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 Abstract : This paper proposes an approach using kernel methods to gene function prediction of combining 

many types of data to get a better performance than the prediction performance of each individual type of data.  

Some experiments with microarray data and sub-cellular localization data have been implemented.  The results 

show that when we predict some biological process the combination of different types of data using kernels 

predicts with a better performance than each individual type of data and microarray data with fast fourier 

transformation gives better prediction performance than original microarray data in some cases. 
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I. Introduction 
The key task of functional genomics is the determination of biological function for genes and gene 

products from genomic information. As the amount of genomic data grows steadily and is more and more 

available, computational functional genomics becomes both possible and necessary. Computational predictions 

can make experimental determination easier. In machine-learning community, the prediction task belongs to a 

general problem called classification, which is provided efficient methods to get a high performance. Therefore, 

machine-learning methods can be considered as one way to do predictions. There have been some works on 

gene function prediction basing on some machine learning methods like decision trees and Bayes networks.  

Recently, the existence of kernel methods has resulted in a large number of its application in computational 

biology in general, and functional gene prediction in particular. This is due to a kernel method, called Support 

vector machine (SVM). SVM has been known to behave well with noisy and multi-dimensional data, which are 

the typical properties of biological data. So, kernel methods like SVMs are a promising approach to gene 

function prediction. Moreover, with the fact that the various kinds of genomic data are available and the fact that 

kernel methods seems to be a natural way for combining different types of data since they map all data from 

their own space into a common representation as kernel matrix of real numbers, our approach to this problem is 

combining many types of data to get a better performance than the prediction performance of each individual 

type of data. Apart from investigating how to combine types of genomic data, we also try a new kernel for 

microarray data. We will use kernel methods like SVM for this classification problem and curve method.  Some 

experiments with microarray data and sub-cellular localization data have been implemented and we have got 

some rather good results. The gene function prediction problem, here, is predicting some biological processes 

with the annotation of gene ontology. The experiments show that when we predict some biological process by 

using both individual type of data and combination of different types of data, microarray data with fast fourier 

transformation gives better prediction performance than original microarray data in some cases. They also 

illustrate that the combination of different types of data predicts with a little better performance than each 

individual type of data.  The structure of this paper is the following. The part two will present the previous 

approaches to gene function prediction. Part three will present the computational gene function prediction using 

kernel methods. Our experiments and results will be described in the part four. 

 

II. related works 
In this section, we would like to look at the existing works on functional gene prediction. The first step 

in function prediction for a new gene is usually to do a sequence comparison against a database of known 

sequences [1]. Unfortunately, this is sometimes as far as the determination of function goes, and many genes are 

left annotated as “putative” or “potential” without any indication of where that information came from. If the 

original sequence was annotated wrongly, then this error may be propagated through the databases though future 

gene annotation by sequence comparisons. [2] review-ed the process of computational prediction of function 

from sequence at that time, in all the different stages, from studies of nucleotide frequencies and gene finding, to 

proteomics and interdependencies of genes. The following list gives some idea of the range of recent works in 

computational functional genomics.  

 Improved sequence similarity search algorithms [3, 4, 5, 6, 7]. Machine learning, intermediate sequences, 

better indexing schemes and new understanding of the relationship between sequence similarity and 

function can all be used to improve homology searches.  
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 Identification of motifs, alignments, protein fingerprints, profiles and other sequence based features that can 

be used to infer function [8, 9, 10]. Conserved regions of amino acids (motifs), multiple alignments, protein 

fingerprints and profiles can all be used to characterize protein families, which are likely to share common 

function.  

 Sequence comparison to clusters of orthologous proteins can indicate function [11, 12]. Orthologous genes 

are homologous genes that have diverged from each other over time as a consequence of speciation. 

Orthologous genes typically have the same function and so comparison to collections of orthologs can 

indicate function.  

 Microarray expression analysis [13, 14, 15, 16, 17, 18, 19] is one of the most popular methods of functional 

genomics. Analysis of expression data can be used to infer similar functions for genes which show similar 

expression patterns. Most expression analysis uses unsupervised clustering, but other methods have also 

been tried. Rough sets have been used to predict gene function from human expression data using the Gene 

Ontology classification [20] and the Rosetta toolkit. Rosetta generates if-then rules using rough set theory, 

and has been used in several medical applications [21].  

 Computational prediction of protein secondary structure was in [22, 23, 24]. Structure is used as an 

intermediate step to predicting the function (the 3-dimensional structure and shape of a protein is very 

pertinent to its function).  

