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Abstract: This paper proposed a hybrid PSO algorithm that combines the Primal-Dual method with APSO 

algorithm to address the problem of swarm robotics flocking motion. This algorithm combines the explorative 

ability of APSO with the exploitative capacity of the Primal Dual Interior Point Method. We hypothesize that the 

fusion of the two algorithms (APSO and Primal Dual) offers a robust prospect of preventing premature 

convergence of robots, and also make sure that the robots are not stuck in their local minimal. We did a 

comparison of the performances of the total iteration for pdAPSO, PSO, APSO and Primal Dual algorithms as 

the robots flock from the centre of the search space to the various zones (z1, z2, z3, and z4). In three (3) out of 

the four (4) cases, the pdAPSO proves to be more effective for the flocking of the robots than the PSO, APSO 

and Primal Dual algorithms for the fifty (50) simulations that was done. The results of our simulation gives a 

clear evidence of the efficacy of the pdAPSO algorithms. The hybrid algorithm contributed to the field of swarm 

robotics by providing novel algorithm that possess a flocking capability attained under suitable parameter 

values that is relatively robust and produces effective self-organized flocking in constrained environments. 

Keywords: Flocking, Asynchronous Particle Swarm Optimization (A-PSO), Swarm Robots, Interior Point 

Method, Primal-Dual, gbest, and lbest. 

 

I. Introduction 
The Swarm robotics was defined by Sahin [1] as the study of ways through which a vast number of 

simple inexpensive agents can be made to work together to bring about a preferred cooperative behaviour 

through communications at the local neighbourhoods among robots as well as between the robots and their 

surroundings. The attributes of a swarm robotic system includes: huge number of independent robots; ability to 

detect and transfer information from one robot to the other within the same local neighbourhood; they are 

decentralised and independent of global information; and cooperative behavior can be attained via spontaneous 

formation of spatiotemporal structure, and communications among the robots and between the robot and their 

surroundings. Typically, the problem synonym with the field of swarm robotics is managing and directing the 

movement of considerable number of robots to carry out a common mission. This type of task is normally 

impracticable, demanding and laborious for a particular set of robots to accomplish.  

The inspiration of swarm robots is fundamentally drawn from the study of behaviour of animals like 

the flock of birds, herd of cattle, and school of fish. According to [1] and [2], the performance of the swarm at 

the global level will be largely influenced by the performance of the individual agent at the local level. Some of 

the traits of swarm robotics that have been extensively investigated are convergence, foraging [1], pattern 

formation [4], flocking, aggregation and segregation [3], box-pushing [2], cooperative mapping [5], soccer 

tournaments [6], site preparation [7], and sorting [8]. From the list of the various attributes of swarms above, 

flocking is the most attractive; where practical applications in areas such as search and rescue [37], system for 

monitoring behaviour or changing information [38], system for acquiring data which is used for measuring 

physical phenomenon [8], and networks of small low cost sensors [8] can be realized.  

In swarm robotics, the problem of flocking entails directing a set of robots to move to a specific 

direction and converge to a target in an unfamiliar location. The robots that made up the swarm are required to 

accomplish this purpose as they are adjusting to their environments. Researchers have developed a number of 

control algorithms for flocking of swarm robots in the last few years. Reynolds, C.W., [3] was the one of the 

pioneers. He implemented a computer simulation to demonstrate the movement of a flock of birds, known as 

boids. This is based on the principal that the global behaviour of the boids as a whole is a direct outcome of the 

behaviour of every single participant (obeying certain instructions). There are three basic behavioural guidelines 

that every agent must have. They include: separation, cohesion, and alignment. While separation will prevent 

the agents from bumping into one another, cohesion will make the agents to be united, and alignment will cause 

them to move with a collective speed. In progression to Reynolds’ work, e-boids was developed by Ward et al. 

[11] to model the flocking behaviour of shoal of fishes. A down-to-earth flocking model of independent agents 

was developed by Vicsek et al. [4], in which all the agents were assigned an unchanging fixed velocity. Jadbabie 
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et al. [5] went further to postulate hypothetical elucidations on the stated characteristics of the model presented 

by Vicsek. Some other researchers, Yang et al. [6], did a similar work and proposed some rules for flocking in 

an anonymous environment with barriers in which the closest point on the barrier is considered a virtual agent.  

