A TSP model for medical equipment or product distribution to different hospitals to minimize cost using Genetic Algorithm

Shovan Roy
Assistant Professor, Department of Computer Science, Midnapore College (Autonomous), Midnapore-721101, West Bengal, India, e-mail: sho.cmsa.08@gmail.com

Abstract

Distribution of medical products and equipment is currently a major problem for hospital management systems. Within a certain amount of time, medical equipment ought to be accessible at several hospitals. If not, the hospital sector will implode. In an emergency, they are unable to offer the patients alternative services. Therefore, things ought to be delivered on time. In order to provide hospitals with modern equipment, supply must be swift and sophisticated. Significant challenges in the last ten years have included creating a novel mathematical model and applying various soft-computing techniques to optimize the cost (travel cost). These have required a deeper comprehension of the mathematical structure and the distribution of medical equipment among various hospitals. Here a salesman or a medical van starts journey from a depot and visits hospitals/service points and comes back to the depot at the end of journey. A soft computing genetic algorithm will be used to solve the mathematical model of medical equipment distribution to a set number of hospitals in a two-dimensional Traveling Salesman Problem (TSP) to determine the best itinerary with the lowest possible trip expenses.

Keywords: Medical equipment distribution, Travel cost minimization, Tour time constraint, 2D TSP, Genetic Algorithm

1.1. Motivation

I. Introduction

The medical and health care management and industry in West Bengal (WB) provides the study's context. Historically, the WB Government's Medical and Health Department was in charge of providing medical care until the late 2010s. Reports from hired consultants, such as the Plan of Action (2011-15) ${ }^{1}$ from the Health and Family Welfare Department of WB, have drawn notable attention to concerns such the provision of medical services, equipment, and products in hospitals. The goal and objective of the organization was to place special attention on the creation and upkeep of service standards in hospitals and other healthcare facilities. One of the key goals was to provide everyone with necessary health care that was high-quality, inexpensive, sustainable, and accessible within five years. Focusing on the impoverished, elderly, mothers, children, and residents of underdeveloped areas was another objective.

The following issues are critical for the health department ${ }^{1}$ to develop as focus areas: i) Establish and meet fundamental service criteria for healthcare in the public sector. ii) Decongest hospitals for tertiary care Reducing patient out-of-pocket expenses; iv) Achieving clinical service package norms for each tier of institutions as per the Indian Public Health Standard 2010; v) Establishing the 'hub and spoke model of care' with an appropriate referral chain, a transport system, and another

[^0]public-private partnerships for the state's urban health program xix) Connect with the current municipal health framework and initiatives xxi) Expand the reach of health service delivery (HSD) through ASHA and other different mechanisms; xxi) Establish a specific project management unit (PMU) that includes the deployment of Mobile Medical Units(MMU) for Jangalmahal, a delta region like Sundarbans, tea gardens, forest hamlets of North Bengal (NB), and coal mine areas (CMA). xxii) Create ten new medical colleges gradually; xxiii) Create two AIIMS-like institutions; xxiii) Create new nursing and paramedical education schools and colleges; xxiv) Investigate the PPP model to establish super-specialty facilities(SSF) and new medical colleges(MCs); xxv) Connect districts with MCs for supportive supervision and so forth.

The WB Department of Health and Family Welfare assumes responsibility for the overall supervision of all hospitals that receive public funding, while the Department of Health handles primary community health care, including community dentistry and medical clinics, maternal and child health services, and so forth.

Medical devices are used both as parts of medical apparatuses and in biological systems. Glass, metals, ceramics, polymers, medical equipment made from animals, and so forth are a few typical types of medical equipment. These are utilized in companies, hospitals, institutions, laboratories for medical research, etc. These locations are thought of as hospitals. Here, a salesperson arranges a trip, leaves from a storage facility, visits each of the other hospitals precisely once, then returns to the storage facility for the least amount of money.

In this study, I focus on the construction of such a comprehensive modeling framework, illustrating its intended helpful uses with small-scale numerical examples. It is my sincere belief that a mathematical approach of this kind will significantly contribute to well-informed decision making on the management of medical care provided overall.
The suggested models to solving 2D Traveling Salesman Problems (TSPs) makes use of the heuristic known as the Genetic solution (GA) [11].

- The novel aspect of the current investigation is the development of original routing models for trip cost minimization.
- Two model formulation trade-offs are discussed in this inquiry.
- 2D TSP is formulated mathematically with time constraint.
- The price of the trip is stated.
- The travel time of the trip is calculated.
- A Genetic Algorithm is suggested in the suggested algorithm.
- GA optimizes the discrete routing strategy.
- Discrete variables are the properties that make a chromosome.
- Travel expenses are kept to a minimum
- The optimal path is chosen to display the managerial decisions.

This paper is organized and structured as follows. Section 1 gives an introduction, while Section 1.1 provides a motivation, and Section 1.2 provides a brief assessment of the literature survey. In Section 2, the mathematical model is presented here. Section 3 goes into detail about the Genetic algorithm. Then the numerical experiments are shown in Section 4. A summary of the discussion can be found in Section 5. Section 6 presents the model's conclusion in the end.

1.2. Literature review

Chu and Chu [2] offered a modeling framework(MF) to schedule the supply and demand matching(SDM) of the hospital beds that are available in Hong Kong for the next years up until 2006. Planning concerns pertaining to hospital locations(HL) and service allocations(SA) -which encompass both the relocation of existing services and the assignment of new ones - are managed by it. Here, the structure of such an extensive modeling framework is emphasized, and samples of its planned applications in the form of smallscale numerical examples are provided. A summary of the existing literature is included in this paper by Feillet et al. [5], which suggests a taxonomy of TSPs with profits.

Liu, Ran, et al.'s work [10] deals with a vehicle scheduling issue that arises in home health care logistics(HHCL). It deals with the transportation of medications and medical equipment from a hospital to patients' homes, the delivery of specialized medications from a home care business, and the collection of biopsies and unused medications and equipment from patients. The said problem can be viewed as a specific vehicle routing problem(VRP) with simultaneous delivery and pickup(SDP) and time windows(TW), with four different sorts of demands like: delivery from a depot to a patient(D2P), delivery from a hospital to a patient(H2P), pickup from a patient to a $\operatorname{depot}(\mathrm{P} 2 \mathrm{D})$, and pickup from a patient to a medical lab(P2ML). A logistical issue with home health care that arises in France is examined. It relates to the delivery and pickup of
materials between the pharmacies, patients, hospitals, and laboratories. A proposed genetic algorithm(GA) incorporates both local search and permutation chromosomes. It is designed to perform a tabu search with route re-optimization and route assignment features.

Researchers Lee, Jongsung, et al. [11] create a mixed integer program(MIP) and suggest a variation of a big neighborhood search algorithm with several improvement methods in order to simulate the crucial production and delivery challenge. They carry out a number of computational tests to show how successful the suggested strategy is. When the strategy is used in a case study, it demonstrates that production and delivery can be improved in terms of both time and cost. A issue of modeling and defining the manufacturing and delivery of nuclear medicine is done. A model for mixed integer programming is created. It is suggested to use improvement algorithms with a big neighborhood algorithm. Computational outcomes, along with a case study, demonstrate the effectiveness of the strategy.

According to Nagata and Soler [13], one of the most important combinatorial optimization(CO) challenges is the asymmetric traveling salesman problems (ATSPs). They demonstrate how to use GA to directly or indirectly address a variety of real-world problems.

An overview of the traveling salesman problem, together with applications, formulations, and ways to solving it, is provided by Matai et al. [7]. Additionally, a study of many TSP formulations using integer programming was produced by Orman and Williams [9].

Little et al. [6] suggest a "branch and bound" method for solving the traveling salesman issue. The set of all tours (possible solutions) is divided into successively smaller subsets via the process of branching. The maximum number of tours within each subset is calculated.