 Combined approaches were indicated in [25, 26]. Many approaches to functional genomics can now make 

use of several sources of data, including protein interaction data and expression data. [27] used C4.5 from 

the Weka package to predict SWISSPROT “keyword” field for proteins, given data about the taxonomy, 

INTERPRO classification, and PFAM and PROSITE patterns.  

 Naive Bayes, C4.5 and Instance Based Learning were used to predict enzyme classification from sequence 

[28]  

 Several studies have applied machine learning methods to data from biological experiments to infer 

functional similarities among genes or directly predict function for unknown genes [29, 30, 31].  

 Work on ontologies and schemes for defining and representing function [32, 33, 34] is making progress 

towards standardizing and understanding function. Along with the use of computers comes a need to make 

terms and definitions rigorous and well defined. If we are to use computing to determine function then the 

concept of function must be defined first.  The reason that machine learning can be used to predict gene 

functions is that the prediction task belongs to a general problem called classification in machine learning 

community. Our approach concerns to a class of machine learning algorithms called kernel methods. To 

predict functions for unknown genes and gene products, we use computational methods basing on kernel 

methods like support vector machines and basing on diverse large-scale genomic data. In the next part, we 

will show how kernel methods really work in computational gene function prediction. 

 

III. Kernel Based Approach To Computational Gene Function Prediction 
During past 15 years, SVMs [49] have been applied broadly in the field of computational biology, to 

pattern recognition problems including not only functional classification of promoter regions but also other 

problems as protein remote homology detection, microarray gene expression analysis, recognition of translation 

start sites, prediction of protein-protein interaction. There are two reasons causing SVMs have been the state-of-

art machine learning methods in computational biology. First, many biological problems correspond to high-

dimensional, noisy data, to which SVMs are known to behave well compared to other statistical or machine 

learning methods. Second, SVM, one kind of kernel methods, can easily handle non-vector inputs, such as 

variable length sequences or graphs by using knowledge-based kernel functions to map them to a feature space.  

Also, many kernels for different kinds of genomic data are available. First, there are various kinds of string 

kernels for sequence data such as: fisher kernel deriving the feature representation for an SVM classifier from a 

generative model for a protein family; the string kernels basing on spectrum of a sequence for classification of 

protein sequence data; the string kernels basing on the detection of local alignments to compare biological 

sequences; mismatch kernels are suitable for matching discrete objects such as strings and trees (the algorithms 

in [35]); and pairwise kernels comparing two sequences. Second, there is a family of kernel called label 

sequence kernels for graph data.  Third, diffusion kernels are designed for vertices of a graph such as a 

metabolic gene network. Fourth, there is a kernel for protein structure prediction. In addition, [36] introduced 

“convolution kernels”, a framework for handling discrete data structures by kernel methods in which objects are 

decomposed into parts and kernels are defined in term of the (sub) kernels between parts.  Some motif kernels 

basing on a set of motifs on the promoter regions of sequences also were proposed for protein classification.  

The following works will give us some ideas about the recent functional prediction by using kernel methods like 

SVMs.  

 Classification of yeast genes into functional categories [37]. This is the first application of SVMs to 

microarray data including 79 microarray experiments, each measuring the activity of approximately 6000 
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genes. The five functional classes were selected from the MISP yeast genome database. The SVMs using 

either an RBF or third degree polynomial kernel produced the best performance on this task in comparison 

with a collection of traditional machine learning techniques, including Fisher’s linear discriminate, C4.5, 

Parzen windows and MOC1.  

 Functional classification of promoter regions [38]. The functional roles of proteins can be determined by 

analyzing DNA sequence in the upstream of the corresponding gene. This region contains the switching 

mechanism that controls when the gene is turned on or off. The fisher kernel was applied to the problem of 

classifying genes. This work assumes that genes with similar switching mechanism are likely to have 

similar functional roles. This method predicted successfully membership in two groups of co-regulated 

genes in yeast.   

 Prediction of protein function from phylogenetic profiles [39]. The protein function can be determined via 

sequence comparison with other species. A kernel function basing on phylogenetic profiles was used for 

this problem and performed significantly better than using a simple dot product. The phylogenetic profile is 

a bit string representation of a protein, in which each bit corresponds to one species for which the complete 

genome is available. The bit is 1 if the protein has a close homology in that species, and 0 otherwise. So the 

phylogenetic profiles contain the part of the evolution history of a given protein.   

