
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 6, Ver. VI (Nov.-Dec. 2016), PP 46-56

www.iosrjournals.org

DOI: 10.9790/0661-1806064656 www.iosrjournals.org 46 | Page

Design and Implementation of Lightweight Security Auditing

Tool for Android Smart Mobile Phone

Fetulhak Abdurahman
1
, Arun Radhakrishnan

2

1
(Electrical and Computer engineering, Jimma University Institute of Technology, Ethiopia)

2
(Electrical and Computer engineering, Jimma University Institute of Technology, Ethiopia)

Abstract: Due to the fast growing market in Android smartphone operating systems to date cyber criminals

have naturally extended their target towards Google’s Android mobile operating system. Threat researchers are

reporting an alarming increase of detected malware for Android from 2012 to 2013. Static analysis techniques

for malware detection are based on signatures of known malicious applications. It cannot detect new malware

applications and the attacker will get window of opportunities until the threat databases are updated for the

new malware. Malware detection techniques based on dynamic analysis are mostly designed as a cloud based

services where the user must submit the application to know whether the application is malware or not. As a

solution to these problems, in this work we design and implement a host based lightweight security auditing tool

that suits resource-constrained mobile devices in terms of low storage and computational requirements. Our

proposed solution utilizes the open nature of the Android operating system and uses the public APIs provided by

the Android SDK to collect features of known-benign and known-malicious applications. The collected features

are then provided to machine learning algorithm to develop a baseline classification model. This classification

model is then used to classify new or unknown applications either as malware or goodware and if it is malware

it alerts the user about the infection. Our proposed solution has been tested by analyzing both malicious and

benign applications collected from different websites. The technique used is shown to be an effective means of

detecting malware and alerting users about detection of malware, which suggests that it has the capability to

stop the spread of the attack since once the user is aware of the malicious application he can take measures by

uninstalling the application. Experimental results show that the proposed solution has detection rate of 96.73%

in Random Forest machine learning model which is used during the final development of our proposed solution

as an Android application and low rate of false positive rate (0.01). Performance impact on the Android system

can also be ignored which is only 3.7-5.6% CPU overhead, 3-4% of RAM overhead and the battery exhaustion

is only 2%.
Keywords: Smartphones, Android, Malware Detection, Machine Learning, Classification

I. Introduction
A compromised smartphone can inflict severe damages to both users and the cellular service provider.

Malware on a smartphone can make the phone partially or fully unusable; cause unwanted billing; steal private

information (possibly by Phishing and Social Engineering); or infect the contacts in the phone-book. Possible

attack vectors into smartphones include: Cellular networks, Internet connections (via Wi-Fi, GPRS/EDGE or 3G

network access); USB/ActiveSync/Docking and other peripherals [1].

With an estimated market share of 70% to 80%, Android has become the most popular operating

system for smartphones and tablets [2, 3]. Expecting a shipment of 1 billion Android devices in 2017 and with

over 50 billion total app downloads since the first Android phone was released in 2008, cyber criminals

naturally expanded their vicious activities towards Google’s mobile platform. Mobile threat researchers indeed

recognize an alarming increase of Android malware from 2012 to 2013 and estimate that the number of detected

malicious apps is now in the range of 120,000 to 718,000 [4, 5, 6, 7]. Mobile operating systems pre-installed on

all currently sold smartphones need to meet different criteria than desktop and server operating systems, both in

functionality and security. Mobile platforms often contain strongly interconnected, small and less-well

controlled applications from various single developers, whereas desktop and server platforms obtain largely

independent software from trusted sources. Also, users typically have full access to administrative functions on

non-mobile platforms. Mobile platforms, however, restrict administrative control through users where the root

user has full access to administrative functions [8]. In the summer of 2012, the sophisticated Eurograbber attack

showed that mobile malware may be a very lucrative business by stealing an estimated €36,000,000 from bank

customers in Italy, Germany, Spain and the Netherlands [9].

Android’s open design allows users to install applications that do not necessarily originate from the

Google Play Store. With over 1 million apps available for download via Google’s official channel [10], and

possibly another million spread among third-party app stores, we can estimate that there are over 20,000 new

applications being released every month. This requires malware researchers and app store administrators to have

Design and Implementation of Lightweight Security Auditing Tool for Android Smart Mobile Phone

DOI: 10.9790/0661-1806064656 www.iosrjournals.org 47 | Page

access to a scalable solution for quickly analyzing new apps and identifying and isolating malicious

applications.

Google reacted to the growing interest of miscreants in Android by revealing Bouncer in February

2012, a service that checks apps submitted to the Google Play Store for malware [11]. However, research has

shown that Bouncer’s detection rate is still fairly low and that it can easily be bypassed [12, 13]. A large body of

similar research on Android malware has been proposed, but none of them provide a complete solution to obtain

a thorough understanding of unknown applications: work done by [14, 15] limited by system call analysis only,

[16] focuses on taint tracking i.e. tracking the flow of sensitive data which leaves the smartphone, [17, 18] track

only specific API invocations, and work done by [19] is bound to use an emulator as sandboxing during analysis

of malicious applications.

The other research work similar in permission combination analysis to ours is [20]. It defines security

rules manually by studying the behavior of different Android applications. The permission rules used in this

work are based on the potential for misuse that means they assume if an applications request for sensitive

system resources then their rule will alert the user about its maliciousness. The rules are not generated by

performing experiments on malicious or benign applications. Thus their work is as good as their manually

generated rules or patterns.