The flocking behavior (in a distributed environment) based on artificial potential field (APF) was then 

investigated by Kim et al [7]. They proposed a group of systematic procedures that can be used to create 

functions in the APF so that the agents in the swarm will not be trapped in the local minima. The focus of all the 

aforementioned research work is based on collision avoidance among the robots without considering the 

flocking. Genetic programming was implemented by Spector et al. [12] in a virtual environment to create 

collective behaviour for agents that hover in the swarm. Dorigo, Maniezzo, and Colorni [13] proposed a novel 

robotic system that is made up of a group of simple mobile robots that are capable of associating and 

disassociating from one other when subjected to changes (in what they are applied to and the environment where 

they operate). A robotic system that models the behaviour of physical ants that have the ability to locate the 

quickest route from one source of food to the subsequent one without any visible sign called pheromone was 

proposed by Payton et al. [14]. They also have the capability to quickly acclimatize to any environment 

variations that may require looking for a new quickest path if they encounter a new obstacle in the old one.  

The challenge with many of the robotic systems mentioned above lies in the fact that they are not fully 

centralized. Moreover, there are there are only a few real-world applications from the flocking system described 

in literature though the theoretical work that have been done on swarm robotic flocking have attained substantial 

success in the past decade. Therefore, is there is the need to develop more swarm robotic flocking techniques 

that will serve as a suitable means to bridge the research gap between theory and practice. 

This paper proposed a hybridized swarm intelligence based algorithm, and a numerical optimization 

algorithm i.e., a hybrid of Primal-Dual Interior-Point method and Asynchronous Particle Swarm Optimization 

(APSO), to attain the best collective performance for considerable volume of swarm robots. The advantage of 

the novel hybrid Primal-Dual-APSO organization architecture is based in the truth that the flocking can be done 

in real time, it is decentralized, and inherently scalable because global communication is irrelevant in this 

matter. Decisions can be made by any of the agent using the local information available to them. The design is 

simple, scalable, adjustable, and has the ability to recover from catastrophic failure without disrupting its 

operations. 

 

II. Problem Statement 
In this paper we assume that our swarm system consists of n entirely independent and identical 

(homogenous) robots. The robots in the swarm are individually designated by R1, R2…Rn and they are 

represented as mobile points in two-dimensional space. The robots are given a neighborhood coordinate 

structure and they have limited capacity to perceive nearby robots. Moreover, the system is decentralized and 

there is no open interaction between the robots. The principal axis which defines the spatial locations of the 

environment is taken as the local axis of each of the robots. In our simulation, we used a point to represent each 

of the robot’s two-dimensional space.  

The velocity of the robot is updated at regular intervals and a maximum velocity is assigned to the 

robots. In addition, the robots flock in real time independently without any influence from other robots in the 

swarm. We are focusing on the convergence of the swarm to a specific point in the search space, and also the 

flocking patterns of the robots in the swarm. The Primal-Dual algorithm will calculate the positions, and 

afterwards, the APSO algorithm will gain control of the flocking movement. The APSO algorithm will guide the 

flocking of the swarm (that comprises of N agents) to converge towards a global minimum and then flock 

around in the coordinate system. The flocking is done in real time during our simulation.  

  

III. Primal-Dual-APSO (pdAPSO) Algorithm for Flocking of Swarm Robots 
The Interior-Point Methods (IPMs) are efficient algorithm for solving nonlinear optimization problems. 

The IPMs having constrains that are active at the current point, are regarded as the most robust algorithms for 

solving large-scale nonlinear optimization problems. Despite its efficiency, the algorithm suffers several 

problems such as how to handle of non-convexity, the procedure for making the barrier constraint up to date is 

cumbersome despite the existence of nonlinearities, and the need to ensure progress toward the solution. 