 Recently, integration of different types of genomic data in a single model using learning methods such as 

SVMs and Bayes nets has showed promising improvements in functional gene prediction [40, 41, 42, 43, 

44]. We present here some forms of heterogeneous data combination, using kernel methods like SVMs:  

 [40] combined microarray gene expression data and phylogenetic profiles by summing kernel matrices to 

recognize functional categories of yeast data. They compared three different techniques for combining these 

data: early integration in which the two kinds of data are concatenated; intermediate integration, in which 

two kernels of two kinds of data are computed separately, then added; late integration; in which two SVMs 

are trained separately and their discriminate scores are added. Intermediate integration provides the best 

results.  

 [44] integrated gene expression profiles with prior knowledge of a metabolic network, representing 

pathways of proteins that operate upon one another in the cell. They hypothesize that gene expression 

patterns are more likely to be shared by genes that are close to one another in the metabolic network. Two 

kinds of data are encoded into kernel functions and these functions are combined using canonical 

correlation analysis. An SVM trained from the combined kernel performs significantly better than an SVM 

trained only on expression data.  

 [43] provides a method to integrate heterogeneous genomic data by summing a collection of kernel 

matrices, one per each dataset, similar to the work of [40]. However, in this case, each matrix is weighted 

and the authors demonstrated how to optimize simultaneously the hyperplane selection and the selection of 

kernel weights. They used four types of data: amino acid sequences, hydropathy profiles, gene expression 

data and known protein-protein interaction to solve the problem of predicting membrane proteins. An SVM 

used to train all kinds of data is much better than the SVM trained on any single type of data and better than 

the existing algorithms for membrane protein prediction.  

 

 From the discussion above, kernel methods are really a natural way to combine heterogeneous data 

since they map each kind of data from its own space to a common feature space so different kinds of data easily 

combine to solve a problem. In addition, we can see that kernel methods like SVMs are really promising 

methods for functional gene prediction, especially at the time many different kinds of large-scale genomic data 

and kernels are available and increasing. Therefore, using kernel methods for computational functional gene 

prediction with heterogeneous data is a promising and interesting research direction. 

 

IV. experiment and evaluation 
4.1. Data for experiments 

We used cellular component data or localization data. Each cell contains many compartments, which 

are also called organelles. In each compartment, a cell maintains different concentrations of relevant molecules. 

This way, the compartmentalization allows a cell to perform diverse tasks and chemical reactions that require 

different environments efficiently. Since each type of compartment is devoted to different tasks in the cell, each 

requires a distinct set of proteins to perform the subtasks. In order to save the resources, proteins are specially 

delivered to the organelles that require them. Consequently, many proteins contain the signals that specify their 

destination. These signals can either be entire peptides or characteristic surface patches of a folded protein. 

There are also default destination when the signals are absent: proteins showing no signal stay in cytosol. The 

subcellular localization is obviously closely related to the function of the protein.  The cellular component 

ontology describes this localization data, containing locations, at the levels of subcellular structures and 

macromolecular complexes. Generally, a gene product is located in or is a subcomponent of a particular cellular 
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component. The cellular component ontology includes multi-subunit enzymes and other protein complexes, but 

not individual proteins or nucleic acids. Cellular component also does not include multicellular anatomical 

terms.  The cell is defined in Gene Ontology (GO) as all components within and including the plasma membrane 

and any external encapsulating structures, such as the cell wall and the cell envelope. A cellular component 

should include more than one gene product; complexes of one gene product with a cofactor. All complexes in 

the component ontology should be given parentage under the general term protein complex. As GO cellular 

component terms describe locations where a gene product may act, rather than physical features of proteins or 

RNAs, the terms integral membrane protein and peripheral membrane protein are present only as non-exact 

synonyms. GO distinguishes classes of membrane-related location: extrinsic to membrane; intrinsic to 

membrane. Then each of these terms can have child terms referring to specific membranes. The DAG structure 

is as follows:  

membrane   

[p] intrinsic to membrane   

---[i] anchored to membrane   

[p] extrinsic to membrane  

We also used expression data to perform the experiments we exploited the classic microarray data from 