Most of the other approaches only monitor misbehaviors on a limited number of functionalities such as

outgoing/incoming traffic, SMS, Bluetooth and IM, or power consumption and, therefore, their detection

accuracy may be higher but their technique of monitoring behavior of system is less general.

A mobile security service provider [21] discovered a spyware application called Tip Calculator in the

Android market. The spyware sent all incoming and outgoing SMS messages in the system to a designated

email address. Another piece of spyware with similar characteristics discovered in non-official Android

repositories was Steamy Window [22]. A Trojan Horse called Android Pjapps modifies the original version of

this application and wages an attack by subscribing to a SMS premium service.

The purpose of this paper is to improve on and contribute to malware detection strategies for the

Android OS by offering up new ideas and techniques. The approach used in the paper is based on detecting

Android malware by monitoring different android device and application behaviors. The aim of monitoring the

system behavior is to obtain data enabling us to differentiate between normal and malicious use of a device. A

lightweight application is installed on the device which collects different features of the android system and

passes the collected features to a machine learning algorithm within a specified period of time for detection

analysis.

1.1 Statement of the problem

Even though a lot of work is done on the security mechanism of Android platform there are still

vulnerabilities which allow malicious attacks to control access to sensitive information using different

techniques. The Google play which is an application market is the best place to infect Android applications with

malicious code. Once the malicious application is on the Google play market users download and install the

application then the malicious application sends users sensitive and personal data to the attacker without the

notice of the owner.

Most antimalware applications in the market today use static analysis for detection of malicious

applications because it is fast and simple. However, static analysis is based on signatures of known malicious

applications it cannot detect new malware applications and the attacker will get window of opportunities until

the threat databases updated for the new malware. As described above Android users are still attacked by

malicious software therefore it needs an efficient and enhanced technique to detect those malicious attacks and

alert the user to stop them. In this work a lightweight auditing tool is implemented to detect those malicious

attacks and it will be tested for different real world malicious attacks. Auditing tool keeps an eye on the installed

applications for performing suspected activity and alerts Android users for such threats.

1.2 Objectives

The objective of this paper is to design and implement a lightweight security auditing tool for the Android smart

phones. The specific objectives will be divided in to:

 Monitoring the behavior of the system and applications installed on the Android emulator/device and

analyze the collected data to detect malicious activities.

 Evaluating our security auditing tool using training and testing set applications, which consists of malware

and normal applications, using machine learning classifiers.

Design and Implementation of Lightweight Security Auditing Tool for Android Smart Mobile Phone

DOI: 10.9790/0661-1806064656 www.iosrjournals.org 48 | Page

II. Materials And Methods
In order to achieve the objectives of this paper we have followed the following distinct phases during the paper

work:

 Study of the security requirements and threats in smartphones and the existing malware detection

techniques for such systems. This is achieved by reading literature review and contacting professionals

online.

 The collection of datasets to support our experimental analysis. That is, the collection of both malicious and

benign applications from different websites.

 Extraction of the features used to learn the machine learning algorithms. These features are extracted by

running the applications collected in phase two on Android emulator, a virtual Android mobile device able

to run on the computer. The extracted features are used to evaluate the effectiveness and accuracy of our

proposed system.

 The design and implementation of the proposed system, a lightweight behavior-based malware detection

technique for Android platform. This is mainly concerned with coding the new, lightweight, which has low

computational overhead and low memory consumption, and advanced Android malware detection methods

used in this paper. The system is implemented as an Android application, by using Eclipse integrated with

Android SDK tool.

 Evaluating and analyzing the system designed and implemented using the dataset(s).

 In order to implement a lightweight host-based system for behavioral analysis of Android smartphone, we

have to come up with a solution for main problems such as:

 What kind of information would we like to collect from the Android platform and the application?

 How to design such system in resource constraint smart mobile phones?

 Which features best represent the behavior of Android smartphones?

In general, in order to apply any machine learning classifier it is important to first be able to collect

relevant features from the targeted system as such overview provides good insight about the system. We

collected the most essential features in this paper, based on their availability and based on our experimental

analysis of the features that will be most helpful in detecting a malware, such as dangerous permission

combination used by installed applications, network behavior of running apps, and intent information used for

inter process communication. In order to compare the feature sets used in our work, we have analyzed and

evaluated all feature sets used separately and, then combined them for final evaluation of the whole system at

the end.

Table 1: The number of applications in each category
Category Count Category Count

Arcade and Action 120 Music & Audio 108

Books and references 105 News & magazines 105

Business 54 Personalization 109

Card Games 20 Photography 45

Casuals 33 Productivity 48

Comics 53 Puzzles and brain 32

Communication 99 Races 23

Education 83 Shopping 42

Entertainment 105 Social 110

Finance 50 Sports 68

Health 46 Tools 111

Libraries & Demos 97 Transportation 45

Lifestyle 87 Travels 53

Medicine 103 Weather 48

Multimedia & Video 103 Widget 121

Table 2: The total number of applications in our data set
Applications Count

Benign 2226

Malware 219

During the training and testing of the classifiers we used a self-written shell script running on a desktop

computer with Intel core i3 2350M CPU at 2.30 GHZ and 4GB of RAM. The script was used to:

 Take as input the training APK files in the Training folder and testing APK files in the Testing folder

 Install/uninstall applications on the emulator/device

 Start/stop the feature extractor application

Design and Implementation of Lightweight Security Auditing Tool for Android Smart Mobile Phone

DOI: 10.9790/0661-1806064656 www.iosrjournals.org 49 | Page

 Activate the ADB Monkey tool to interact with the applications

 Output the collected features in ARFF file format

 Train and test classifiers using the collected feature vectors

The Training and Testing data folders contain both malicious and benign applications. To train the

model classifier we used the APK files found in the Training folder and APK files in the Testing folder are used

to test the model.