The primal-dual interior-point (PDIP) algorithm is an excellent example of an algorithm that uses the 

constraint-reduction methods. Mehrotra [18] in his research work developed the Mehrotra’s Predictor-Corrector 

PDIP algorithm, which has been executed in almost all the interior-point software suite for solving both linear 

and convex-conic problems [19]. Wright [23] observed that the primal-dual methods are a new class of interior-

point methods that have find practical application in solving large-scale nonlinear optimization problems. 

Primal-dual methods, contrary to what we have in the traditional primal method, evaluate both the primal 

variables x and dual Lagrange multipliers λ relating to the constraints concurrently. The disconcerted Karush-
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Kuhn-Tucker (KKT) equations below can be solved using the precise primal-dual solution ( , ) at a given 

parameter µ,       

    
 

with the constraint (C(x), λ) ≥ 0. 

 

The Newton’s algorithm and line search approach are employed to recursively solve any primal or 

primal-dual sub-problems for a given µ value according to Boyd and Vandenberghe [20]. Feasibility and 

convergence is enforced in the algorithm by carefully selecting the size of step in the iteration. One of the 

prevalent ways to do this is to appropriately reduce the merit function used in gauging degree of advance to the 

solution. The dual variables of the primal dual can be protected by using Fµ as a function that can incorporate 

the primal and dual variables [24]; and simultaneously measures the harmony between data and the fitting 

model for a particular choice of the parameters [22]. The major setback of the barrier functions was explained 

by Emilie, Saïd & Jérôme [21] and some measures taken to overcome the challenges of the barrier functions.  

Primal-dual algorithm can efficiently handle large linear programming problems (i.e., the bigger the 

problem size the more noticeable the efficiency of the primal-dual algorithm). The algorithm is not susceptible 

to degradation and the number of iterations does not depend on the number of vertices in the feasible search 

space. Primal-dual algorithm uses considerably less iteration compared to the simplex method. The algorithm is 

able to get the ideal solution for a linear programming problem in not more than 100 iterations irrespective of 

the huge number of variables involved in nearly all its implementations.  

The algorithm however has some disadvantages that include its inability to detect the possibility of 

having unbounded status of the problem (to a certain extent the primal-dual algorithm can be tagged as 

incomplete). Some researchers have however been able to handle this problem through the use of model that is 

undiversified in nature [23] and [24]. In addition, the computational cost of each iteration in primal-dual 

algorithm is higher than that of the simplex algorithm. Finally, the primal steps have the inclination of producing 

inferior steps that defile the boundaries s > 0 and z > 0 extensively, causing the progress to dwindle. 

Contrary to the way the standard PSO operates, the Asynchronous PSO (APSO), after evaluating the 

fitness of the swarm, the velocity and position of particles are updated as soon as it finishes calculating their 

fitness. From literature, it has been discovered that APSO performs better and converges faster than standard 

PSO and SPSO (Synchronous PSO) [33]. The SPSO algorithm have the advantage of quick convergence and 

good result. Carlisle and Dozier in [33] however observed that the synchronous update is costly as the first 

particle evaluated will be redundant for some time since it has to wait for other particles to be evaluated before it 

can progress to another position and continue exploring the search domain. Some other researchers concluded 

from their work that APSO provides the best accuracy at the expense of computational time. We took advantage 

of the explorative capacity of APSO, and the exploitative capability of the Primal-Dual Interior-Point algorithm 

[29]. In the one hand, the latter is key in ensuring that searching of every segment for a specific area pertaining 

the solution (to give a dependable approximate value of the global optimal). On the other, the former is essential 

in directing the search towards the best solutions [28].  According to Carl Damon Laird [17], the state-of-the-art 

Interior-Point algorithm have gained popularity as the chosen approach for providing solution to large scale 

linear programming problems. They are however limited due to their inability to solve problems that are 

unstable in nature. This is because contemporary Interior-Point algorithm might not be able to cope with the 

increasing need of the large number of constraints.  