[45], which included 4 different experiments measuring cell-cycle expression levels in the S. cerevisiae genome: 

alpha-factor based synchronization, cdc15-based synchronization, cdc28-based synchronization, elutrition-based 

synchronization. Gene expression data usually come in the form of a matrix of expression levels for a number of 

genes in a range of cell samples. The expression matrix from [45] is available on line at http://cellcycle-

www.stanford.edu/. We took only two different experiments cdc15 and cdc28 for experiments and forms them 

into two different datasets. There are two essential facts to the proper analysis of microarray data. First, the 

background noise is present due to the properties of measurements. If the mean background is estimated and 

substracted, the resulting expression levels may become negative for some genes. Although true expression 

levels cannot be negative, statistical work seems to suggest that such values should not be censored by setting 

them to zero or a small positive value; instead, variance-stabilizing transformations may be used. Second, due to 

varying amounts of mRNA per cell, the results obtained with the different microarrays or for different samples 

are not likely to be on the same scale. Normalization should be therefore applied. With the microarray data from 

[45], the data set is quite large and a lot of the information corresponds to genes that do not show any interesting 

changes during the experiment. To make it easier to find the interesting genes, the first thing to do is to reduce 

the size of the data set by removing genes with expression profiles that do not show anything of interest. We use 

a number of techniques to reduce the original expression profiles to some subset that contains the most 

significant genes with two following steps.  The first step is inferring the missing values in expression matrix 

where the expression level is marked as unknown (NaN). Our approach is using an interpolation method but 

only if a NaN is surrounded by not NaNs values and deleting the rows with more than two NaNs maintaining 

the consistency of the dataset. We tried several methods, for each of them the accuracy is tested by removing 

one known value, doing interpolation with this method and then comparing the new value to the original one. 

The linear interpolation method got the best result, so we chose the linear interpolation for this step.  The second 

step is smoothing the cdc15 and cdc28 dataset. We doubled the number of points in each row of expression 

values in each dataset. Similar to the first step, we need to identify the parameters for smoothing method. They 

were selected by testing the correlation between the expression matrix of cdc15 and that of cdc28 datasets. Now, 

the datasets are ready for experiments. In addition, with the motivation of seeing how similar the genes are 

basing on their expression data to cluster, we also do fast fourier transformation (FFT) analysis on this kind of 

dataset. We can do FFT on this kind of data since this data is cell-cycle expression levels, as time series data, 

which has a periodical pattern. In FFT analysis, each signal pattern is composed by sinusoid signals, each at a 

different frequency. After FFT, a signal related to expression data of a gene is transformed to a number of 

frequencies with their magnitude (amplitude) in a frequency spectrum that related to the sinusoid component of 

the original signal. We make an assumption that if two genes have a similar pattern in spectrum, we consider 

them having similar expression pattern, so they may have the same function. The FFT extends the definition of 

similarity of expression pattern to the similarity of frequency spectrum pattern of two genes.   We do the FFT 

analysis to cdc15 and cdc28 datasets during the process (discussed above) of finding the subset of significant 

genes as the following.  After the interpolation step, data is transformed using FFT, then the data is smoothed 

using the same smoothing technique as we described with original expression values.  The two new datasets are 

called fft15 and fft28. To compare the strength of correlation between the two new data with the original data, 

we need to do inverse FFT with the new data to get the compatible data to the original one. We tested the 

correlation between cdc15 and cdc28 data by applying some kernel functions as linear, RBF and polynomials. 

The results show that with FFT analysis, two datasets are more correlated than the original ones and the 

Gaussian distribution (i.e. RBF kernel function) give the best correlation. Therefore, we will use both the 

datasets with FFT and the original ones to do our experiments and compare the results.   
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4.2 Kernels for datasets  

With the expression data, we will apply some simple kernels: polynomial with some degree, linear, and 

RBF kernels for the prediction task. With the data of cellular components annotation, we use the kernel that 

measures the similarity of the GO annotation of a pair of proteins [46]. The feature space for the GO kernel is a 

vector space with one component for each node in the directed acyclic graph in which GO annotations are 

represented. Let the annotations (nodes in the GO graph) that are assigned to protein p be denoted by Lp.  Note 

that, in GO, a single protein can be assigned several annotations. A component of the vector corresponding to 

node a is nonzero if a or a parent of a is in Lp.  We consider two ways to define the dot product in this space. 