For training phase we use 1557 benign applications and 154 malware applications and for testing phase

we use 669 benign and 65 malware applications. The shell script will install applications from the Training

folder and activate the Monkey tool to interact with the installed application. The script then starts monitoring

and collecting the features during the running of the applications on the emulator/device. Afterwards, the script

will uninstall the application from the emulator/device and create a clean instance of the system or

emulator/device. This ensures that every application has the same initial emulator condition during the feature

collection.

III. Result And Discussion
In this section we will describe in detail the experimental results which are used to show whether or not

the features used in this work are effective in detecting malware application behaviors. First we analyze the

features individually and evaluate their performance in terms of their detection accuracy using different machine

learning algorithms. We use J.48, BaysNet, Naïve Bayes and Random forest machine learning algorithms during

evaluation of our proposed system. During individual feature analysis we do not use the entire applications we

have collected since monitoring the behavior of the application using the emulator/device was taking long time.

Then we take the combined features to evaluate our proposed malware detection system using different machine

learning algorithms. This time we monitor the behavior of the entire application. The machine learning

algorithm with higher detection accuracy was used as a classifier model during the proposed system

development as Android application.

3.1 Analyzing the requested permission feature

In this paper we have developed a new approach to analyze the android application permission system.

We have used an association rule mining algorithm, Apriori algorithm, to find out the most widely used

dangerous combination of permissions in both malicious and benign applications and compare and contrast their

usage in terms of the support value they provide to each category of application (malware and benign). This

approach is effective since it cannot be tricked by malware developers unlike those approaches which used the

number of requested permission and individual permission based analysis to detect malware. We try to find out

an interesting permission combination that is unique to malware class or common for both malware and benign

class applications by comparing the difference between the support values of the permission combinations of

malware and benign datasets. We have taken an experimentally selected value of minimum threshold to

compare the difference in support value for a given permission combination.

We have analyzed the collected benign and malware datasets experimentally by collecting the most

essential permission combinations that are unique in malware dataset and common in both datasets. During the

experimental analysis of the permission features we have selected different values for the minimum support

value and minimum threshold for the difference to get the best value. By comparing the detection accuracy,

from the machine learning algorithms used, of these experimental results we finally chose to use 0.03 for the

minimum support value and 0.1 for the minimum threshold for difference for experiment 1. Table 3 shows the

permission combinations generated by using experiment 1.

Table 3: Permission combinations generated using experiment 1
No Generated permission combination

1 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.RECEIVE_SMS,
android.permission.WRITE_EXTERNAL_STORAGE]

2 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.RECEIVE_SMS,

android.permission.SEND_SMS]

3 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.READ_SMS,
android.permission.RECEIVE_SMS]

4 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.READ_SMS,

android.permission.WRITE_EXTERNAL_STORAGE]

5 [android.permission.INTERNET, android.permission.READ_SMS, android.permission.SEND_SMS,
android.permission.WRITE_EXTERNAL_STORAGE]

6 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.READ_SMS,

android.permission.SEND_SMS]

7 [android.permission.INTERNET, android.permission.RECEIVE_SMS, android.permission.SEND_SMS,
android.permission.WRITE_EXTERNAL_STORAGE]

Design and Implementation of Lightweight Security Auditing Tool for Android Smart Mobile Phone

DOI: 10.9790/0661-1806064656 www.iosrjournals.org 50 | Page

8 [android.permission.READ_PHONE_STATE, android.permission.READ_SMS, android.permission.RECEIVE_SMS,

android.permission.SEND_SMS]

9 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET,

android.permission.READ_PHONE_STATE, android.permission.SEND_SMS]

10 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.SEND_SMS,
android.permission.WRITE_EXTERNAL_STORAGE]

11 [android.permission.INTERNET, android.permission.READ_SMS, android.permission.RECEIVE_SMS,

android.permission.SEND_SMS]

12 [android.permission.INTERNET,android.permission.READ_PHONE_STATE,
android.permission.READ_SMS,android.permission.RECEIVE_SMS,android.permission.SEND_SMS]

We fed the collected permission combination statistics to the J.48, BaysNet, Naïve Bayes and Random

forest classifiers and we use testing set data to evaluate the classifiers. The classification results are shown in

Table 4. But as we can see from the confusion matrix all the classifiers classify large number of malware

instances as normal instances (high false positive rate). This is due to lack of permission combinations which

can identify malware behavior properly. To evaluate the performance of the machine learning classification

models we also calculate the true positive ratio and true negative ratio. The true positive ratio is proportion of

malware instances classified correctly and the true negative ratio is proportion of benign or normal instances

classified correctly.

Table 4: Permission combination based classifier results for experiment 1
Algorithm Correctly classified Incorrectly

classified

TPR TNR Confusion matrix

J48 229 / 89.10% 28 / 10.9% 0.35 0.98 m n <- - - classified as
13 24 m=malware

4 216 n=normal

Randomforest 220 /85.60% 37/14.40% 0.32 0.94 m n <- - - classified as

12 25 m=malware
12 208 n=normal

Naïve Bayes 230/89.50% 27/10.50% 0.54 0.95 m n <- - - classified as

20 17 m=malware
10 210 n=normal

BayesNet 231/89.88% 26/10.12% 0.54 0.96 m n <- - - classified as

20 17 m=malware

9 211 n=normal

We have used the minimum support value of 0.04 and minimum threshold for difference of 0.12 during

experiment 2 and Table 5 shows the permission combinations generated by using experiment 2. The results

obtained for experiment 2 are shown in Table 6.

