set, on different node. The results from each node will be

acquired back, combined into the single result and returned to the end user.

VI Conclusion
 In this paper, a contemporary topic of research on Big Data is discussed and how it may be analysed

without the need for High Performance Computing machines integration. The Heterogeneous Distributed

System is considered as the better alternative to HPC for processing Big Data. The paper discusses

Heterogeneous Distributed Systems. Java RMI is the much simpler way of implementing applications over

Heterogeneous Distributed Systems. Java RMI achieves platform independence, scalability, transparency and

hence suitable approach for implementing applications on Heterogeneous Distributed Systems. Java RMI is

exemplified using various case studies. Therefore, future research can focus on providing a roadmap or

framework for implementing variety of applications concerning big data analysis and dealing with various

challenges in the mentioned applications.

References
[1] Turn Big Data into Big Value, A Practical Strategy, Intel White Paper, 2013.

[2] A. Garg, M. Padole, Big Data: A Stimulus in Business Analytics, IOSR Journal of Computer Engineering (IOSR-JCE), 18(5), 2016,

61-67
[3] M. Schroeck, R. Shockley, J. Smart, D. Romero-Morales, and P. Tufano, Analytics: the real-world use of big data: How

innovative enterprises extract value from uncertain data, Executive Report, IBM Institute for Business Value and Said Business

School at the University of Oxford, 2012.
[4] Topcuoglu, S. Hariri, and M.Y. Wu., Performance-Effective and Low – Complexity Task Scheduling for Heterogeneous

Computing, IEEE Trans. Parallel and Distributed Systems, 13(3), 2002, 260 – 274

[5] M. C. Padole, Distributed Computing for Structured Storage, Retrieval and Processing of DNA Sequencing Data, International
Journal of Internet and Web Technology, 38(1), 2013, 1113-1118

[6] M. Padole, Distributed Approach to Pattern Matching in Genomics, Doctoral Dissertation, The Maharaja Sayajirao University of

Baroda, India, 2014
[7] M. Baker, R. Buyya, Cluster Computing at a Glance, 1999

[8] A. Tanenbaum & M. Steen, Distributed Systems: Prinicples & Paradigms, (Prentice Hall, NJ)

[9] G. Colouris, et. al., Distributed Systems: Concepts & Design, (Addison Wesley, Pearson Edu. Inc, USA), 2012
[10] L. Turcotte , A Survey of Software Environments for Exploiting Networked Computing Resources, 1993

[11] T. Anderson, D. Culler, and D. Patterson, A Case for NOW(Network of Workstation, IEEE Micro, 15(1), 1995, 54-64