APSO which is a variant of PSO is a stochastic population based algorithm as explained by Del Valle 

et. al. [15] that works on the optimization of a candidate solution (or particle) centered on a given performance 

measure. The first PSO algorithm was proposed by Kennedy and Eberhart [16]. This algorithm was based on the 

social behaviour exemplified by a flock of bird, a school of fish, and herds of animals. The algorithm uses a set 

of candidates called particles that undergo gradual changes through collaboration and contest among the 

particles from one generation to the other.  PSO is suitable for optimization problems because of its 

effectiveness, robustness, simplicity and extreme ease of implementation without the need of cumbersome 

derivative calculations. Kwang and Jong-Bae [26] observed that PSO algorithm is not derived from another 

algorithm.The ease of implementation makes it easy for it to be used for solving scientific and engineering 

problems. It makes use of few parameters which have little effect on the results when compared to other 

optimization algorithms. Ajith and Amit [27] opined that PSO is theoretically straightforward, and there is no 

sophisticated computation required in PSO algorithm. The time taken for the convergence of the PSO algorithm 

and getting the optimum value is relatively quick. When compared to other optimization methods, the initial 

start points of the PSO algorithm does not really influenced its final output. However, as discussed by Selvi and 

Umarani [25], the shortcoming of PSO algorithms have to do with premature convergence, inability to solve 
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dynamic optimization problems, and failure of some of the particles to escape been trapped in the local minimal. 

PSO algorithm and many of its variants suffers from the partial optimism, which degrades the regulation of its 

speed and direction.  

In PSO, (Xi) represent the position of an agent, and (Vi) the velocity of the agent. The agent’s number is 

i, where (i = 1,…,N), and N is the number of agents in the swarm. The i
th

 agent is represented as XI = (Xi1, 

Xi2,…XiN). While the velocity is the rate at which the next position is changing with respect to the current 

position. VI = (Vi1, Vi2,…ViN) represents the velocity for the agent i. At the start of the algorithm, initial 

numerical values of the position and velocity of the agents are assigned randomly. Equations (1) and (2) will 

then update the position and velocity of the agents for subsequent iterations during the search process. 
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According to Shi and Eberhart [9], to avert eruption, the value  
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 is fixed at ± vmax . This is because 

the value of vmax will be too large if the search range is very wide. If vmax is too small, the scope of the search will 

be excessively limited, thereby forcing the agents to support local exploration. "w" is the inertia weight 

(constriction factor); this regulates the algorithm searching properties. It was suggested by Shi and Eberhart [9] 

that it is better to start with a large inertia value (a more global search) that will be dynamically reduced towards 

the end of the optimization (a more local search). The use of small inertia weight usually guarantees quick 

convergence as the time spent on the exploration of the global space is little [10].  The inclusion of w in the 

equation is to provide equilibrium between the global and local search capability of the agents. The positive 

constant c1 and c2 represent the cognitive scaling and social scaling factors which according to Kennedy, 

Eberhart and Shi [30] are set to the value of 2. Both the cognitive and social scaling factors assist the PSO to 

successfully build the local bests into the global best according to Pinar and Erkan [31]. The stochastic variable 

rand1() and rand2() has the Uniform distribution. These random variables are independent functions that provide 

energy to the agents. The best position found so far by the agent is represented as pbesti,m. The best position 

attained by the neighboring agents is represented as gbestm.  

Unlike what we have in the standard PSO, the Asynchronous PSO (APSO) works by updating the 

velocity and position of particles immediately it finish updating the fitness of the swarm [31]. It computes the 

fitness using partial or limited information about the neighbourhood. This results into varieties in the swarm 

since some of the information is from the previous iteration while some is from the current iteration. The 

asynchronous PSO will be very beneficial in solving swarm robotic problems as the robots will have the 

capacity to navigate the search space uninterruptedly using the current information it is having without any need 

to wait for the entire swarm [10]. According to Basterrechea, and Perez [32], it have been successfully proved 

by some researchers from their experimental findings that the performance of the APSO is better than that of the 

standard PSO and the SPSO [33 - 36], [31] and [10]. This claim was countered by [34] in their research findings 

when they concluded that there is no significant difference between the performance of APSO and SPSO [34]. 