Table 5: Permission combinations generated using experiment 2
No Generated permission combinations

1 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET,

android.permission.READ_PHONE_STATE, android.permission.RECEIVE_SMS, android.permission.SEND_SMS,

android.permission.WRITE_EXTERNAL_STORAGE]

2 [android.permission.CALL_PHONE, android.permission.INTERNET, android.permission.READ_CONTACTS,

android.permission.READ_PHONE_STATE, android.permission.SEND_SMS,

android.permission.WRITE_EXTERNAL_STORAGE]

3 [android.permission.CALL_PHONE, android.permission.INTERNET, android.permission.READ_CONTACTS,
android.permission.READ_PHONE_STATE, android.permission.READ_SMS, android.permission.SEND_SMS]

4 [android.permission.INTERNET, android.permission.READ_CONTACTS, android.permission.READ_PHONE_STATE,

android.permission.READ_SMS, android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]

5 [android.permission.CALL_PHONE, android.permission.INTERNET, android.permission.READ_CONTACTS,
android.permission.READ_SMS, android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]

6 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET,

android.permission.READ_PHONE_STATE, android.permission.READ_SMS, android.permission.RECEIVE_SMS,
android.permission.SEND_SMS]

7 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.READ_SMS,

android.permission.RECEIVE_SMS, android.permission.SEND_SMS,
android.permission.WRITE_EXTERNAL_STORAGE]

8 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.READ_SMS,

android.permission.RECEIVE_SMS, android.permission.SEND_SMS, android.permission.WRITE_SMS]

9 [android.permission.CALL_PHONE, android.permission.INTERNET, android.permission.READ_CONTACTS,
android.permission.READ_PHONE_STATE, android.permission.READ_SMS,

android.permission.WRITE_EXTERNAL_STORAGE]

10 [android.permission.CALL_PHONE, android.permission.INTERNET, android.permission.READ_PHONE_STATE,

android.permission.READ_SMS, android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]

11 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET,

android.permission.READ_PHONE_STATE, android.permission.RECEIVE_BOOT_COMPLETED,

Design and Implementation of Lightweight Security Auditing Tool for Android Smart Mobile Phone

DOI: 10.9790/0661-1806064656 www.iosrjournals.org 51 | Page

android.permission.RECEIVE_SMS, android.permission.SEND_SMS]

12 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.READ_SMS,

android.permission.RECEIVE_BOOT_COMPLETED, android.permission.RECEIVE_SMS,

android.permission.SEND_SMS]

As we can see from the table the accuracy of the classifiers increase in significant amount except the

BayesNet classifier. The accuracy of the classifiers increase because when we see the permission combinations

generated in Table 5 above there are dangerous permissions included which are used by malware applications to

do their malicious activity. For example the android. permission. RECEIVE_BOOT_COMPLETED and

android.permission.CALL_PHONE are some of the permissions which are included during this experiment and

they are requested in higher proportion than their benign counterparts. Thus they can signify the property of

malware applications when these permissions are included in our permission combinations. The performance of

the machine learning classification models in terms of their True Positive Rate (TPR) and True Negative Rate

are also shown in Table 6.

Table 6: Permission combination based classifier results for experiment 2
Algorithm Correctly classified Incorrectly classified TPR TNR Confusion matrix

J48

234 / 91.05% 23 / 8.95% 0.49 0.98 m n <- - - classified as

18 19 m=malware

4 216 n=normal

Randomforest

236 / 91.83% 21 / 8.17% 0.57 0.98 m n <- - - classified as
21 16 m=malware

 5 215 n=normal

Naïve Bayes

231 / 89.88% 26 / 10.12% 0.54 0.96 m n <- - - classified as

20 17 m=malware
9 211 n=normal

BayesNet 231 / 89.88% 26 / 10.12% 0.54 0.96 m n <- - - classified as

20 17 m=malware
9 211 n=normal

In our third experiment we have selected minimum support value of 0.03 and minimum threshold value of 0.10

and Table 7 shows the permission combinations generated by using experiment 3. The results obtained for

experiment 3 are shown in Table 8.

Table 7: Permission combinations generated using experiment 3
No Generated permission combinations

1 [android.permission.CALL_PHONE, android.permission.INTERNET, android.permission.READ_CONTACTS,

android.permission.READ_PHONE_STATE, android.permission.READ_SMS, android.permission.SEND_SMS,
android.permission.WRITE_EXTERNAL_STORAGE]

2 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET,

android.permission.READ_PHONE_STATE, android.permission.READ_SMS, android.permission.RECEIVE_SMS,

android.permission.SEND_SMS, android.permission.WRITE_SMS]

3 [android.permission.ACCESS_COARSE_LOCATION, android.permission.ACCESS_FINE_LOCATION,

android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.READ_SMS,

android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE]

4 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET,
android.permission.READ_CONTACTS, android.permission.READ_PHONE_STATE, android.permission.READ_SMS,

android.permission.RECEIVE_SMS, android.permission.SEND_SMS]

5 [android.permission.INTERNET, android.permission.READ_CONTACTS, android.permission.READ_PHONE_STATE,
android.permission.READ_SMS, android.permission.SEND_SMS, android.permission.WRITE_EXTERNAL_STORAGE,

com.android.launcher.permission.INSTALL_SHORTCUT]

6 [android.permission.ACCESS_NETWORK_STATE, android.permission.INTERNET,

android.permission.READ_PHONE_STATE, android.permission.READ_SMS,
android.permission.RECEIVE_BOOT_COMPLETED, android.permission.RECEIVE_SMS,

android.permission.SEND_SMS]