When the non-zero components are set equal to 1, then when each protein has a single annotation, and the 

annotations are on a tree, the dot product between two proteins is the height of the lowest common ancestor of 

the two nodes. An alternative approach assigns annotation a a score of − log p(a), where p(a) is the fraction of 

proteins that have annotation a. We then score the similarity of annotations a, a’ as  

max𝑎"∊(𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟  𝑎 ∩𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟   𝑎 ′  ) −log(𝑝(𝑎"))  . In a tree topology, this score is the similarity between the 

deepest common ancestor of a and a’, because the node frequencies are decreasing along a path from the root to 

any node. The score is a dot product with respect to the infinity norm on the annotation vector space. This also 

holds when the proteins have more than one annotation and the similarity between their annotations is defined as 

the maximum similarity between any pair of annotations. When one of the proteins has an unknown GO 

annotation, the kernel value is set to 0. Since GO is a DAG, the matrix which is called pseudo-kernel we get is 

not positive semidefinite.  Therefore, to get a valid kernel, an empirical kernel map is needed to perform.  That 

means, the rows of the square pseudo-kernel are considered as feature vectors, and then we simply compute a 

scalar product kernel on these vectors. The result kernel is the GO kernel we need for experiments.  

 

4.3 Yeast biological process prediction by combining heterogeneous data  

4.3.1 Creating biological process labels for yeast genes  

Our problem is to predict the biological process for each yeast gene, so the first work is labeling each 

ORF basing on the biological process GO terms. After labeling, we have a matrix that each row is an ORF and 

each column is a GO term related to the corresponding biological process. The number of rows is the number of 

ORFs, i.e, more than six thousands, and the number of columns is the number of biological processes, i.e more 

than nine thousands processes. The entries of this matrix is the labels of ORFs, belong to {-1, 0, 1} for negative, 

unknown and positive. The entries are defined as the followings. For each GO term $T$, we partition the list of 

yeast genes into three sets.  First, all genes that are annotated with $T$ are labeled as “positive”.  As mentioned 

above, the process terms are represented as nodes in a DAG so $T$ is a node in the DAG. Next, we traverse 

from $T$ along all paths to the root of the Gene Ontology graph.  At each GO term along this path, we look for 

genes that are assigned to that node and not to any of that node's children.  We consider that such genes might 

be properly assigned to $T$, and so we label those genes as ``uncertain'' or “unknown”.  Note that, according to 

this rule, completely unannotated genes receive a label of ``unknown'' because they are   assigned only to the 

root of the GO graph.  Finally, all remaining genes are labeled as ``negative.''  

 

4.3.2 Experiments and results  

We perform the experiments on some biological processes. The datasets used for these experiments are 

cdc15 and cdc28 microarray data and the localization data. We do experiments on binary classification so we 

choose some certain biological processes among more than 10000 processes: reproduction (GO: 0000003), 

unknown biological process (GO: 0000004), organic acid metabolism (GO: 0006082), nucleobase, nucleoside, 

nucleotide, and nucleic acid metabolism (GO: 0006139). For the prediction of each process A, we create 

corresponding datasets including cdc28 microarray data, cdc28 with FFT (denoted as fft28), cdc15 microarray 

data, cdc15 with FFT (denoted as fft15), and localization data.  

Training each individual dataset: First, each individual dataset is trained with a soft-margin SVM using 

some kernels. When the dataset is a set of vectors, it is often effective linearly scale each attribute to zero mean 

and unit variance, and then apply the Gaussian RBF kernel or polynomial kernel in [47]. The main advantage of 

normalization to avoid attributes in large numeric ranges dominating those in smaller ranges.  To use a basic 

SVM for binary classification, two kinds of parameters have to be determined: the regularization parameter C of 

the SVM and the kernel and its parameters. In our experiments, the parameter setting for microarray data is 

performed by training SVM using 3-fold cross validation method with 3 kinds of kernels RBF, linear and 

polynomial. For localization data, the kernel is fixed and the parameter setting for C use 3-fold cross validation. 

The performance of SVM classifiers is measured by Area under Curve in [48]. After setting all parameters, 

microarray datasets are normalized, then cdc28 is trained with polynomial kernel degree 3 and the parameter 

C=500, fft28 with RBF sigma=5 and C=500. Localization data is trained with the kernel described in section 3.3 

and C=500.  
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Combination strategy: We have tried to combine two types of data:  microarray data (denoted as M) and 

localization data (denoted as L) using a linear combination. The formula for this combination uses a parameter 

λ, which represents the percentage of each type of data in the combined kernel.   Kcombination=λ*KM + (1- λ)*KL  

with the value of λ in a range [0,1] where KM is the kernel matrix of microarray data and KL is the kernel matrix 

of localization data, Kcombination is the combination kernel matrix. If λ=0 the combination kernel matrix is equal to 

the KL, if λ=1 the combination kernel matrix is equal to the KM. So, with λ=0 or λ=1, the combination becomes 

the case of individual dataset.  