Using a permutation of n integers, the Chatterjee et al. [1] group introduced a new GA that can be directly utilized to estimate global optimal solutions to TSP. A study on pickup and delivery TSP with first-in-first-out (FIFO) loading was conducted by Erdog ņan et al. [4]. This study focuses on a particular version of TSP: pick-up and delivery. This version requires that loading and unloading be done in a FIFO fashion. It gives an integer programming version of the problem. Five operators for improving a potential solution are also detailed, as well as two heuristics that make use of these operators: an iterated local search algorithm and a probabilistic tabu search method.

The aforementioned cases and my research have inspired me to make observations and uncover the gaps in the literature about the use of a meta-heuristic GA to solve a 2DTSP model for the distribution of medical products and equipment in order to save travel expenses for various hospitals.

Table 1: Variable, parameter description, and decision variable explanation for many models.

Variable	Description
V	Set of cities/hospitals
E	Set of edges/roads
N	Number of cities/hospitals
$\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{N}}, \mathrm{x}_{1}\right)$	A tour of salesman, where $\mathrm{x}_{1}=$ depot
X_{i}	Fitness value for a solution
p_{i}	Probability for a solution
q_{i}	Cumulative probability for each solution X_{i}
T	Total travel time
$\mathrm{T}_{\text {max }}$	Maximum allowable time
Z_{TC}	Minimum travel cost
For 2D TSP	

k, l	Indices
x_{kl}	when salesman visit from the k-th hospital/service point/city to l-th hospital/service point/city then $=1$, otherwise $=0$
c_{kl}	Travel cost from $\mathrm{k}^{\text {th }}$ to l ${ }^{\text {th }}$ hospital/service point/city
x_{kl}	Decision Variables

II. Model formulation

Figure 1 provides a pictorial depiction view for 2DTSP.

Figure 1: A diagram illustrating the suggested model 2D TSP

2.1 Nomenclature for different symbols

Table 1 provides a summary of common notations.

2.1 Model-A: Classical TSP

The vertex set $\mathrm{V}=1,2, \cdots, \mathrm{~N}$, and the edge set E are represented by graphs in the 2DTSP model. For salespeople in N cities, travel must be inexpensive. A salesperson leaves from one of the source city/depot, passes through each of the remaining cities/hospitals/service points precisely once and then comes back to the depot. Travel expenses are decided by $c_{k l}$, and the sequence in which the cities are visited is specified by $x_{k l}$. In this instance, the model might be expressed as MIP mathematically as follows (Dantzig et al. [3]):

Determinex ${ }_{k l}$, , herek $=1,2,3, \ldots, N ; l=1,2,3, \ldots, N$
tominimize $Z_{T C}=\sum_{k=1}^{N} \sum_{l=1}^{N} x_{k l}+c_{k l} \ldots \ldots$ (1)
subjectto $=\sum_{k=1}^{N} x_{k l}=1 ; l=1,2,3, \ldots, N$
$\sum_{l=1}^{N} x_{k l}=1 ; k=1,2,3, \ldots, N \ldots \ldots$ (2)
$\sum_{k \in p l \in p} \sum_{l l} x_{k l} \leq|P|-1, \forall p \subset V ; x_{k l} \in 0,1$
Tominimize $Z_{T C}=\sum_{k=1}^{N-1} C_{x_{k}, x_{k+1}}+c_{x_{N}, x_{1}} \ldots \ldots$.
If salesman's travels from the $\mathrm{k}^{\text {th }}$ hospital/city to the $\mathrm{l}^{\text {th }}$ city/hospital, then $x_{k l}=1$; otherwise, $x_{k l}=0$, and P is the set of cities.
Let ($x_{1}, x_{2}, \cdots, x_{N}, x_{1}$) represents a salesperson's tour.

Where $x_{k} \in\{1,2, \cdots, N\}$ for $k=1,2, \cdots, N$ and all x_{k} 's are distinct. The above mentioned model is simplified as follows:
Determine a salesman/distributor's tour $\left(x_{1}, x_{2}, \cdots, x_{N}, x_{1}\right)$.

2.2 Model-B: Proposed 2D TSP to minimize travel costs

$$
\begin{gathered}
\operatorname{Min} Z_{T C}=\sum_{i=1}^{N-1} c\left(x_{(k)(l)}\right) * \operatorname{dis}\left(x_{(k)(l)}\right)+c\left(x_{(N)(1)}\right) * \operatorname{dis}\left(x_{(N)(1)}\right) \ldots \ldots(5) \\
\text { subject toT }=\sum_{i=1}^{N-1} t\left(x_{k l}\right)+t\left(x_{(N)(1)}\right) \ldots \ldots(6) \\
\quad \text { TravēlCost }
\end{gathered}
$$

with constraints 2 and 3 .

```
2.3 Model-C: Proposed 2D TSP to minimize travel costs under tour time constraints
\(\operatorname{Min} Z_{T C}=\sum_{i=1}^{N-1} c\left(x_{(k)(l)}\right) * \operatorname{dis}\left(x_{(k)(l)}\right)+c\left(x_{(N)(1)}\right) * \operatorname{dis}\left(x_{(N)(1)}\right)\)
    Travelcost
subject toT \(=\sum_{i=1}^{N-1} t\left(x_{k l}\right)+t\left(x_{(N)(1)}\right) \ldots \ldots\) (8)
\(T \leq T_{\max } \ldots\). (9)
and with constraints 2 and 3 .
Here \(T_{\text {max }}\) isthemaximumtourtime.
```


III. Methodology: Genetic Algorithm

The Genetic process generates a finite number of salesman's paths or tours, together with automobile routes between hospitals/service points/nodes/cities, at the start of the proposed process, allowing salesmen to go from source city to destination city. Random Mutations, Cyclic Crossovers, and Roulette Wheel Selections are combined in Genetic Algorithms. The suggested GA and its algorithms, 1, 2, 3, and 4, are shown below in the order in which they were constructed. The following Figure 2 shows the GA flowchart.

Figure 2: Flowchart of GA

3.0.1. Initialization for GA

Procedure name : Initialization
Inputs : Number of Nodes/Cities $=\mathrm{N}$
Output: A set of chromosomes/solutions with cities

Algorithm1 Initialization

Step 1: begin procedure()
Step 2:
for $(i \leftarrow 1$ to population size/pop size(noc); $i \leftarrow i+1$) do
The first phase in any genetic algorithm is to randomly create a population, or first generation, of possible solutions to the issue. Generally speaking, each individual (population member) is seen of as having a distinct set of chromosomes (phenotypes), and each one offers a potential remedy for the problem being studied. Make up a random number r between $[0, \mathrm{~N}]$ for each chromosome. For a solution/chromosome, a distributor's tour $X_{i}=x_{i 1}, x_{i 2}, \cdots, x_{i N}$ is constructed, where $x_{i 1}, x_{i 2}, \cdots, x_{i N}$ expresses N cities in a tour.
end for
Step 3: end procedure

3.0.2. Roulette Wheel Selection (RWS)

Algorithm 2 states that the fitness values(here in cost of travel) of the set of chromosomes/solutions are taken into account during the RW selection process.