7 [android.permission.ACCESS_NETWORK_STATE, android.permission.ACCESS_WIFI_STATE,
android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.READ_SMS,

android.permission.RECEIVE_SMS, android.permission.SEND_SMS]

8 [android.permission.ACCESS_COARSE_LOCATION, android.permission.ACCESS_FINE_LOCATION,
android.permission.INTERNET, android.permission.READ_PHONE_STATE,

com.android.browser.permission.READ_HISTORY_BOOKMARKS,

com.android.browser.permission.WRITE_HISTORY_BOOKMARKS,
com.android.launcher.permission.INSTALL_SHORTCUT]

9 [android.permission.INTERNET, android.permission.READ_PHONE_STATE,

com.android.launcher.permission.INSTALL_SHORTCUT, com.android.launcher.permission.READ_SETTINGS,

com.android.launcher.permission.UNINSTALL_SHORTCUT, com.htc.launcher.permission.READ_SETTINGS,
com.motorola.launcher.permission.INSTALL_SHORTCUT]

10 [android.permission.INTERNET, android.permission.READ_CONTACTS, android.permission.READ_PHONE_STATE,

android.permission.SEND_SMS, android.permission.SET_WALLPAPER,

Design and Implementation of Lightweight Security Auditing Tool for Android Smart Mobile Phone

DOI: 10.9790/0661-1806064656 www.iosrjournals.org 52 | Page

android.permission.WRITE_EXTERNAL_STORAGE, com.android.launcher.permission.INSTALL_SHORTCUT]

11 [android.permission.CALL_PHONE, android.permission.INTERNET, android.permission.READ_CONTACTS,

android.permission.READ_PHONE_STATE, android.permission.READ_SMS, android.permission.SEND_SMS,

android.permission.WRITE_CONTACTS]

12 [android.permission.INTERNET, android.permission.READ_PHONE_STATE, android.permission.READ_SMS,
android.permission.SEND_SMS, android.permission.SET_WALLPAPER,

android.permission.WRITE_EXTERNAL_STORAGE, com.android.launcher.permission.INSTALL_SHORTCUT]

13 [com.android.launcher.permission.INSTALL_SHORTCUT, com.android.launcher.permission.READ_SETTINGS,
com.android.launcher.permission.UNINSTALL_SHORTCUT, com.lge.launcher.permission.INSTALL_SHORTCUT,

com.lge.launcher.permission.READ_SETTINGS, com.motorola.dlauncher.permission.INSTALL_SHORTCUT,

com.motorola.dlauncher.permission.READ_SETTINGS]

The results of the classifiers for experiment 3 are shown in Table 8. The experimental result shows that

J48 classifier achieves 93.39%accuracy rate, the Random forest achieves 94.94%accuracy rate, the Naïve Bayes

achieves 91.05%accuracy rate and the BayesNet classifier achieves 91.44% accuracy rate. From the table we

can see that we have achieved good accuracy for each of the classifiers where Random forest being the most

accurate one with almost 95% detection accuracy. The increase in detection rate is due to the inclusion of

permission combinations which can identify malwares more specifically. If we see experiment 1 and experiment

2 there is no third party permissions included but when analyzing some of the malware families manually we

have seen that the third party permissions have their own value to identify malware applications. For example

one of the sample (SHA1:af140ab1gd04bd9e52d8c5f2ff6440f3l9ebc8qr) malware has android. permission.

ACCESS_ NETWORK_STATE, android. permission. INTERNET, android. permission.

READ_PHONE_STATE and android. permission. WRITE_EXTERNAL_STORAGE from the default android

permissions but it also includes excessive amount of third party permissions. Thus if we include third party

permissions we can increase the detection rate of the classifier and the true negative and true positive rate. We

have used the permission combinations generated in this experiment for our final evaluation of the proposed

system.

Table 8: Permission combination based classifier results for experiment 3
Algorithm Correctly classified Incorrectly Classified TPR TNR Confusion matrix

J48 240 / 93.39%

17/ 6.61% 0.62 0.99 m n <- - - classified as
23 14 m=malware

3 217 n=normal

Randomforest

244 / 94.94%

13 / 5.06% 0.73 0.99 m n <- - - classified as

27 10 m=malware
3 217 n=normal

Naïve Bayes 234 / 91.05%

23 / 8.95% 0.57 0.97 m n <- - - classified as

21 16 m=malware
7 213 n=normal

BayesNet 235/ 91.44%

22 / 8.56% 0.54 0.98 m n <- - - classified as

20 17 m=malware

52 15 n=normal

3.2 Analyzing the Intent Information

Table 9: Top 10 Intents used by both benign and malware applications
Benign applications Malware applications

android.intent.action.MAIN 99% android.intent.action.MAIN 95%

android.intent.action.BOOT_COMPLETED 20% android.intent.action.BOOT_COMPLETED 40%

android.intent.action.VIEW 24% android.intent.action.PHONE_STATE 10%

android.intent.action.PACKAGE_ADDED 9% android.intent.action.USER_PRESENT 6%

android.intent.action.SEARCH 8% android.intent.action.NEW_OUTGOING_CALL 5%

android.intent.action.PACKAGE_REMOVED 7% android.intent.action.SIG_STR 4%

android.intent.action.SEND 7% android.intent.action.VIEW 3%

android.intent.action.PACKAGE_REPLACED 7% android.intent.action.PACKAGE_ADDED 3%

android.intent.action.PHONE_STATE 4% android.intent.action.SET_WALLPAPER 2%

android.intent.action.USER_PRESENT 3% android.intent.action.PACKAGE_REMOVED 2%

From Table 9 above we can see that some of the intents are used in higher percentage than their benign

counterparts. The intent action android. intent. action. BOOT_COMPLETED is used two times more in

malware applications than benign applications. The android. intent. action. PHONE_STATE and android. intent.

action. USER_ PRESENT are also used in higher percentage value in malware than benign applications. In this

paper we have followed the same approach used for the permission feature analysis. Thus we have selected the

most frequently used intent action combinations in malware datasets to detect malicious android applications.