The algorithm for the Asynchronous PSO (APSO) is in the Fig. 1 below. The importance of the Primal-Dual 

algorithm becomes more pronounced as the size of the agents in the swarm rises. The fusion of Primal-Dual into 

APSO will make the hybrid architecture to become feasible and efficient in a large scale multiple interacting 

agents’ environment.  
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Step 1: Initialize iteration count, particles with randomly chosen positions, and velocities within the limits of the 

search space. 

Step 2: Initialize the number of primal variables (n), the number of constraints (m), and the total number of primal-

dual optimization variables (nv). Initialize the Lagrange multipliers. Initialize the second-order information. 
Step 3: Primal Dual phase activated 

Step 4: Reset the random number generator 

Step 5:Initialize some of the algorithm parameters (such as The maximum centering parameter, The maximum 
forcing number, Minimum barrier parameter, Maximum step size, Minimum step size, Granularity of backtracking 

search, Amount of actual decrease we will accept in line search).     

Step 6: Compute the responses of the unperturbed Karush-Kuhn-Tucker optimality conditions 
Step 7: Check for convergence  

Step 8: Update the BFGS approximation to the Hessian of the objective. 
Step 9: Find Solution to perturbed KKT system. 

Step 10: Do Backtracking line search. 

Step 11: Compute the response of the merit function and the directional gradient at the current point and search 
direction. 

Step 12: Compute the candidate point, the constraints, and the response of the objective function and merit function 

at the candidate point.            
Step 13: Stop backtracking search if we've found a candidate point that sufficiently decreases the merit function and 

satisfies all the constraints.            

Step 14: Decrease the step size if candidate point does not meet our criteria 
Step 15: Compute the response of the merit function at (x, z). 

Step 16: PSO phase activated 

Step 17: Get primal dual points boundary values 
Step 18: Get primal dual values for particles position 

Step 18.1: Particles best positions = particles positions 

Step 18.2: Particles velocity = particles dimension 
Step 18.3: Get particles best value  

Step 18.4: Best val hist = zeros 

Step 18.5: particles positions = random particles dimension 
Step 19: Main loop starts here 

Step 19.1: For iteration = 1 to iteration number 

Step 19.2: Loop through every single particle 
Step 19.3: for temp = 1: particles 

Step 20: Update the position of an individual particle 

Step 20.1: Particles positions = particles positions + particles velocity 
Step 21: Evaluate the objective function for each particle 

Step 21.1: If objective function < particles best value 

Step 22: Update position, (Best position).  
Step 22.1: Particles best positions = particles positions 

Step 22.2: Update best value so far (Particles best value = objective function)                               

Step 22.3: End 

Step 23: Best function value calculation 

Step 23.1: Compute Gbest val = min (particles best value);                                       

Step 23.1: Compute Best val hist = gbest; 
Step 24: Velocity component update for an individual particle 

Step 24.1: Compute particles velocity = c1 * particles velocity + c2 * rand (particles dim) *particles   best positions 

– particles positions + c2*rand (particles dim) * (particles best positions) – particles positions 
Step 24.1: End 

Step 25: End 

 

Figure 1: The algorithm for pdAPSO 

 

IV. Primal-Dual-APSO (pdAPSO) Algorithm Implementation 
To In one of our previous work, we proposed a new algorithm called Primal-Dual PSO (pdPSO) in 

[39]. In the bid to improve the performance of our algorithm, we developed the Primal-Dual APSO (pdAPSO) 

and used the algorithm to solve flocking problem in swarm robotics [40]. Having discovered from our findings 

in [41] that APSO have a superior performance compared to the conventional PSO, our intention was to present 

a hybridized APSO and Primal Dual algorithm which will perform better other earlier variants of PSO that have 

been developed. 