Procedure name : RW selection
Inputs : Probability for a chromosome $=p_{i}$, cumulative probability for a chromosome $=q_{i}$, random number $=r$, counter variable $i=1$
Output : Updated chromosomal set based on each chromosome's fitness value
Algorithm 2 RW selection

Step 1: begin procedure
Step 2: $\sum_{i=1}^{n} f\left(X_{i}\right) / /$ summation of the fitneses
Step 3: $p_{i}=\frac{f\left(X_{i}\right)}{\sum_{i=1}^{n} f\left(X_{i}\right)} / /$ probability for a chromosome
Step 4: cumulative probability of X_{i} is $q_{i}=\sum_{j=0}^{i} p_{i}$
Step 5: \quad for $(i \leftarrow 1$ to population size; $i \leftarrow i+1)$
Step 6: $\quad r \in[0,1]$;
Step 7: if $r<q_{i}$ then select X_{i};
Step 8: else Go to Step -5;
Step 9:
end else
Step 10: end if
Step 11: end for
Step 12: end procedure

3.0.3. Cyclic Crossover

Populations receive offspring from crossover operators. Using this method, two parents are selected at random to undergo a crossover operation in order to have new children. Algorithm 3 states that the Cyclic Crossover technique updates the probability by assessing the fitness of chromosomes.
Procedure name : Cyclic Crossover
Inputs: Cities $=N,=P r_{1}, P r_{2}, c h_{1}, c h_{2}$, crossover probability $\left(p_{c}\right)$
Output: Updated probability of chromosomes after crossover
Algorithm 3 Cyclic Crossover
Step 1: Begin procedure cycliccrossover()
Step 2: Pick two chromosomes at random, $P r_{1}$ and $P r_{2}$, to be your parents.
Step 3: Make the child1 $\left(c h_{1}\right)$ first city, C_{1}, at random.
Step 4: Search present city, which is chosen from $P r_{1}$ in $P r_{2}$, to determine the next city for child $c h_{1}$.
Find the city's location in $P r_{2}$ and then select the city that is in the same location in $P r_{1}$.
Step 5: Repeat this process until we have completely $c h_{1}$.
Step 6: The following step is to create a cycle using the city that was already acquired in $c h_{1}$.
Step 7: In order to obtain $c h_{1}$, duplicate the cities from $P r_{2}$ in the spots that are currently empty.
Step 8: The parent $P r_{2}$ is first chosen for the creation offspring Ch_{2}, and the selection process is repeated with the procedure with $P r_{1}$ as explained above to produce $c h_{1}$.
Step 9: End procedure cycliccrossover

3.0.4. Random Mutation

As in algorithm 4, the solution probabilities are now updated based on chromosomal fitness values via the random mutation process.

Procedure name : Random Mutation
Inputs : Mutation probability $\left(p_{m}\right)$, number of cities $=N$, offspring's.
Output: Mutated chromosomes.

```
Algorithm 4 Random Mutation
    Step 1: begin procedure randommutation()
    Step 2: the selection method of mutation: create a random number \(r\) in between \([0,1]\) for each chro-
    mosome. When \(r<p_{m}\), the solution/chromosome is chosen into account for the mutation operation.
    Step 3: for mutation a solution, \(X=x_{1}, x_{2}, \cdots, x_{n}\), select two numbers randomly \(i, j\) between \([1, N]\).
    Now, swap \(x_{i}, x_{j}\) and then update the parent chromosomes.
Step 4:
    Step 5:
    Step 6:
    Step 7:
    Step 8:
    Step 9:
    Step 10:
    Step 11:
    Step 12:
    Step 13:
    Step 14:
    Step 15:
    Step 16:
    Step 17:
    Step 18:
    Step 19:
    Step 20:
    Step 21:
    Step 22:
    Step 22: end if
Step 23: end randommutation
```


IV. Numerical Experiments

The proposed model comprises the following specifications and is programmatically coded in the Code::Blocks platform: Intel Core 2 Duo processor has 1.8 GHz clock speed, 1 processor, and 2 cores in total. It has 8 GB of primary memory.

4.1. Input Data

I take ten hospitals/service points/cities ($N=10$, where $1=$ Depot) with three (3) connecting roads and three (3) vehicles to travel in order to show the proposed approach 2DTSP.
Table - 2 lists the symmetric travel costs/expenses from a depot to the hospitals/service points and from hospitals/service points to a depot.
Table 2.1 lists the input data for the problem 2DTSP's as symmetric trip/travel time (in minutes) matrix between various hospitals/service points/cities.

The Table - 3 provide the parameters that were applied to the suggested model.

Table 2: Input Data for the problem 2DTSP's symmetric trip/travel cost matrix between various cities/hospitals/service points while using single route(R0/R1/R2) and single vehicle (V0/V1/V2), using 10 cities

Table 2.1: Input Data for the problem 2DTSP's symmetric trip/travel time matrix between various hospitals/service points/cities while using single route(R0/R1/R2) and single vehicle (V0/V1/V2), using 10 cities/hospitals/service points

