
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 2, Ver. V (Mar.-Apr. 2017), PP 51-54

www.iosrjournals.org

DOI: 10.9790/0661-1902055154 www.iosrjournals.org 51 | Page

A Parallel Algorithm for Factorization of Big Odd Numbers

Dongbo FU
Department of Computer Science, Guangdong Neusoft Institue Foshan City, Guangdong Province, PRC,

528200

Abstract: The article puts forward an algorithm to factorize a big odd number by means of subdividing the

searching interval into finite independent subintervals. A divisor of a big odd number can be found in one of the

subintervals. Owing to the independency of the subintervals, the algorithm can be performed in either sequential

computing or parallel computing. Experiment shows that the algorithm is valid and practically applicable.

Keywords: Subdivision, Parallel, Searching Algorithm, Factorization

I. Introduction
Factorization of integers has been an ancient hard problem in both mathematics and field of

information system, as surveyed in article [1]. Article [2] combined the thoughts in articles [3] and [4] and put

forward an algorithm that was declaimed to be almost as effective as that of Pollard’s Rho. The algorithm that

was introduced in article [2] first selects a mid-point that is proposed in article [3] and then select two intervals

on both sides of the mid-point as objective searched intervals. This approach might be high effective when the

odd number N that is going to be factorized is small. When N is really a very big number, the searched intervals

will also be very big and it will still takes a very long time to find a divisor of N, especially when N is a

semiprime. Hence, the approach in article [2] can be still improved. This article puts forward an improved one

and introduces the details.

II. Definitions, Lemmas and Theorems
Lemmas mainly come from the theorems in articles [2] and [3].

Definition 1. An odd interval [,]a b is a set of consecutive odd numbers that take a as lower bound and b as

upper bound. For example, [3,11] {3,5,7,9,11} .

Theorem 1. An odd interval [,]a b contains 1
2

b a
 consecutive odd numbers.

Proof. (Omitted)

Lemma 1. Let 2m  be a positive integer and N pq be an odd composite number such that
1 22 1 2 1m mN     , where p and q are odd coprimed numbers that fit 3 p q  ; let 12 1me N  and

1

2

N
l

 
  
  

; then in odd interval [2 ,]e l e  there must exist an odd number
midN that is a multiple of p and

the bigger
q

k
p

 is the nearer
oddN is close to e. Distribution of , mide N and 2e l  can be illustrated in figure

1.

 2e l  Nmid 12 1me N 

1l 

Fig.1 Distribution of Critical Nodes (m>2)

III. New Algorithm and Numerical Experiments
This section proposes an algorithm for factoring an odd composite number based on the theorems and

corollaries introduced in the previous section. It first presents the thoughts of the algorithm design and then

shows the new algorithm.

A Parallel Algorithm for Factorization of Big Odd Numbers

DOI: 10.9790/0661-1902055154 www.iosrjournals.org 52 | Page

3.1 Principal Thought

Considering a search is performed on an odd interval [2 ,]e l e  , denoted by
IS ; Referring to

Theorem 1 and Lemma 1,
IS contains 1l  consecutive odd numbers among which there is a p’s multiple

midN .

Therefore, it knows
midN and N has a common divisor p and factorization of N turns to the problem to find

common divisor between N and the odd number in
IS .

It knows that when N is a big number, the length of
IS is also very big. Hence subdividing

IS into

small subintervals and searching in a parallel way on the small subintervals will be a natural choice. Then how

to subdivide the interval
IS becomes a key issue. Let t

nM (or MNT) be the mean mount of numbers that a

computing cell can search per unit time; then the total time totalT to finish a number-by-number search is

estimated theoretically by

1 1

2 4
total t t

n n

l N
T

M M

   
    

    

Obviously, an acceptable plan is that midN can be found in a tolerable waiting time  . Hence a subdivision of

IS into totalT
n


 subintervals will make each subinterval be searched in time  . On the other hand, referring to

conclusions in articles [3] and [4], it can infer that, not all the n subintervals are required performing a number-

by-number search because the p’s multiple is near the middle of the interval IS . Therefore, a search starts

simultaneously from 2e l  rightwards and e leftwards in velocity t

nM will be very close to midN by its both

sides after a time t, as shown in figure 2.

 2e l 
midN e

 t

ntM 1 2 t

nl tM  t

ntM

 l+1

Fig. 2 A search close to the target

3.2 The Algorithm

Based on the thought of the algorithm design in previous section, an algorithm is designed to subdivide IS into

finite subintervals first and then to search from the mid-subinterval to its two-sided subintervals until the

solution is obtained. The algorithm is as follows.

=== Subdivision & Mid-blossom Algorithm (SMA)=====

Input: Odd composite number N, t

nM .

Step 1. Calculate the level on which IS stays: 2logK N    ;

Step 2. Calculate initial parameters:

1

(1) 1
2

l N
 

   
 

0 2 1Ke N  ;

0 2Il e l  

Step 3. Calculate the following parameters.