We have used the same Apriori algorithm to generate the most repeatedly used intent action combinations in

Design and Implementation of Lightweight Security Auditing Tool for Android Smart Mobile Phone

DOI: 10.9790/0661-1806064656 www.iosrjournals.org 53 | Page

both datasets and then we find for an interesting combination by using the threshold value for difference. The

most commonly used intent action combinations in malware datasets are shown in Table 10.

Table 10: Intent action combinations generated
No Generated Intent action combinations

1 android.intent.action.ACTION_POWER_CONNECTED, android.intent.action.BOOT_COMPLETED,
android.intent.action.INPUT_METHOD_CHANGED, android.intent.action.UMS_CONNECTED,

android.intent.action.UMS_DISCONNECTED

2 android.intent.action.BOOT_COMPLETED, android.intent.action.DATE_CHANGED, android.intent.action.MAIN,

android.intent.action.NEW_OUTGOING_CALL, android.intent.action.PHONE_STATE

3 android.intent.action.BOOT_COMPLETED, android.intent.action.MAIN,

android.intent.action.NEW_OUTGOING_CALL, android.intent.action.PHONE_STATE,

android.intent.action.USER_PRESENT

4 android.intent.action.BOOT_COMPLETED, android.intent.action.INPUT_METHOD_CHANGED,

android.intent.action.UMS_CONNECTED, android.intent.action.UMS_DISCONNECTED,

android.intent.action.USER_PRESENT

5 android.intent.action.ACTION_POWER_CONNECTED, android.intent.action.BOOT_COMPLETED,
android.intent.action.INPUT_METHOD_CHANGED, android.intent.action.UMS_DISCONNECTED,

android.intent.action.USER_PRESENT

6 android.intent.action.ACTION_POWER_CONNECTED, android.intent.action.BOOT_COMPLETED,

android.intent.action.UMS_CONNECTED, android.intent.action.UMS_DISCONNECTED,

android.intent.action.USER_PRESENT

7 android.intent.action.BATTERY_CHANGED, android.intent.action.BOOT_COMPLETED, android.intent.action.MAIN,

android.intent.action.PHONE_STATE, android.intent.action.USER_PRESENT

During experimental analysis of the Intent actions we use the same threshold values used in experiment

3 for both minimum support value and difference threshold value. The best detection accuracy was achieved

when we use the threshold values used in experiment 3. By including the intent actions generated above we can

achieve a better detection rate for the classifiers. The experimental result shows that J48 classifier achieves

93.77%accuracy rate, the Random forest achieves 96.50%accuracy rate, the Naïve Bayes achieves

91.83%accuracy rate and the BayesNet classifier achieves 91.44%accuracy rate. As we can see from Table 11

we have achieved almost 97% accuracy using the Random forest classifier and we can identify most of the

malware instances except seven of them. To identify the malware instances which cannot be detected using

either their permission combinations or intent actions we analyze their network characteristics.

Table 11: Classifier results using permission and intent action combinations
Algorithm Correctly

classified

Incorrectly

Classified

TPR TNR Confusion matrix

J48 241 / 93.77%

16/ 6.23% 0.68 0.98 m n <- - - classified as
25 12 m=malware

4 216 n=normal

Randomforest 248 / 96.50%

9 / 3.50% 0.81 0.99 m n <- - - classified as

30 7 m=malware

2 218 n=normal

Naïve Bayes 236 / 91.83%

21 / 8.17% 0.59 0.97 m n <- - - classified as

22 15 m=malware

6 214 n=normal

BayesNet 235/ 91.44%

22 / 8.56% 0.54 0.98 m n <- - - classified as
20 17 m=malware

5 215 n=normal

3.3 Analyzing the network behavior of Apps

We have collected network features that can best represent the behavior of android applications by using APIs

provided by Android SDK. Below is a list of the collected features:

 Average number of sent\received bytes and average increments in their values: Since malicious applications

have a background service that sends and receives data without the user intention they have significant

difference with their benign counterparts.

 Application state: to check whether the application is running in foreground or background. Most of the

time malware applications behave to run in background and send sensitive user information to remote

server.

 Average number of sent\received packets and average increments in their values: one of the most

characteristics of malwares of android is that they steal user information and send it to a backend server.

Therefore the malicious transfer of data with user information included will have distinguishable size from

the other packet sizes originating from benign applications. To analyze the network behavior of the apps we

monitor and collect the network features listed when the application is running on the device for 15 up to 20

minutes.

Design and Implementation of Lightweight Security Auditing Tool for Android Smart Mobile Phone

DOI: 10.9790/0661-1806064656 www.iosrjournals.org 54 | Page

The ADB Monkey tool is used to interact with the applications during the experiment. The Monkey tool

has no actual difference compared to human interaction to activate malicious activity of an application. To save

resource on the device we want to analyze the network behavior of applications which use the internet.

Therefore we have analyzed the network behavior of applications which request the android. permission.