		CITY-0		CITY-1			CITY-2			CITY-3			CITY-4			CITY-5			CITY-6			CITY-7			CITY-8			CITY-9		
		vo V1	V2	vo	V1	V2																								
CITY - 0	$\begin{array}{\|l\|} \text { R0 } \\ \text { R1 } \\ \text { R2 } \end{array}$	∞		$\begin{aligned} & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{array}{r} 8 \\ 13 \\ 9 \end{array}$	$\begin{aligned} & 13 \\ & 13 \\ & 10 \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 8 \\ 13 \\ \hline \end{array}$	$\begin{gathered} 13 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} 6 \\ 13 \\ 13 \end{gathered}$	$\begin{array}{\|l} 4 \\ 4 \\ 13 \end{array}$	$\begin{gathered} 13 \\ 10 \\ 13 \end{gathered}$	$\begin{array}{r} 13 \\ 7 \\ 8 \end{array}$	$\begin{array}{\|l\|} 13 \\ 13 \\ 8 \end{array}$	$\begin{array}{r} 3 \\ 15 \\ 7 \end{array}$	$\begin{aligned} & 13 \\ & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 2 \\ & 13 \\ & 2 \end{aligned}$	$\begin{array}{r} 4 \\ 17 \\ 5 \end{array}$	$\begin{array}{r} 9 \\ 13 \\ 4 \end{array}$	$\begin{array}{\|l\|} \hline 9 \\ 10 \\ 13 \end{array}$	$\begin{gathered} 13 \\ 2 \\ 13 \end{gathered}$	$\begin{array}{r} 13 \\ 5 \\ 13 \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ 17 \\ 13 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 \\ & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 12 \\ & 8 \\ & 14 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 9 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 14 \\ & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \\ & 10 \end{aligned}$	16 8 2
CITY - 1	$\begin{aligned} & \text { R0 } \\ & \text { R1 } \\ & \text { R2 } \end{aligned}$			∞			$\begin{array}{\|l\|} \hline 7 \\ 8 \\ 13 \\ \hline \end{array}$	$\begin{gathered} 13 \\ 8 \\ 13 \end{gathered}$	$\begin{gathered} 13 \\ 6 \\ 6 \end{gathered}$	$\begin{array}{\|l\|} \hline 16 \\ 9 \\ 6 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ 13 \\ 7 \end{array}$	$\begin{aligned} & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{array}{\|l\|} \hline 7 \\ 18 \\ 18 \end{array}$	$\begin{array}{r} 13 \\ 13 \\ 2 \end{array}$	$\begin{array}{r} 17 \\ 13 \\ 5 \end{array}$	$\begin{aligned} & 8 \\ & 5 \\ & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & 6 \end{aligned}$	$\begin{array}{r} 5 \\ 13 \\ 6 \end{array}$	$\begin{array}{\|l\|} \hline 13 \\ 8 \\ 2 \end{array}$	$\begin{array}{r} 4 \\ 10 \\ 8 \end{array}$	$\begin{array}{r} 13 \\ 13 \\ 2 \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ 14 \\ 13 \end{array}$	$\begin{array}{r} 10 \\ 6 \\ 8 \end{array}$	$\begin{aligned} & 7 \\ & 9 \\ & 7 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 17 \end{aligned}$	$\begin{array}{r} 12 \\ 18 \\ 2 \end{array}$	$\begin{aligned} & 6 \\ & 13 \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \\ 13 \\ 13 \end{array}$	$\begin{array}{r} 5 \\ 13 \\ 5 \end{array}$	14 5 6
CITY - 2	$\begin{aligned} & \text { R0 } \\ & \text { R1 } \\ & \text { R2 } \end{aligned}$						∞			2 8 8	$\begin{aligned} & 13 \\ & 11 \\ & 2 \end{aligned}$	$\begin{array}{r} 6 \\ 8 \\ 10 \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ 2 \\ 9 \end{array}$	$\begin{aligned} & 5 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 8 \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \\ 4 \\ 13 \end{array}$	$\begin{array}{r} 14 \\ 8 \\ 2 \end{array}$	$\begin{array}{r} 5 \\ 12 \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ 13 \\ 10 \end{array}$	$\begin{array}{r} 13 \\ 7 \\ 13 \end{array}$	$\begin{aligned} & 8 \\ & 2 \\ & 9 \end{aligned}$	$\begin{array}{\|l} 9 \\ 8 \\ 16 \end{array}$	$\begin{gathered} 2 \\ 14 \\ 13 \end{gathered}$	$\begin{aligned} & 10 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \\ & 6 \end{aligned}$	$\begin{gathered} 2 \\ 13 \\ 2 \end{gathered}$	$\begin{array}{r} 8 \\ 10 \\ 5 \end{array}$	$\begin{aligned} & 13 \\ & 13 \\ & 10 \end{aligned}$	$\begin{array}{r} 5 \\ 13 \\ 2 \end{array}$	5 4 6
CITY - 3	$\begin{array}{\|l\|} \hline \text { R0 } \\ \text { R1 } \\ \text { R2 } \end{array}$									∞			$\begin{array}{\|l} 14 \\ 2 \\ 4 \end{array}$	$\begin{aligned} & 13 \\ & 13 \\ & 8 \end{aligned}$	$\begin{array}{r} 2 \\ 8 \\ 18 \end{array}$	$\begin{aligned} & 11 \\ & 6 \\ & 5 \end{aligned}$	$\begin{array}{r} 9 \\ 13 \\ 8 \end{array}$	$\begin{array}{r} 12 \\ 5 \\ 13 \end{array}$	$\begin{array}{\|l} 13 \\ 18 \\ 8 \end{array}$	$\begin{aligned} & 6 \\ & 9 \end{aligned}$	$\begin{aligned} & 13 \\ & 17 \\ & 11 \end{aligned}$	$\begin{aligned} & 18 \\ & 10 \\ & 13 \end{aligned}$	$\begin{array}{r} 8 \\ 13 \\ 10 \end{array}$	$\begin{aligned} & 5 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \\ & 8 \end{aligned}$	$\begin{array}{r} 2 \\ 13 \\ 10 \end{array}$	$\begin{gathered} 13 \\ 9 \\ 2 \end{gathered}$	$\begin{aligned} & 13 \\ & 9 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 17 \\ & 2 \end{aligned}$	10 5 13
CITY - 4	$\begin{aligned} & \text { R0 } \\ & \text { R1 } \\ & \text { R2 } \end{aligned}$												∞			$\begin{aligned} & 9 \\ & 9 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \\ & 2 \end{aligned}$	$\begin{gathered} 4 \\ 14 \\ 13 \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \\ & 5 \end{aligned}$	$\begin{array}{r} 2 \\ 10 \\ 13 \end{array}$	$\begin{array}{r} 2 \\ 14 \\ 13 \end{array}$	$\begin{array}{\|l} 13 \\ 9 \\ 13 \end{array}$	$\begin{array}{r} 8 \\ 13 \\ 5 \end{array}$	$\begin{array}{r} 17 \\ 6 \\ 13 \end{array}$	$\begin{aligned} & \hline 2 \\ & 13 \\ & 14 \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \\ 13 \\ 5 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ 8 \\ 12 \end{array}$	$\begin{aligned} & 13 \\ & 8 \\ & 2 \end{aligned}$	$\begin{array}{r} 6 \\ 13 \\ 13 \end{array}$	$\begin{array}{r} 9 \\ 2 \\ 13 \end{array}$
CITY-5	$\begin{aligned} & \text { R0 } \\ & \text { R1 } \\ & \text { R2 } \end{aligned}$															∞			$\begin{aligned} & 13 \\ & 13 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \\ & 6 \end{aligned}$	$\begin{array}{r} 7 \\ 2 \\ 18 \end{array}$	$\begin{aligned} & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{array}{r} 10 \\ 2 \\ 10 \end{array}$	$\begin{array}{r} 13 \\ 2 \\ 16 \end{array}$	$\begin{array}{\|l} 10 \\ 13 \\ 8 \end{array}$	$\begin{aligned} & 9 \\ & 17 \\ & 18 \end{aligned}$	$\begin{gathered} 2 \\ 13 \\ 2 \end{gathered}$	$\begin{array}{\|l\|} \hline 10 \\ 2 \\ 12 \end{array}$	$\begin{aligned} & 2 \\ & 8 \\ & 9 \end{aligned}$	$\begin{array}{r} 10 \\ 13 \\ 7 \end{array}$
CITY-6	$\begin{aligned} & \text { R0 } \\ & \text { R1 } \\ & \text { R2 } \\ & \hline \end{aligned}$																		∞			$\begin{aligned} & 2 \\ & 2 \\ & 13 \end{aligned}$	$\begin{array}{r} 8 \\ 14 \\ 13 \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 9 \\ 8 \\ 10 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & 13 \\ & 18 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 4 \\ & 10 \end{aligned}$	$\begin{aligned} & 7 \\ & 13 \\ & 13 \end{aligned}$	$\begin{gathered} 13 \\ 9 \\ 13 \\ \hline \end{gathered}$
CITY - 7	$\begin{array}{\|l\|} \hline \text { R0 } \\ \text { R1 } \\ \text { R2 } \end{array}$																					∞			$\begin{aligned} & 13 \\ & 14 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 9 \\ & 10 \\ & \hline \end{aligned}$	$\begin{array}{r} 8 \\ 13 \\ 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 13 \\ 8 \\ 8 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ 13 \\ 13 \end{array}$	$\begin{aligned} & 17 \\ & 11 \\ & 10 \\ & \hline \end{aligned}$
CITY - 8	$\begin{array}{\|l\|l} \text { R0 } \\ \text { R1 } \\ \text { R2 } \\ \hline \end{array}$																									∞		$\begin{array}{\|l\|} \hline 13 \\ 11 \\ 13 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 13 \\ & 8 \\ & \hline \end{aligned}$	13 5 10
CITY-9	$\begin{aligned} & \text { R0 } \\ & \text { R1 } \\ & \text { R2 } \end{aligned}$																												∞	

Table 3: For the proposed model, the following parameters were used.

Parameters	Values	Unit of measure	Description
N	10	-	Number of cities/hospitals/service points
NOC/pop_size	20,50	-	Number of chromosomes

A TSP model for medical equipment or product distribution to different hospitals to minimize ..

Parameters	Values	Unit of measure	Description
Maxgen	250	-	Number of generations for the algorithm GA
p_{c}	0.45	-	Probability of crossover
p_{m}	0.20	-	Probability of mutation
T	-	Minute	Travel time
TC	-	INR	Travel cost
Z_{TC}	-	Minute	Maximum travel time constraint
$\mathrm{T}_{\max }$	-		

4.2. Experimental Results

4.2.1. For model A

i) When $\operatorname{Route}(\mathbf{R})=0$ and $\operatorname{Vehicle}(\mathbf{V})=0$ selecting from Table-2.