(1) Numbers in IS : sn l ;

(2) snn and snm that satisfy

 (2) ,0 2t t

s sn n sn sn nn n M m m M     ,

or

2

s
sn t

n

n
n

M

 
  
 

,

(2)
2

t s
sn s n t

n

n
m n M

M

 
   

 
;

Step 4. Subdivide IS into 2 1nn  subintervals by

 1 1... ...
sn snI Il Il n mid Ir n IrS s s s s s         

 where

A Parallel Algorithm for Factorization of Big Odd Numbers

DOI: 10.9790/0661-1902055154 www.iosrjournals.org 53 | Page

[2 , 2(1) 2], 0,1,..., 1t t

Il i n n sns Il iM Il i M i n       

 [2(1) 2, 2], 0,1,..., 1t t

Ir i n n sns Ir i M Ir iM i n       

[2 , 2]t t

mid sn n sn ns Il n M Ir n M   .

Step 5. Perform the following searches.

For every mide s , if(FindGCD(N, e)) return GCD;

For 1sni n  to 0i 

Begin

For every ll ie s  , if(FindGCD(N, e)) return GCD;

For every lr ie s  , if(FindGCD(N, e)) return GCD;

End

==================End of Algorithm =================

Remarks.

(1) The above SMA can be applied in parallel computations. Actually, if each subinterval is assigned to a

computing cell of a parallel computing system, the parallel solution is very easy to execute. The algorithm can

be even applied in a heterogeneous environment.

(2) The Step 5 can be alternatively performed by the following search.

================An Alternative Perform=================

Step 5. Perform the following searches.

For 0i  to 1sni m 

Begin

2(*)t

sn nel Il n M i   ; if(FindGCD(N,el,)) return GCD;

End

For 0i  to 1t

ni M 

 For 0j  to 1snj n 

Begin

2(*)t

nel Il j M i   ; if(FindGCD(N(0,0),el)) return GCD;

2(*)t

ner Ir j M i   ; if(FindGCD(N(0,0),er)) return GCD;

End

 ===

3.3 Numerical Experiments
Numerical experiments are made on a PC with an Intel Xeon E5450 CPU and 4GB memory via C++

gmp big number library. Experiment data from N1 to N10 originate from the article [3], N11 comes from article

[5]. Tables 1 list the experimental results. In the table, the item N’s bits means the number of N’s decimal bits,

the item subs means the number of total subintervals and the item p’s Loc means the subinterval where p’s

multiple lies.

Table 1 Experiment on Some Big Integers
Big Odd Number N N’s bits N’s Factorization M=1024*1024

Subs p’s Loc

N1= 1123877887715932507 19 2991558973756830131 507 142

N2=1129367102454866881 19 2586988943655660929 509 247

N3=29742315699406748437 20 37217342379915205819 2063 1242

N4=35249679931198483 17 59138501596052983 91 28

N5=208127655734009353 18 430470917483488309 119 12

N6=331432537700013787 18 1140982192904800273 277 111

N7=3070282504055021789 19 14362221732137748993 837 150

N8=3757550627260778911 19 16053127234069700393 927 457

N9=24928816998094684879 20 34791292371652460573 2383 1161

N10=10188337563435517819 20 70901851143696355169 1525 744

N11=1127451830576035879 19 4861006192319379541 509 231

IV. Conclusion
Factorization of big integers usually involved vast computing cost. It is sure that, conventional

computation can only fit for factoring small numbers. Thus using a parallel computing is regarded to be future

trends in the computation. This article originates from such point of view. By subdividing the computing

A Parallel Algorithm for Factorization of Big Odd Numbers

DOI: 10.9790/0661-1902055154 www.iosrjournals.org 54 | Page

interval into small ones, parallel computation can be surely applied on the computation. I am sure that, more

better algorithm will come into being and it is not far from solving the problem of factoring a big integer.

Acknowledgements
The research work is supported by Foshan Bureau of Science and Technology under projects 2016AG100652,

2016AG100792 and 2016AG100382. The author sincerely presents thanks to them all.

References
[1]. Sonal Sarnaik, Dinesh Gadekarand Umesh Gaikwad, An overview to Integer factorization and RSA in Cryptography, International

Journal for Advance Research in Engineering and technoloy,2014,2(9):21-26
[2]. Jianhui LI, Algorithm Design and Implementation for a Mathematical Model of Factoring Integers,IOSR Journal of

Mathematics,2017,13(I Ver. VI):37-41

[3]. Aldrin W, Wanambisi Shem Aywa, Cleophas Maende, etc, Factorization of Large Integers, International Journal of Mathematics
and Statistics Studies,2013,1(1):39-44

[4]. Xingbo WANG, Genetic Traits of Odd Numbers With Applications in Factorization of Integers, Global Journal of Pure and

Applied Mathematics,2017,13(2) 493-517
[5]. Ulrich H Kurziweg,Factoring Large Composite Numbers, http://www2.mae.ufl.edu/~uhk/ FACTORING-LARGE-COMPOSITE-

NUMBERS.pdf