At the beginning of simulation, there is a haphazard allocation of agents A
i
 (0<i≤N) in the environment 

to be explored. The new algorithm works by first starting the agents’ positions randomly. Then, the agents are 

directed to the Primal-Dual method, which gives us its initial optimization result after some number of 

iterations. The result of the Primal-Dual optimization is then feed into APSO, which creates a perturbation in the 

population and also maintain diversity in the population until there is either convergence to the global optimal or 

the termination criteria is reached. During the iterations that are performed in the optimization, the agents carry 

out shift in the search space from one point to the other (which have connection to behaviour evolutions in 

space). The cognitive and social scaling factors of the APSO are very important parameters for determining the 

optimal global behaviors of the agents in the swarm.  
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4.1  Experimental Setup 

In our experiments, we applied the Primal-Dual-APSO algorithm to solving the flocking problem of 

swarm robotics. The Primal Dual algorithm will run until its tolerance is achieved on the objective function, and 

then the APSO is runned until its tolerance is achieved. From our experimental design, the search space is 

assumed to have a centre (c), then four (4) zones e.g. z1, z2, z3, and z4. For each experiment carried out, we 

want to know the number of iteration it takes the particles to converge to the centre (c), and the number of 

iteration it takes the particles to flock from c to z1, z2, z3, and z4. The different coordinates for different points 

that we used are as follows: Z1 (-30, 30), Z2 (-30, -30), Z3 (30, 30), Z4 (30, -30). The zones Z1, Z2, Z3 and Z4 

are all points in the Cartesian coordinate plane. Our aim is that for each experiment carried out, we want to 

know the number of iteration it takes the particles to converge to any given point (p), and the number of iteration 

it takes the particles to flock from p to z1, z2, z3, and z4.  

We used our Primal-Dual-APSO to make the particles to converge to the center point C(0,0) first, i.e., 

the particles will all be concentrated to a single point. Once they are there, we changed the target point to any 

zone that we want (Z1, Z2, Z3 or Z4) automatically in the script, and all the points that were converged to 

C(0,0), will start moving towards the zone in the form of a flock but will eventually converge again to Z1 in the 

form of a single point. We set the termination and convergence criteria for the particles. When the objective 

function value is less than the tolerance, the algorithm will stop iterating. The threshold is not on gbest value, 

but on the value of the objective function. The Primal Dual brings down the objective value to 1 and then gives 

control to the APSO algorithm. Once, APSO brings down the objective function down to 1e-8, the algorithm 

stops iterating. The Fig. 2 below illustrates the search space and how the swarm flocks after converging at the 

centre from the centre to z1, z2, z3, and z4 respectively. 

 

 
Figure. 2. Convergence and Flocking strategy. The Fig. 2 shows the zone 1, zone 2, zone 3, and zone 4 

where the robots will flock to after converging at C. 

 

We demonstrated the performance of our proposed hybrid Primal-Dual-APSO algorithm in a 

decentralized environment by simulating the movement of robots in the swarm in a virtual environment written 

in Matlab. There are some constraint that were set for the primal-dual algorithm based on the upper bound and 

the lower bound. The parameters for the APSO that were also set include the exploration environment which is a 

200 x 200 dimension coordinate system. Each of the robots is symbolized with the black dots, the system is 

designed to operate in real time. The number of robot and the dimension of the search is specified in the GUI. 

This simulation was run on a MATLAB R2013a on an Intel ® Core ™ i3-2328M machine with 4GB memory 

running Windows 7. We designed a GUI shown in Fig. 3 to simulate how the robots converge to a point and 

then start flocking by simply clicking the mouse at the point where we want them to converge. The GUI is user-

friendly and it easy to change the parameters. The user can halt, exit, or restart the simulation any time he feels 

like.  
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Figure 3. Screenshot of our GUI. 

 

In Fig. 3, the GUI enables us to specify the values for some parameters such as the number of particles, 

the dimension of the particles, the coordinate on the x and y axis, the algorithms to use for the flocking, the 

number of iterations, and the animation steps (sec). Once the values are set the simulation can start by clicking 

Run Simulation button, we can stop the simulation by clicking on the stop button, and exit button when clicked 

will close the GUI. Figs. 4 – 9 shows the screen shots of our GUI, how the robots converged to the centre and 

how the flocking is done from the centre to the different zones. 

 

 
Figure 4. Screenshot of robots moving towards convergence on the GUI. 

 

 In figure 4, the 200 robots moving towards converging at the center as shown in the GUI. 