Table 4: Output Data for the problem 2DTSP's with minimum travel cost between various cities while using single route(R0) and single vehicle (V0), using 10 cities

$\mathrm{NOC}=20$			
Iteration number	Maxgen	TC	City (Route) (Vehicle)
4	50	1579.00	$\begin{gathered} (6(1)(1))-(4(1)(1))-(5(0)(0))-(8(1)(1))-(1(1)(1))-(2(1)(1))-(9(1)(1))-(0(1)(1))- \\ (3(1)(1))-(7(1)(1))-(6) \end{gathered}$
11	70	1464.00	$\begin{gathered} (2(1)(1))-(3(1)(1))-(6(1)(1))-(7(1)(1))-(0(1)(1))-(4(1)(1))-(5(0)(0))-(9(1)(1))- \\ (1(1)(1))-(8(1)(1))-(2) \end{gathered}$
7	100	1646.00	$\begin{gathered} (8(1)(1))-(1(1)(1))-(3(1)(1))-(0(1)(1))-(4(1)(1))-(9(1)(1))-(7(1)(1))-(6(0)(0))- \\ (2(1)(1))-(5(1)(1))-(8) \end{gathered}$
8	150	1603.00	$\begin{gathered} (9(1)(1))-(5(1)(1))-(4(1)(1))-(6(0)(0))-(2(1)(1))-(3(1)(1))-(0(1)(1))-(1(1)(1))- \\ (8(1)(1))-(7(1)(1))-(9) \end{gathered}$
9	200	1556.00	$\begin{gathered} (5(0)(0))-(9(1)(1))-(0(1)(1))-(4(1)(1))-(1(1)(1))-(8(1)(1))-(6(1)(1))-(7(1)(1))- \\ (3(1)(1))-(2(1)(1))-(5) \end{gathered}$
$\mathrm{NOC}=50$			
12	100	1545.00	$\begin{gathered} (0(1)(1))-(4(1)(1))-(5(1)(1))-(3(1)(1))-(2(1)(1))-(7(1)(1))-(6(1)(1))-(9(1)(1))- \\ (8(1)(1))-(1(1)(1))-(0) \end{gathered}$
23	150	1433.00	$\begin{gathered} (5(0)(0))-(3(1)(1))-(2(1)(1))-(7(1)(1))-(6(1)(1))-(4(1)(1))-(0(1)(1))-(8(1)(1))- \\ (1(1)(1))-(9(1)(1))-(5) \end{gathered}$
19	200	1444.00	$\begin{gathered} (6(0)(0))-(2(1)(1))-(7(1)(1))-(9(1)(1))-(3(1)(1))-(0(1)(1))-(4(1)(1))-(5(1)(1))- \\ (8(1)(1))-(1(1)(1))-(6) \end{gathered}$
17	250	1447.00	$\begin{gathered} (3(1)(1))-(0(1)(1))-(4(1)(1))-(5(1)(1))-(1(1)(1))-(8(0)(0))-(9(0)(0))-(6(1)(1))- \\ (7(1)(1))-(2(1)(1))-(3) \end{gathered}$

ii) When $\operatorname{Route}(\mathbf{R})=\mathbf{1}$ and $\operatorname{Vehicle}(\mathbf{V})=\mathbf{1}$ selecting from Table-2.

Table 5: Output Data for the problem 2DTSP's with minimum travel cost between various cities while using single route(R1) and single vehicle (V1), using 10 cities

$\mathrm{NOC}=20$			
Iteration number	Maxgen	TC	City (Route) (Vehicle)
18	50	1455	$\begin{gathered} (9(1)(1))-(5(1)(1))-(4(1)(1))-(0(1)(1))-(3(1)(1))-(2(1)(1))-(8(1)(1))-(1(1)(1))- \\ (6(1)(1))-(7(1)(1))-(9) \end{gathered}$
14	70	1476	$\begin{gathered} (1(1)(1))-(8(1)(1))-(6(1)(1))-(4(1)(1))-(5(1)(1))-(0(1)(1))-(3(1)(1))-(2(1)(1))- \\ (7(1)(1))-(9(1)(1))-(1) \end{gathered}$
13	100	1464	$\begin{gathered} (8(1)(1))-(9(1)(1))-(2(1)(1))-(3(1)(1))-(0(1)(1))-(4(1)(1))-(5(1)(1))-(7(1)(1))- \\ (6(1)(1))-(1(1)(1))-(8) \end{gathered}$
12	150	1476	$\begin{gathered} (1(1)(1))-(8(1)(1))-(6(1)(1))-(4(1)(1))-(5(1)(1))-(0(1)(1))-(3(1)(1))-(2(1)(1))- \\ (7(1)(1))-(9(1)(1))-(1) \end{gathered}$
7	200	1545	$\begin{gathered} (8(1)(1))-(1(1)(1))-(4(1)(1))-(0(1)(1))-(5(1)(1))-(9(1)(1))-(7(1)(1))-(2(1)(1))- \\ (3(1)(1))-(6(1)(1))-(8) \end{gathered}$
$\mathrm{NOC}=50$			
30	100	1436	$\begin{gathered} (3(1)(1))-(0(1)(1))-(4(1)(1))-(5(1)(1))-(8(1)(1))-(1(1)(1))-(9(1)(1))-(2(1)(1))- \\ (7(1)(1))-(6(1)(1))-(3) \end{gathered}$
23	150	1528	$\begin{gathered} (9(1)(1))-(5(1)(1))-(4(1)(1))-(1(1)(1))-(8(1)(1))-(6(1)(1))-(7(1)(1))-(2(1)(1))- \\ (0(1)(1))-(3(1)(1))-(9) \end{gathered}$
26	200	1526	$\begin{gathered} (6(1)(1))-(3(1)(1))-(9(1)(1))-(8(1)(1))-(1(1)(1))-(0(1)(1))-(4(1)(1))-(5(1)(1))- \\ (2(1)(1))-(7(1)(1))-(6) \end{gathered}$
20	250	1547	$\begin{gathered} (3(1)(1))-(9(1)(1))-(1(1)(1))-(8(1)(1))-(6(1)(1))-(7(1)(1))-(2(1)(1))-(4(1)(1))- \\ (5(1)(1))-(0(1)(1))-(3) \end{gathered}$

iii) When $\operatorname{Route}(\mathbf{R})=\mathbf{2}$ and $\operatorname{Vehicle}(\mathbf{V})=\mathbf{2}$ selecting from Table-2.

Table 6: Output Data for the problem 2DTSP's with minimum travel cost between various cities while using single route(R2) and single vehicle (V2), using 10 cities

$\mathrm{NOC}=20$			
Iteration number	Maxgen	TC	City (Route) (Vehicle)
19	50	1575	$\begin{gathered} (7(2)(2))-(6(1)(1))-(1(1)(1))-(8(1)(1))-(5(1)(1))-(4(1)(1))-(9(1)(1))-(0(1)(1))- \\ (3(1)(1))-(2(1)(1))-(7) \end{gathered}$
5	70	1669	$\begin{gathered} (2(1)(1))-(0(2)(2))-(1(1)(1))-(8(1)(1))-(9(1)(1))-(6(1)(1))-(3(1)(1))-(5(1)(1))- \\ (4(1)(1))-(7(1)(1))-(2) \end{gathered}$
12	100	1588	$\begin{gathered} (2(1)(1))-(9(1)(1))-(6(1)(1))-(8(1)(1))-(1(2)(2))-(0(1)(1))-(3(1)(1))-(4(1)(1))- \\ (5(1)(1))-(7(1)(1))-(2) \end{gathered}$
14	150	1566	$\begin{gathered} (8(1)(1))-(5(2)(2))-(7(2)(2))-(9(1)(1))-(0(1)(1))-(2(1)(1))-(3(1)(1))-(4(1)(1))- \\ (6(1)(1))-(1(1)(1))-(8) \end{gathered}$
8	200	1643	$\begin{gathered} (3(1)(1))-(9(1)(1))-(1(1)(1))-(8(1)(1))-(2(1)(1))-(6(1)(1))-(7(1)(1))-(5(1)(1))- \\ (4(1)(1))-(0(1)(1))-(3) \end{gathered}$
$\mathrm{NOC}=50$			

A TSP model for medical equipment or product distribution to different hospitals to minimize ..