INTERNET permission in their manifest file and we also monitor applications which do not request any

permission at all since such applications will use zero permissions flaws to use the internet permission provided

for other applications. To analyze the effectiveness of the network behavior we run 100 malware and 400 benign

applications on the device and collect the network features using the API provided by the Android SDK when

each of these applications was run. Then we train the machine learning algorithms using the extracted network

features. Then we use 60 malware and 200 benign applications to evaluate the machine learning algorithms that

we train before. The results of the evaluation are shown in Table 12. The experimental result shows that J48

classifier achieves 81.54%accuracy rate, the Random forest achieves 86.15%accuracy rate, the Naïve Bayes

achieves 72.31%accuracy rate and the BayesNet classifier achieves 77.69%accuracy rate.

Table 12: Classifier results for network behavior analysis
Algorithm Correctly

classified

Incorrectly

classified

TPR TNR Confusion

Matrix

J48 212/ 81.54% 35/ 18.46% 0.65 0.865 m n <- - - classified as

39 21 m=malware

27 173 n=normal

Randomforest 224/86.15% 36/13.85% 0.73 0.90 m n <- - - classified as
44 16 m=malware

20 180 n=normal

Naïve Bayes 188/72.31% 72/27.69% 0.52 0.79 m n <- - - classified as
31 29 m=malware

43 157 n=normal

BayesNet 202/77.69%

58/22.31%

0.58 0.84 m n <- - - classified as

35 25 m=malware
33 167 n=normal

3.4 Evaluation of Proposed System using Combined Feature Set

In this section we will evaluate the proposed system using the collected feature sets which are analyzed

individually in the previous sections. During this experimental analysis our dataset consists of all the features

including the permission combinations, the intent information and the network behavior of applications. We

have randomly selected 1557 benign applications and 154 malware applications to train the classifiers and we

use 669 benign and 65 malware applications to test the trained model classifiers. We have monitored the

combined features when the application was running on the Android device. The classifier results obtained are

shown in Table 13.The experimental result shows that J48 classifier achieves 94.96%accuracy rate, the Random

forest achieves 96.73%accuracy rate, the Naïve Bayes achieves 92.37%accuracy rate and the BayesNet

classifier achieves 94.14%accuracy rate.

Table 13: Classifier results for the combined feature set
Algorithm Correctly

classified

Incorrectly

classified

TPR TNR Confusion

Matrix

J48 697/ 94.96% 37/ 5.04% 0.83 0.96 m n <- - - classified as

54 11 m=malware

26 643 n=normal

Randomforest 710/96.73% 24/3.27% 0.89 0.97 m n <- - - classified as
58 7 m=malware

17 652 n=normal

Naïve Bayes 678/92.37% 56/7.63% 0.72 0.94 m n <- - - classified as
47 18 m=malware

38 631 n=normal

BayesNet 691/94.14% 43/5.86% 0.80 0.96 m n <- - - classified as

52 13 m=malware

30 639 n=normal

3.5 Performance Overhead Analysis

 The main goal of our paper is to implement a lightweight security auditing tool for android devices.

Thus our proposed solution should not impact the device such that the user is aware of such performance

degradations. To measure the performance overhead of the solution we use the Task manager application and

we measure the CPU, memory consumption as well as the Battery exhaustion period with and without running

the proposed system. We use Samsung GT-S5300, with OS Android Gingerbread version 2.3.6, and Linux

kernel version 2.6.35.7 to perform the performance analysis. The service running at background and collecting

Design and Implementation of Lightweight Security Auditing Tool for Android Smart Mobile Phone

DOI: 10.9790/0661-1806064656 www.iosrjournals.org 55 | Page

the features periodically requires an average of 3.7-5.6% of CPU overhead and of 3-4% of RAM space. The

device which was used during our performance overhead analysis has a total of 289 MB of RAM space. The

effect of our proposed solution on the battery is analyzed by comparing the battery level difference with and

without running the periodic service using the battery monitor of Android settings. The analysis result shows

that only 2% of battery level degradation with measurement interval of 20 minutes. During our battery level

measurement the discharge rate of the battery was bad that is why it discharges faster.

IV. Conclusion and Recommendations
Today smart phones are becoming more popular and cheaper and there are different smartphone

manufacturers and users of smartphones have increased so greatly. At the same time, attacks for smartphones

become increasingly dangerous since they contain personal information including digital images, personal

address book and personal documents and performing telephony services such as sending SMS messages to

premium rate numbers have economic benefit for attackers. Recently, Android is the most popular smartphone

operating system, which is free, open source, and based on embedded Linux. Android platform provides a lot of

easily used programming interfaces. Currently, how to detect malware and prevent Android devices from being

attacked becomes an area of research. Traditional malware detection methods proposed based on PC

architecture is not very applicable to lower computing capability and power-limited smartphones. Thus a

lightweight malware detection mechanism suitable for smartphones is desirable.

In this paper we design and implement a lightweight security auditing tool for android devices. The

proposed system is developed using the APIs provided by the android SDK. It collects features from the

Android system which are accessible at the application level and can best describe the behavior of the system

and newly installed applications and uses machine learning algorithms for detection of malicious activities. Our

experimental results indicate that our developed system has better accuracy and low rate of false positive and

false negative using the features collected at the application level: permission combinations used by the

application, intent actions used by applications for their activation and the network behavior of the applications.

From the experiments we realize that Android permission combination analysis, network traffic monitoring and

the intent information analysis can provide effective method to determine the behavior of malicious activities on

android applications.

Compared to Andromaly [1], our work uses a smaller number of features, and has been tested on real

malware, and extract additional features which best describe the android malware and design new method of

monitoring in some features which are also used in [1], and shows better performance in terms of detection.