 
Figure 5. Screenshot of robots converging at the centre. 
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The Fig. 5 shows the robots converging at the centre. 

 
Figure 6. Screenshot of robots flocking towards zone 1 on the GUI. 

 

The Fig. 6 shows the robots flocking from the centre to zone 1. 

 
Figure 7. Screenshot of robots flocking towards zone 2 on the GUI. 

 

 The Fig. 7 shows the robots flocking from the centre to zone 2. 

 
Figure 8. Screenshot of robots flocking towards zone 3 on the GUI. 
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The Fig. 9 shows the robots flocking from the centre to zone 3. 

 
Figure 9. Screenshot of robots flocking towards zone 4 on the GUI. 

 

The Fig. 8 shows the robots flocking from the centre to zone 4. 

 

V. Result and Discussions 
At the beginning of simulation, there is a haphazard allocation of agents A

i
 (0<i≤N) in the environment 

to be explored. The new algorithm works by first starting the agents’ positions randomly. Then, the agents are 

directed to the Primal-Dual method, which gives us its initial optimization result after some number of 

iterations. The result of the Primal-Dual optimization is then feed into APSO, which creates a perturbation in the 

population and also maintain diversity in the population until there is either convergence to the global optimal or 

the termination criteria is reached. During the iterations that are performed in the optimization, the agents carry 

out shift in the search space from one point to the other (which have connection to behaviour evolutions in 

space). The cognitive and social scaling factors of the APSO are very important parameters for determining the 

optimal global behaviors of the agents in the swarm.  To evaluate the effectiveness of flocking capability of our 

pdAPSO algorithm we compared its performance with other existing algorithms such as the PSO, APSO and 

Primal Dual. We observed from our simulations that for Primal Dual algorithm, the robots in the swarm flock 

very tightly as a single point. When the agents in the swarm move from random starting position to converge at 

the centre (0, 0), they become almost one point, which means they are tightly flocked. When they move from the 

centre position (0, 0) to different zones, they are so tightly flocked that they move almost as a single point. The 

result is that no matter the zone, it always takes equal number of iterations to reach different zones. Therefore, 

we can say that flocking in Primal Dual is very tight compared to what is obtainable in pdAPSO, APSO and 

PSO in which particles still move around a center point randomly. The issue of tightness of the robots in the 

swarm when using Primal Dual for flocking is impracticable in the real world sense as a safe distance must be 

maintained between the robots to avoid collision.  

Though Primal Dual have the lowest number of iterations to flock from one zone to another zone 

followed by pdAPSO, APSO and PSO respectively. We however observed from our results that the value for 

number of iterations to flock from one zone to another for Primal Dual is constant (value 10). This is 

understandable because in Primal Dual-based methods, there is no random number involved. Therefore, whether 

the robots move from the centre (0, 0) to z1, z2, z3 or z4, the algorithm moves in a deterministic way. As long 

as the distance between the centre (0, 0) and z1, z2, z3 and z4 points are equal, Primal Dual takes equal number 

of iterations. The fact that the number of iterations is constant further confirms the inability of the particles in 

Primal Dual algorithm to escape being trapped in the local minimal. We posit that Primal Dual having a lower 

number of iterations is not an index that it is better than any of the other three (3) algorithms we compared in 

this paper. It is possible that one iteration of Primal Dual is more complex and has more computations than one 

iteration of pdAPSO, APSO and PSO. However, there is a lot of variation in pdAPSO, APSO and PSO iterations 

when the robots in the swarm move from the centre (0, 0) to different zones, whereas in Primal Dual the 

variance is very low. The lower variance shows that Primal Dual keeps the particles tightly knit together 

compared to pdAPSO, APSO and PSO. If you look at the formula for PSO-based algorithms (pdAPSO, APSO 

and PSO), it has random numbers involved. Therefore, when we run the pdAPSO, APSO and PSO methods, 

every time the algorithm has slightly different trajectories for the robots. The different trajectory results in 

different number of iterations every time.  
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Figs. 10 – 13 shows the graph of total iteration to converge to the centre and flock from there to the different 

zones (zone 1, zone 2, zone 3, and zone 4) using pdAPSO. 