$\mathrm{NOC}=20$			
24	100	1474	$\begin{gathered} (7(1)(1))-(2(1)(1))-(3(1)(1))-(0(2)(2))-(9(1)(1))-(5(1)(1))-(4(1)(1))-(6(1)(1))- \\ (8(1)(1))-(1(1)(1))-(7) \end{gathered}$
20	150	1573	$\begin{gathered} (6(2)(2))-(8(1)(1))-(7(1)(1))-(2(2)(2))-(3(1)(1))-(0(1)(1))-(4(1)(1))-(5(1)(1))- \\ (1(1)(1))-(9(1)(1))-(6) \end{gathered}$
27	200	1455	$\begin{gathered} (5(2)(2))-(6(1)(1))-(1(1)(1))-(8(1)(1))-(9(1)(1))-(4(1)(1))-(0(1)(1))-(3(1)(1))- \\ (2(1)(1))-(7(1)(1))-(5) \end{gathered}$
21	250	1555	$\begin{gathered} (5(1)(1))-(9(1)(1))-(0(1)(1))-(4(1)(1))-(6(1)(1))-(8(1)(1))-(1(1)(1))-(3(1)(1))- \\ (2(1)(1))-(7(1)(1))-(5) \end{gathered}$

Table 7: Model A-2DTSP with minimum travel cost.

Model	NOC	Maxgen	City (Route) (Vehicle)	TC (INR)
\mathbf{A}	50	150	$(5(1)(1))-(3(1)(1))-(2(1)(1))-(7(1)(1))-(6(1)(1))-(4(1)(1))-(0(1)(1))-$	1433

4.2.2. For model B

i) \quad When $\operatorname{Route}(R)=0$ and $\operatorname{Vehicle}(V)=0$ selecting from Table-2 and Table 2.1.

Table 8: Output Data for the problem 2DTSP's with minimum travel cost and travel time between various cities while using single route(R0) and single vehicle (V0), using 10 cities

$\mathrm{NOC}=20$				
Iteration number	Maxgen	TC	Travel time	City (Route) (Vehicle)
4	50	1579.00	$\begin{gathered} 10+5+10+18+8+ \\ 13+13+10+13+1 \\ 4=114 \end{gathered}$	$\begin{gathered} (6(1)(1))-(4(1)(1))-(5(0)(0))-(8(1)(1))-(1(1)(1))-(2(1)(1))- \\ (9(1)(1))-(0(1)(1))-(3(1)(1))-(7(1)(1))-(6) \end{gathered}$
11	70	1464.00	$\begin{gathered} 11+10+14+2+15 \\ +5+8+13+18+13 \\ =109 \end{gathered}$	$\begin{gathered} (2(1)(1))-(3(1)(1))-(6(1)(1))-(7(1)(1))-(0(1)(1))-(4(1)(1))- \\ (5(0)(0))-(9(1)(1))-(1(1)(1))-(8(1)(1))-(2) \end{gathered}$
7	100	1646.00	$\begin{aligned} & 18+13+10+15+1 \\ & 3+13+14+5+8+1 \\ & 7=126 \end{aligned}$	$\begin{gathered} (8(1)(1))-(1(1)(1))-(3(1)(1))-(0(1)(1))-(4(1)(1))-(9(1)(1))- \\ (7(1)(1))-(6(0)(0))-(2(1)(1))-(5(1)(1))-(8) \end{gathered}$
8	150	1603.00	$\begin{aligned} & 8+5+10+5+11+1 \\ & 0+13+18+9+13 \\ & =102 \end{aligned}$	$\begin{gathered} (9(1)(1))-(5(1)(1))-(4(1)(1))-(6(0)(0))-(2(1)(1))-(3(1)(1))- \\ (0(1)(1))-(1(1)(1))-(8(1)(1))-(7(1)(1))-(9) \end{gathered}$
9	200	1556.00	$\begin{aligned} & 10+13+15+13+1 \\ & 8+10+14+13+11 \\ & +8=125 \end{aligned}$	$\begin{gathered} (5(0)(0))-(9(1)(1))-(0(1)(1))-(4(1)(1))-(1(1)(1))-(8(1)(1))- \\ (6(1)(1))-(7(1)(1))-(3(1)(1))-(2(1)(1))-(5) \end{gathered}$
$\mathrm{NOC}=50$				
12	100	1545.00	$\begin{aligned} & 15+5+13+11+14 \\ & +14+13+13+18+ \\ & 13=129 \end{aligned}$	$\begin{gathered} (0(1)(1))-(4(1)(1))-(5(1)(1))-(3(1)(1))-(2(1)(1))-(7(1)(1))- \\ (6(1)(1))-(9(1)(1))-(8(1)(1))-(1(1)(1))-(0) \end{gathered}$
23	150	1433.00	$\begin{gathered} 11+11+14+14+1 \\ 0+15+2+18+13+ \\ 8=116 \end{gathered}$	$\begin{gathered} (5(0)(0))-(3(1)(1))-(2(1)(1))-(7(1)(1))-(6(1)(1))-(4(1)(1))- \\ (0(1)(1))-(8(1)(1))-(1(1)(1))-(9(1)(1))-(5) \end{gathered}$
19	200	1444.00	$\begin{aligned} & 5+14+13+17+10 \\ & +15+5+17+18+1 \\ & 0=124 \end{aligned}$	$\begin{gathered} (6(0)(0))-(2(1)(1))-(7(1)(1))-(9(1)(1))-(3(1)(1))-(0(1)(1))- \\ (4(1)(1))-(5(1)(1))-(8(1)(1))-(1(1)(1))-(6) \end{gathered}$

NOC $=\mathbf{2 0}$						
250	1447.00	$10+15+5+2+18+$ $13+3+14+14+11$ $=105$	$(3(1)(1))-(0(1)(1))-(4(1)(1))-(5(1)(1))-(1(1)(1))-(8(0)(0))-$ $(9(0)(0))-(6(1)(1))-(7(1)(1))-(2(1)(1))-(3)$			

ii)
ii) When $\operatorname{Route}(\mathbf{R})=1$ and $\operatorname{Vehicle}(\mathbf{V})=1$ selecting from Table-2 and Table 2.1.

Table 9: Output Data for the problem 2DTSP's with minimum travel cost and travel time between various cities while using single route(R1) and single vehicle (V1), using 10 cities