After the learning phase, the false positive rate of our work is 0.01, whereas that of [1] is 0.12. The detection

rate of our proposed system is 96% only using permission feature, while that of [1] is 86%. As a future work,

adding more features which can increase the detection accuracy of our proposed system and analyzing the

applications which are not correctly classified to minimize the number of false positives and false negatives.

When we monitor features we have to take into account that as we monitor more features we are consuming

high amount of resources from the device.

Acknowledgment
This research would not have been possible without the help and assistance of many persons. First I

would like to express my gratitude to my advisory Dr. Kinde Anlay for his guidance and support throughout my

work. I am also thankful to my colleagues TeklayGebremichael, SalimNigussie and Abdilbasit Hamid who

provided great support and ideas during the research work. I also want to thank for the financial and material

support I received from Jimma University.

References
[1]. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weisee, Y. (2012)”Andromaly”: a behavioral malware detection framework for

android devices Journal Intelligent Systems, 2012.

[2]. Over 1 billion Android-based smart phones to ship in 2017. Canalys, http://www.canalys.com/newsroom/over-1-billion-android-

based-smart-phones-ship-2017Feb.2013.
[3]. Ramon Llamas, Ryan Reith, and Michael Shirer. Apple Cedes Market Share in Smartphone Operating System Market as Android

Surges and Windows Phone Gains, According to IDC. http://www.idc.com/getdoc.jsp?containerId=prUS24257413, Jul. 2013.

[4]. Kindsight Security Labs Malware Report - Q2 2013. Alcatel-Lucent, http://www.alcatel-lucent.com/solutions/kindsight-
security.Access date: Jul.2013.

[5]. FortiGuard Midyear Threat Report.Fortinet,http://www.fortinet.com/resource_center/whitepapers/quarterly-threat-landscape-report-

q213.html.Access date: Oct. 2013.
[6]. Third Annual Mobile Threats Report. Juniper Networks, http://newsroom.juniper.net/press-releases/juniper-networks-finds-mobile-

threats-continue-ram-nyse-jnpr-1029552.Access date: Dec. 2013.

[7]. TrendLabs 2Q 2013 Security Roundup. Trend Micro,http://www.trendmicro.com/cloud-content/us/pdfs/security-
intelligence/reports/rpt-2q-2013-trendlabs-security-roundup.pdf.Access date: Mar. 2013.

[8]. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S. Google Android: A State of the Art Review of Security Mechanisms,

Nov. 2009.

http://newsroom.juniper.net/press-releases/juniper-networks-finds-mobile-threats-continue-ram-nyse-jnpr-1029552
http://newsroom.juniper.net/press-releases/juniper-networks-finds-mobile-threats-continue-ram-nyse-jnpr-1029552
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-2q-2013-trendlabs-security-roundup.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-2q-2013-trendlabs-security-roundup.pdf

Design and Implementation of Lightweight Security Auditing Tool for Android Smart Mobile Phone

DOI: 10.9790/0661-1806064656 www.iosrjournals.org 56 | Page

[9]. EranKalige and Darrel Burkey. A Case Study of Eurograbber: How 36 Million Euros was Stolen via Malware, Dec. 2012.

[10]. Christina Warren. Google Play Hits 1 Million Apps. http://mashable.com/2013/07/24/google-play-1-million,Access date: Jun.2013.

[11]. Etienne Payet and FaustoSpoto.Static analysis of Android programs. Information and Software Technology, Oct. 2012.
[12]. Xuxian Jiang. An Evaluation of the Application (”App”) Verification Service in Android 4.2.

http://www.cs.ncsu.edu/faculty/jiang/appverify, Access date: Feb. 2013.

[13]. Jon Oberheide and Charlie Miller.Dissecting “The Android Bouncer”, Oct.2012.
[14]. Thomas Blasing, Leonid Batyuk, Aubrey-Derrick Schmidt, SeyitAhmetCamtepe, and SahinAlbayrak.An Android Application

Sandbox System for Suspicious Software Detection.InProceedings of the 5th International Conference on Malicious and Unwanted

Software (MALWARE), Oct. 2010.
[15]. Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro.A System Call-Centric Analysis and Stimulation Technique to

Automatically Reconstruct Android Malware Behaviors.In Proceedings of the 6th European Workshop on System Security

(EUROSEC), Apr. 2013.
[16]. William Enck, Peter Gilbert, Byung-GonChunn, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.TaintDroid:

An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones. In Proceedings of the 9th USENIX

Symposium on Operating Systems Design and Implementation (OSDI), Oct. 2010.
[17]. VaibhavRastogi, Yan Chen, and William Enck.AppsPlayground: Automatic Security Analysis of Smartphone Applications. In

Proceedings of the 3rd ACM conference on Data and Application Security and Privacy (CODASPY), Feb. 2013.

[18]. Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and Johannes Hoffmann. Mobile-Sandbox: Having a
Deeper Look into Android Applications. In Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC), Mar.

2013.

[19]. LokKwong Yan and Heng Yin.DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android
Malware Analysis. In Proceedings of the 21st USENIX Security Symposium, Aug. 2012.

[20]. W. Enck, M. Ongtang, and P. McDaniel.On LightweightMobile Phone Application Certification.In Proceedings ofthe 16th ACM

Conference on Computer and Communications Security, CCS ’09, 2009.
[21]. Netqin, mobile security service provider. Internet: http://www.netqin.com/en/, Access date: Dec. 2013.

[22]. Steamy Window Malware. Internet: http://www.netqin.com/en/, Access date: Dec. 2013.

http://www.netqin.com/en/
http://www.netqin.com/en/