 
Figure 10. Graph of total iteration to converge and flock to Zone 1. This is a graphical illustration of 

the number of iterations it took the robots to converge to the center (0, 0) and flock to zone one (1) of the search 

space using the pdAPSO algorithm.  

 

 
Figure 11. Graph of total iteration to converge and flock to Zone 2. The above figure depicts the 

graphical representation of the number of iterations it took the robots to converge to the center (0, 0) and flock 

to zone two (2) of the search space using the pdAPSO algorithm. 

 

 
Figure 12. Graph of total iteration to converge and flock to Zone 3. Above is a graph of the number of 

iterations it took the robots to converge to the center (0, 0) and flock to zone three (3) of the search space using 

the pdAPSO algorithm. 
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Figure 13. Graph of total iteration to converge and flock to Zone 4. The Fig. above shows the graphical 

depiction of the number of iterations it took the robots to converge to the center (0, 0) and flock to zone four (4) 

of the search space using the pdAPSO algorithm. 

 

 
Figure 14. Graph of performance comparison of total iteration for pdAPSO, PSO, APSO and Primal 

Dual algorithms as the robots flock from the centre to Zone 1. The pdAPSO performs better than the other three 

(3) algorithms by having the lowest number of iterations in the fifty (50) simulation that was done (except for 

Primal Dual that have a constant number of iterations for each of the simulations because of its deterministic 

nature). 

 

 
Figure 15. Graph of performance comparison of total iteration for pdAPSO, PSO, APSO and Primal 

Dual algorithms as the robots flock from the centre to Zone 2. The performance of pdAPSO is better than the 

one of the other three (3) algorithms by its ability to flock to zone 2 in using the minimum number of iterations 

in the fifty (50) simulation that was done (except for Primal Dual that have a constant number of iterations for 

each of the simulations because of its not a heuristic algorithm). 
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Figure 16. Graph showing the performance comparison of total iteration for pdAPSO, PSO, APSO and 

Primal Dual algorithms as the robots flock from the centre to Zone 3. Our algorithm pdAPSO shows a better 

flocking capability than that of PSO, APSO and Primal Dual algorithms by allowing the robots to flock to zone 

3 by having the minimum number of iterations in the fifty (50) simulations that was done (except for Primal 

Dual that have a constant number of iterations value 10 for each of the simulations since it is a heuristic 

algorithm). 

 

 
Figure 17. Graph showing the performance comparison of total iteration for pdAPSO, PSO, APSO and 

Primal Dual algorithms as the robots flock from the centre to Zone 4. The APSO algorithm performs better than 

pdAPSO, PSO and Primal Dual algorithms in this scenario by having the minimum number of iterations in the 

fifty (50) simulations that was done. The pdAPSO and Primal Dual a constant number of iterations value 1009 

and 10 respectively for each of the simulations. 

 

VI. Conclusion 
This paper proposes a hybrid algorithm strategy (pdPSO) for flocking of swarm robots. This algorithm 

combines the explorative ability of APSO with the exploitative capacity of the Primal Dual Interior Point 

Method thereby possessing a strong capacity of avoiding premature convergence there making the robots to 

converge to a point and flock in real time. From the result of our simulations, the mean of the iteration for the 

agents to converge at the centre, and also flock from one zone to the other is almost the same. We decided to 

measure the number of iteration and not the time because the former is platform independent. The performance 

comparison of total iteration for pdAPSO, PSO, APSO and Primal Dual algorithms as the robots flock from the 

centre to the different zones (z1, z2, z3, and z4) in the search space was done. The pdAPSO performs better than 

the PSO, APSO and Primal Dual algorithms in the fifty (50) simulations that was done as the robots flock to z1, 

z2 and z3. The only exception was z4 where APSO have the best performance among the other algorithms. The 

results of our flocking simulations indicated that the performance of our algorithm is good in terms of precision, 

convergence rate, equilibrium, robustness and ability to flock using homogenous set of swarm robots. In our 

future work, we seek to extend the use pdAPSO to solving flocking problems of swarm robotics with obstacle 

avoidance.   
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