NOC $=20$				
Iteration number	Maxgen	TC	Travel time	City (Route) (Vehicle)
18	50	1455	$\begin{aligned} & 8+5+15+10+11+ \\ & 13+18+10+14+1 \\ & 3=117 \end{aligned}$	$\begin{gathered} (9(1)(1))-(5(1)(1))-(4(1)(1))-(0(1)(1))-(3(1)(1))-(2(1)(1))- \\ (8(1)(1))-(1(1)(1))-(6(1)(1))-(7(1)(1))-(9) \end{gathered}$
14	70	1476	$\begin{aligned} & 18+10+10+5+17 \\ & +10+11+14+13+ \\ & 13=121 \end{aligned}$	$\begin{gathered} (1(1)(1))-(8(1)(1))-(6(1)(1))-(4(1)(1))-(5(1)(1))-(0(1)(1))- \\ (3(1)(1))-(2(1)(1))-(7(1)(1))-(9(1)(1))-(1) \end{gathered}$
13	100	1464	$\begin{aligned} & 13+13+11+10+1 \\ & 5+5+2+14+10+1 \\ & 8=111 \end{aligned}$	$\begin{gathered} (8(1)(1))-(9(1)(1))-(2(1)(1))-(3(1)(1))-(0(1)(1))-(4(1)(1))- \\ (5(1)(1))-(7(1)(1))-(6(1)(1))-(1(1)(1))-(8) \end{gathered}$
12	150	1476	$\begin{aligned} & 18+10+10+5+17 \\ & +10+11+14+13+ \\ & 13=121 \end{aligned}$	$\begin{gathered} (1(1)(1))-(8(1)(1))-(6(1)(1))-(4(1)(1))-(5(1)(1))-(0(1)(1))- \\ (3(1)(1))-(2(1)(1))-(7(1)(1))-(9(1)(1))-(1) \end{gathered}$
7	200	1545	$\begin{aligned} & 18+13+15+17+8 \\ & +13+14+11+10+ \\ & 10=129 \end{aligned}$	$\begin{gathered} (8(1)(1))-(1(1)(1))-(4(1)(1))-(0(1)(1))-(5(1)(1))-(9(1)(1))- \\ (7(1)(1))-(2(1)(1))-(3(1)(1))-(6(1)(1))-(8) \end{gathered}$
$\mathrm{NOC}=50$				
30	100	1436	$\begin{gathered} 10+15+5+17+18 \\ +13+13+14+14+ \\ 10=129 \end{gathered}$	$\begin{gathered} (3(1)(1))-(0(1)(1))-(4(1)(1))-(5(1)(1))-(8(1)(1))-(1(1)(1))- \\ (9(1)(1))-(2(1)(1))-(7(1)(1))-(6(1)(1))-(3) \end{gathered}$
23	150	1528	$\begin{aligned} & 8+5+13+18+10+ \\ & 14+14+5+10+17 \\ & =114 \end{aligned}$	$\begin{gathered} (9(1)(1))-(5(1)(1))-(4(1)(1))-(1(1)(1))-(8(1)(1))-(6(1)(1))- \\ (7(1)(1))-(2(1)(1))-(0(1)(1))-(3(1)(1))-(9) \end{gathered}$
26	200	1526	$\begin{gathered} 10+17+13+18+1 \\ 3+15+5+8+14+1 \\ 4=127 \end{gathered}$	$\begin{gathered} (6(1)(1))-(3(1)(1))-(9(1)(1))-(8(1)(1))-(1(1)(1))-(0(1)(1))- \\ (4(1)(1))-(5(1)(1))-(2(1)(1))-(7(1)(1))-(6) \end{gathered}$
20	250	1547	$\begin{gathered} 17+13+18+10+1 \\ 4+14+13+5+17+ \\ 10=131 \end{gathered}$	$\begin{gathered} (3(1)(1))-(9(1)(1))-(1(1)(1))-(8(1)(1))-(6(1)(1))-(7(1)(1))- \\ (2(1)(1))-(4(1)(1))-(5(1)(1))-(0(1)(1))-(3) \end{gathered}$

iii) When $\operatorname{Route}(\mathbf{R})=2$ and $\operatorname{Vehicle}(\mathbf{V})=2$ selecting from Table-2 and Table 2.1.

Table 10: Output Data for the problem 2DTSP's with minimum travel cost and travel time between various cities while using single route(R2) and single vehicle (V2), using 10 cities

NOC = 20						
Iteration number	Maxgen	TC	Travel time	City (Route) (Vehicle)		
19	50	1575	$2+10+18+17+5+13+13+$ $10+11+14=113$	$(7(2)(2))-(6(1)(1))-(1(1)(1))-(8(1)(1))-(5(1)(1))-(4(1)(1))-$ $(9(1)(1))-(0(1)(1))-(3(1)(1))-(2(1)(1))-(7)$		
5	70	1669	$5+10+18+13+13+10+13$	$(2(1)(1))-(0(2)(2))-(1(1)(1))-(8(1)(1))-(9(1)(1))-(6(1)(1))-$		

A TSP model for medical equipment or product distribution to different hospitals to minimize ..

| NOC = 20 | |
| :---: | :---: | :---: | :--- | :--- | :--- |

Table 11: Model B-2DTSP with minimum travel cost with travel time.

Model	NOC	Maxgen	City (Route) (Vehicle)	TC (INR)	Travel time
\mathbf{A}	50	150	$(5(1)(1))-(3(1)(1))-(2(1)(1))-(7(1)(1))-(6(1)(1))-(4(1)(1))-$ $(0(1)(1))-(8(1)(1))-(1(1)(1))-(9(1)(1))-(5)$	1433	116 minutes

4.2.2. For model C

i) When $\operatorname{Route}(R)=0$ and $\operatorname{Vehicle}(V)=0$ selecting from Table-2 and Table 2.1.

Table 12: Output Data for the problem 2DTSP's with minimum travel cost under travel time constraint between various cities while using single route(R0) and single vehicle (V0), using 10 cities

$\mathrm{NOC}=20$				
Iteration number	Maxgen	TC	Travel time constraint under 103 minutes	City (Route) (Vehicle)
8	150	1603.00	$\begin{aligned} & 8+5+10+5+11+1 \\ & 0+13+18+9+13 \\ & =102 \end{aligned}$	$\begin{gathered} (9(1)(1))-(5(1)(1))-(4(1)(1))-(6(0)(0))-(2(1)(1))-(3(1)(1))- \\ (0(1)(1))-(1(1)(1))-(8(1)(1))-(7(1)(1))-(9) \end{gathered}$
$\mathrm{NOC}=50$				
Iteration number	Maxgen	TC	Travel time constraint under 106 minutes	City (Route) (Vehicle)
17	250	1447.00	$\begin{aligned} & 10+15+5+2+18+ \\ & 13+3+14+14+11 \\ & =105 \end{aligned}$	$\begin{gathered} (3(1)(1))-(0(1)(1))-(4(1)(1))-(5(1)(1))-(1(1)(1))-(8(0)(0))- \\ (9(0)(0))-(6(1)(1))-(7(1)(1))-(2(1)(1))-(3) \end{gathered}$

ii) When $\operatorname{Route}(\mathbf{R})=1$ and $\operatorname{Vehicle}(\mathbf{V})=1$ selecting from Table-2 and Table 2.1.

Table 13: Output Data for the problem 2DTSP's with minimum travel cost under travel time constraint between various cities while using single route(R1) and single vehicle (V1), using 10 cities

$\mathrm{NOC}=20$				
Iteration number	Maxgen	TC	Travel time constraint under 113 minutes	City (Route) (Vehicle)
13	100	1464	$\begin{aligned} & 13+13+11+10+1 \\ & 5+5+2+14+10+1 \\ & 8=111 \end{aligned}$	$\begin{gathered} (8(1)(1))-(9(1)(1))-(2(1)(1))-(3(1)(1))-(0(1)(1))- \\ (4(1)(1))-(5(1)(1))-(7(1)(1))-(6(1)(1))-(1(1)(1))-(8) \end{gathered}$
$\mathrm{NOC}=50$				
Iteration number	Maxgen	TC	Travel time constraint under 115 minutes	City (Route) (Vehicle)
23	150	1528	$\begin{aligned} & 8+5+13+18+10+ \\ & 14+14+5+10+17 \\ & =114 \end{aligned}$	$\begin{gathered} (9(1)(1))-(5(1)(1))-(4(1)(1))-(1(1)(1))-(8(1)(1))- \\ (6(1)(1))-(7(1)(1))-(2(1)(1))-(0(1)(1))-(3(1)(1))-(9) \end{gathered}$

iii) When $\operatorname{Route}(\mathbf{R})=\mathbf{2}$ and $\operatorname{Vehicle}(\mathbf{V})=\mathbf{2}$ selecting from Table-2 and Table 2.1.

