
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 6, Ver. I (Nov. - Dec. 2016), PP 39-43

www.iosrjournals.org

DOI: 10.9790/0661-1806013943 www.iosrjournals.org 39 | Page

Scheduling Algorithm for University Timetabling Problem

Francis K.
1
, Manga I.

2
Sarjiyus O.

 3

1
(Department of Computer Science, Adamawa State University Mubi, Nigeria)

2
(Department of Computer Science, Adamawa State University Mubi, Nigeria)

3
(Department of Computer Science, Adamawa State University Mubi, Nigeria)

Abstract: Scheduling for timetabling is one of the challenges faced by most Universities in developing

countries. In this research work, consideration is made in developing of a scheduling algorithm capable of

providing solution to a timetabling problem in Universities. Hence, a practical approach is created by

incorporating Local Search Procedures into Constraints Programming for generating lecture timetable which

was tested on some universities timetabling problems and was found to provide a better solution than most

existing methods.

Keywords: Scheduling algorithm, Timetabling, Search, Lecture, Constraints.

I. Introduction
University timetabling problem is a constraint satisfaction problem mostly created manually in many

institutions due to its inherent difficulties of finding a solution that does not violate a set of given constraints. A

diverse variety of university timetabling problems exist, but three main categories have been identified: school,

examination and course timetabling [9, 8, 1] respectively.

Timetabling problem belongs to the NP-hard class combinational optimization problem whereby its

computational time grows exponentially with an increase in the number of variables involved [5]. Different

methods have been proposed ranging from Local Search Procedures [9] to Constraint Programming [1].

Although the Local Search Procedures are good for optimizing initial feasible solution, its major setback is it

does not take into consideration hard constraints and especially finding an initial feasible solution. Constraint

Programming which has the advantage of identifying initial feasible solution does not consider weak constraints

hence creates a possible problem of improving the initial feasible solution. A blend of Local Search Procedure

and Constraint Programming have the advantage of being more efficient in terms of taking into consideration

both strong and weak constraints, finding and modifying an initial feasible solution to overcome the initial

setbacks of Local Search Procedure or Constraint Programming when used alone.

II. Review of Literatures
Timetabling problem comes up every year in educational institutions, which has been solved by

leveraging human resource for a long time. The problem is a special version of the optimization problems; it is

computationally NP-hard [5]. As a result, only the major inevitable conditions can be considered during the

manual arrangement process. However the manual process takes into account soft constraints whereas

automated system might not consider them. This is a major shortcoming of automated systems, wherein they

don’t give due importance to human feelings. If we want to have a system which works like humans, it would be

necessary to make it aware of the soft constraints of humans. Hence we propose a method to add this aspect in

the timetable generation to achieve an artificial intelligent computer system more close to human. We propose to

use a mechanism to mine rules which can later be incorporated in the automated system to draw its attention to

the soft constraints.

A number of efforts have explored how to reap better performing timetables such as University

Timetabling [1, 8, 9, 7], Examination Timetabling [2], and UniTime [3] respectively. Furthermore, there exist

many problem solving methods, which usually use the concepts of standard optimization algorithms such as

Backtracking, Evolutionary Algorithms or Constraint Logic Programming [4, 5, 6].

III. Methodology
The algorithm is the main component of our research which generates the HTML format as an output.

Various inputs from the user are required, such as lectures details, course details, the semester, lecture venues

and their capacities, working days and timeslots as well as various rules (Constraints), which are stored in an

XML format and serves as an input to our Timetable Generator Algorithm as shown in fig.1.

Scheduling Algorithm for University Timetabling Problem

DOI: 10.9790/0661-1806013943 www.iosrjournals.org 40 | Page

Figure 1: E-R Diagram for Timetabling Data Source

Packages: Packaging allowed us to break up the many large number of objects into related groupings to provide

scope and division to classes and interfaces.

IV. Use Case Diagram
A use case is made up of a set of scenarios (such as: Login, Data Management, Rules settings etc.). Each

scenario is a sequence of steps that encompass an interaction between a user and a system.

Figure 2: Use Case Diagram for Timetabling Scheduling

V. Timetable Generating Algorithm
The algorithm considers the entries in the requirement matrix one after the other allocating to each a

suitable lecture hour. During activity generation, if an allocation has been made at a certain time t1 for venue v1

and lecture j1, then one is subtracted from the integer in row k and column v1 of the current requirement matrix,

the current lecturer availability matrix is marked true at row j1 and column t1 and the value of j1 is inserted at a

point on the kth row and the gth column of the activity matrix. This process is illustrated in fig.3 below.

The algorithm performs four basic operations. These include,

Scheduling Algorithm for University Timetabling Problem

DOI: 10.9790/0661-1806013943 www.iosrjournals.org 41 | Page

1. Initiate storage matrices

2. Perform allocation by checking resource availability

3. Checks If any resource exist

4. Else it places the activity at current timeslot and day.

Figure 3: Timetabling Main Pseudo code

VI. Results

Figure 3: The Home Screen View

The table below shows a sampled generated timetable using the algorithm developed, compilation took

approximately 5 seconds. Execution time varies considerably with the difficulty of finding a possible feasible

solution.

Scheduling Algorithm for University Timetabling Problem

DOI: 10.9790/0661-1806013943 www.iosrjournals.org 42 | Page

Table 1: A generated timetable

The generated timetable has different views for easy access to a particular view, ranging from lecturer view,

students view, lecture hall view and the general view.

VII. Conclusion
In this paper, a presentation is made of a blend of Constraint Programming and Local Search

Procedures for the solution of timetabling problems. The aim was to create an algorithm capable of generating

an initial feasible solution whilst taking into consideration both weak and strong constraints for generating

universities timetable. The timetables generated are in HTML/PDF formats which can be easily uploaded to the

school’s website. The proposed blend of Constraints Programming and Local Search Procedures were also

found to perform better than most existing methods in terms of considering weak and strong constraints

respectively.

References
[1]. S. Abdennadher, & M. Marte (1999). University timetabling using constraint handling rules. Journal of Applied Artificial

Intelligence, 12-22.
[2]. G. Brassard, & P. Bratley (1996). Fundamentals of Algorithmics. New York: Prentice Hall.

[3]. E. Burke, D. Elliman, & R. Weare (1993). Extension to a University Exam Timetabling System. Chicago: Adventure Works Press.

[4]. J. Chen (2014, January 5). Unitime Corporation . Retrieved from Unitime Corporation web site : http://www.unitime.org
[5]. R. Doug (2003). Extreme Programming Refactored. Chicago: Apress.

[6]. S. Fred (1997). Concurrent Programming. New York: Springler.

Scheduling Algorithm for University Timetabling Problem

DOI: 10.9790/0661-1806013943 www.iosrjournals.org 43 | Page

[7]. M. Garey & G. Johnson (1979). Computers and intractability, a guide to the theory of np-completeness . New York : New York

Press .

[8]. A. Hertz & D. Werra (1990). The Tabu search meta heuristic: How we use it. Annals of Mathematics and Artificial Intelligence,
111-121.

[9]. E. Horowitz & S. Sahni, S. (1984). Fundamentals of Computer Algorithms. Computer Science Press, 4-17.

[10]. R. Karp (1976). The probabilistic analysis of some combinatorial search algorithms. New York: New York Times .
[11]. B. Romero (1982). Examination Scheduling in a Large Engineering School. Madrid, Spain : A Computer-Assisted Participative

Procedure.

[12]. A. Schaerf (2006). Tabu search technique for large high-school timetabling problems. Netherland: The Netherlands.