Comparing the results of training each dataset to those of combination: We did the experiments with four 

biological processes (BPs) and the prediction performance of three BPs with data combination is better than 

performance of each individual data. The following tables show the performance of these predictions with the 

corresponding BPs.  

 

Reproduction prediction C=500 (Pnum=121,Nnum=2994) 
Organic acid metabolism prediction C=500     (Pnum=233, 

Nnum=2875) 

λ 

λ*K
Mcdc28

 

+ (1- λ) *K
L

 

λ*K
Mfft28

 

+ (1- λ)*K
L

 
λ 

λ*K
Mcdc28

 

+ (1- λ)*K
L

 

λ*K
Mfft28

 

+ (1- λ)*K
L

 

0 0.8882 0.8882 0 0.7608 0.8608 

0.01 0.8973 0.8269 0.1 0.8457 0.8398 

0.012 0.8042 0.8339 0.2 0.8446 0.8268 

0.013 0.8167 0.8347 0.3 0.8405 0.8197 

0.014 0.8166 0.8347 0.4 0.8416 0.812 

0.015 0.8242 0.8344 0.5 0.8378 0.8053 

0.016 0.8241 0.8342 0.6 0.8404 0.7988 

0.017 0.8217 0.8342 0.7 0.8402 0.798 

0.02 0.8032 0.828 0.8 0.8344 0.7958 

0.9 0.7512 0.7559 0.9 0.8371 0.7925 

1 0.6787 0.6668 1 0.7711 0.7491 

Unknown biological process prediction C=500 

(Pnum=909,Nnum=3114) 

Nucleobase, nucleoside, nucleotide, and nucleic acid 

metabolism prediction C=500  (Pnum=997, Nnum=2111) 

λ 

λ *K
Mcdc28

 

+ (1- λ) *K
L

 

λ *K
Mfft28

 

+ (1- λ)*K
L

 
λ 

λ *K
Mcdc28

 

+ (1- λ)*K
L

 

λ *K
Mfft28

 

+ (1- λ)*K
L

 

0 0.8406 0.8406 0 0.9107 0.9107 

0.01 0.8420 0.8584 0.1 0.8356 0.8549 

0.1 0.8433 0.8327 0.2 0.8217 0.8494 

0.11 0.8442 0.833 0.3 0.8127 0.8487 

0.12 0.8441 0.8318 0.4 0.808 0.8452 

0.9 0.8264 0.8055 0.5 0.8065 0.8452 

1 0.7372 0.7192 0.6 0.8032 0.8426 

   0.7 0.7991 0.8356 

   0.8 0.7993 0.8307 

   0.9 0.7957 0.8227 

   1 0.6427 0.6349 

 

The results show that three BPs (reproduction, organic acid metabolism, an unknown biological 

process) among four biological processes have the prediction performance of combination better than each 

individual dataset for both two microarray datasets cdc28 and fft28. With the same value of λ, the combination 

of L with Mfft28 give a better performance than the combination of L with Mcdc28 in the case of reproduction 

BP and nucleic acid metabolism BP. Mfft28 gives the better overall result than Mcdc28 in case of unknown BP. 

So it seems that using Mfft28 for prediction is better than Mcdc28 in some cases. These results show that the 

combination giving the better performance is promising. 

 

V. Conclusion 
For future works, we intend to solve any problem related to gene function prediction that may occur 

with our approach, using kernel methods like SVMs and a trend of combination heterogeneous data. We will 

consider all types of genomic data as well as all kinds of specific problems belong to gene function prediction 

such as prediction of specific molecular function.  

We can focus on three directions basing on three aspects related to our approach: gene function 

prediction problem, kernels used for types of genomic data and ways to combine different kernels of 

heterogeneous data. The first one is to use available kernels for different kinds of data, apply some available 

ways to combine them to solve various aspects on gene function prediction. The second one is to design a new 

kernel for a specific type of data, then combine with other types of data to improve the performance of gene 

function prediction problem, which has been solved with previous approaches. The third one is to focus on a 



Kernel methods for gene function prediction 

DOI: 10.9790/0661-180604147154                                       www.iosrjournals.org                                 153 | Page 

new strategy to combine different kernels to improve the performance of existing gene function problem. In this 

direction, we can use available kernels for different types of data. The last direction is any combination of three 

directions above. 
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