Table 14: Output Data for the problem 2DTSP's with minimum travel cost under travel time constraint between various cities while using single route(R2) and single vehicle (V2), using 10 cities

$\mathrm{NOC}=20$				
Iteration number	Maxgen	TC	Travel time constraint under 109 minutes	City (Route) (Vehicle)
12	100	1588	$\begin{aligned} & 13+13+10+18+1 \\ & 0+10+13+5+2+1 \\ & 4=108 \end{aligned}$	$\begin{gathered} (2(1)(1))-(9(1)(1))-(6(1)(1))-(8(1)(1))-(1(2)(2))-(0(1)(1))- \\ (3(1)(1))-(4(1)(1))-(5(1)(1))-(7(1)(1))-(2) \end{gathered}$
$\mathrm{NOC}=50$				
Iteration number	Maxgen	TC	Travel time constraint under 95 minutes	City (Route) (Vehicle)
24	100	1474	$\begin{aligned} & 14+11+10+2+8+ \\ & 5+10+10+18+6= \\ & 94 \end{aligned}$	$\begin{gathered} (7(1)(1))-(2(1)(1))-(3(1)(1))-(0(2)(2))-(9(1)(1))-(5(1)(1))- \\ (4(1)(1))-(6(1)(1))-(8(1)(1))-(1(1)(1))-(7) \end{gathered}$

Table 15: Model C - 2DTSP with minimum travel cost under travel time constraint.

Model	NOC	Maxgen	Iteration number	City (Route) (Vehicle)	TC (INR)	Tour time constraint (96 minutes)
\mathbf{C}	50	100	24	$(7(1)(1))-(2(1)(1))-(3(1)(1))-(0(2)(2))-(9(1)(1))-$ $(5(1)(1))-(4(1)(1))-(6(1)(1))-(8(1)(1))-(1(1)(1))-(7)$	1474	94

V. Discussion

It is observed in Model - A (Table 4 to 6) that when NOC=50, iteration number=23 and maxgen=150 at Table-4, the algorithm get more best minimum travel $\operatorname{cost}(T C)=I N R ~ 1433.00$. The optimal results are shown for Model A at Table-7 with TC INR 1433.00 and optimal path is $(5(1)(1))-(3(1)(1))-(2(1)(1))-(7(1)(1))-(6(1)(1))-$ $(4(1)(1))-(0(1)(1))-(8(1)(1))-(1(1)(1))-(9(1)(1))-(5)$.

Observations show on Table 8 to 10 for Model B that when I am considering minimum travel time (here 94 minutes) then we got at Table 10 , $\mathrm{TC}=\mathrm{INR} 1474.00$ with optimal path $(7(1)(1))-(2(1)(1))-(3(1)(1))-(0(2)(2))-$ $(9(1)(1))-(5(1)(1))-(4(1)(1))-(6(1)(1))-(8(1)(1))-(1(1)(1))-(7)$. Now, when NOC=50, iteration number=23 and maxgen $=150$ at Table-8, the algorithm get best minimum travel $\operatorname{cost}(\mathrm{TC})=$ INR 1433.00 with travel time 116 minutes and the optimal path is $(5(1)(1))-(3(1)(1))-(2(1)(1))-(7(1)(1))-(6(1)(1))-(4(1)(1))-(0(1)(1))-$ $(8(1)(1))-(1(1)(1))-(9(1)(1))-(5)$. Table 11 shows the above mentioned results.

As a result from Table 12 to 14, in my final (more realistic) model under tour time constraint 96 minutes, it has been observed that $\mathrm{NOC}=50$, iteration number $=24$ and maxgen $=100$ at Table-14, the algorithm get best minimum travel cost(TC)= INR 1474.00 with optimal tour $(7(1)(1))-(2(1)(1))-(3(1)(1))-(0(2)(2))-(9(1)(1))-$ $(5(1)(1))-(4(1)(1))-(6(1)(1))-(8(1)(1))-(1(1)(1))-(7)$. The above decisions also showed in Table 15.

But, when NOC=50, iteration number $=17$ and maxgen=250 at Table-12, the algorithm get more best minimum travel $\operatorname{cost}(\mathrm{TC})=$ INR 1447.00 than before but here travel time is required 105 minutes.

Finally, Table 15 shows the best optimum results with minimum travel cost and under tour time constraint.

VI. Conclusions

As per the investigator's best knowledge, this model is the first model solved by a Genetic Algorithm for medical equipment distribution to different service points. Hence we can enhance the model under a fuzzy tour time and carbon emission constraint and develop the algorithms. The travel cost and time data may be crisped in nature and for an imprecise environment like fuzzy.

References

[1]. Chatterjee, S., Carrera, C. and Lynch, L.A., 1996. Genetic algorithms and traveling salesman problems. European journal of operational research, 93(3), pp.490-510.
[2]. Chu, S.C. and Chu, L., 2000. A modeling framework for hospital location and service allocation. International transactions in operational research, 7(6), pp.539-568.
[3]. Dantzig, G., Fulkerson, R. and Johnson, S., 1954. Solution of a large-scale traveling-salesman problem. Journal of the operations research society of America, 2(4), pp.393-410.
[4]. Erdoğan, G., Cordeau, J.F. and Laporte, G., 2009. The pickup and delivery traveling salesman problem with first-in-first-out loading. Computers \& Operations Research, 36(6), pp.1800-1808.
[5]. Feillet, D., Dejax, P. and Gendreau, M., 2005. Traveling salesman problems with profits. Transportation science, 39(2), pp.188-205.
[6]. Little, J.D., Murty, K.G., Sweeney, D.W. and Karel, C., 1963. An algorithm for the traveling salesman problem. Operations research, 11(6), pp.972-989.
[7]. Matai, R., Singh, S.P. and Mittal, M.L., 2010. Traveling salesman problem: an overview of applications, formulations, and solution approaches. Traveling salesman problem, theory and applications, 1.
[8]. Nagata, Y. and Soler, D., 2012. A new genetic algorithm for the asymmetric traveling salesman problem. Expert Systems with Applications, 39(10), pp.8947-8953.
[9]. Orman, A.J. and Williams, H.P., 2006. A survey of different integer programming formulations of the travelling salesman problem. Optimisation, Econometric and Financial Analysis, 9, pp.93-108.
[10]. Liu, R., Xie, X., Augusto, V., \& Rodriguez, C. (2013). Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care. European journal of operational research, 230(3), 475-486.
[11]. Lee, J., Kim, B. I., Johnson, A. L., \& Lee, K. (2014). The nuclear medicine production and delivery problem. European Journal of Operational Research, 236(2), 461-472.

[^0]: ${ }^{1}$ https://shorturl.at/vDSX2
 satellite centre concept vi) Modernize and enhance the infrastructure, especially the diagnostic facilities vii) Guarantee a free or heavily discounted supply of medications and other important medical supplies viii) Raise the bar for non-clinical facilities and services provided to patients and their families. Optimizing Kolkata's surrounding secondary care facilities that are underutilized ix) Launch administrative changes for health care, such as the establishment of seven new health districts. x) Create more modern facilities in district and subdivisional hospitals, such as ICUs/ITUs, different burn units (BU), trauma care units (TCU), and blood banking (BB) facilities. xi) Create newborn care units on the Purulia model in secondary and primary care facilities. xii) Boost adolescent care services, particularly for girls; xiii) Create more sub-centers in accordance with the 2011 census; xiv) Introduce cashless delivery (CD) and free transportation at all service points/hospitals xv) Create a functional Comprehensive Emergency Obstetric Care Centre (CEOCC) within a 25 -kilometer radius and a functional Basic Emergency Obstetric Care Centre (BEOCC) within a 6-kilometer radius both. xvi) Create a network of public health laboratories at the district and state levels xvii) Establish a regional centre (RC) for disease control (DC) xviii) Gather resources from within and beyond the government and look into

