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Abstract: DNA Multiple   sequence   alignment   is common bioinformatics application that determines the 

similarity between a new sequence with other exist sequences. Needleman-Wunsch algorithm is the most famous 

algorithm for DNA global alignment. Unfortunately, it is based on sequential computing so it has a problem of 

being slow. Recently purposed algorithm (YM-Algorithm) aim to overcome this sequential computing limitation. 

This paper presents a different implementation approaches for the YM algorithm in a real environment. Finally, 

the paper study the experimental results of applying these implementations approached in a realistic parallel 

environment. 
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I. Introduction 

Pairwise Sequence Alignment is a sequence alignment of two biology sequences such as DNA, RNA, 

or protein. The result of the task can be used to infer sequence homology and conduct phylogenetic analysis to 

assess the sequences shared evolutionary origins. The accuracy and execution time are major factors requiring 

the attention of researchers. Some popular alignment approaches used are exact solution,progressive methods, 

iterative methods, or methods based onHidden Markov Models. Each method has its advantages 

anddisadvantages. Biologists are the persons who decided suitablemethod to process their biological data[1] [2]. 

The sequence alignment is the problem withexponential complexity. Over the years, researcher efforts 

in finding different algorithms or mathematical models thatrequire low computational cost as well as ensure 

accuracy[1].  Multiple sequence alignment is computationally intensive problem and classified as a NP-Hard 

problem [3] [4]. Sequences can be aligned across their entire length (global alignment) or only in certain regions 

(local alignment).  Local sequence alignment plays a major role in the analysis of DNA and protein sequences 

[5] [6]. 

The two general models view alignments in different ways:the first considers similarity across the full 

extent of thesequences (a global alignment); the second focuses onregions of similarity in parts of the sequences 

only (a localalignment). It is important to understand these distinctions, toappreciate that sequences are not 

uniformly similar, and thereis no value in performing a global similarity on sequencesthat have only local 

similarity. Therefore, finding local similaritymay produce more biological meaning and sensitive resultthan 

finding optimal alignment over entire length of thesequence[7][8]. 

A lot of popular algorithms were proposed, researches in the field of bioinformatics has grown 

significantly in the recent years as demands for more computing power increased. The solutions to these 

demands usually involve using parallel and/or distributed techniques. Grid Computing is an evolving technology 

to provide high performance computing in a virtual environment composed of a large number of computers 

connected through network[9]. 

Recently a new alignment algorithm has been purposed in [10]. The algorithm aimed to overcome the 

time consumption problem of dynamic programming methodology used by the Needleman-Wunsch algorithm. 

Unlike Needleman-Wunsch algorithm, which is sequential, this algorithm aims to take advantage of the 

computational power of the grid computing in order to improves the execution time required for the alignment 

process [10]. Through this paper, this algorithm will be called YM-Algorithm. 

This paper provides a comparative study to the different implementation approaches for the YM 

alignment algorithm in order to run it on the Grid Developing System (GDS) [11]. This study is significant as 

the YM-Algorithm author simulate their algorithm using the MATLAB and never test it on a realistic grid 

environment.  

 

II. Global Alignment 
The data of sequence are partitioned into DNA sequences and protein sequences. Each DNA sequence 

consists of four types of base A, T, C and G and each protein sequence is made up of 20 types of amino acid, 

hence any sequence can be represented as a string over specific alphabet.  
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DNA sequence alignment is a representation of the similarity between two or moresections of genetic code. It is 

used to compare these sections in a quantitative way.Biologists use the comparisons to discover evolutionary 

divergence, the origins ofdisease, and ways to apply genetic codes from one organism into another[12]. 

 

A. Pair wise Sequence Alignment 

Pair wise sequence alignments are used to find diagnosticpatterns that characterize the two DNA families; to 

detect ordemonstrate homology between new sequences and existingfamilies of sequences[7]. 

 

B. Global Sequence Alignment 

The idea of aligning two sequences (of possibly different sizes) is to write one on top of the other, and break 

them into smaller pieces by inserting spaces in one or the other so that identical Subsequences are eventually 

aligned in a one-to-one correspondence - naturally, spaces are not inserted in both sequences at the same position. 

In the end, the sequences end up with the same size. The following example illustrates aglobal alignment between 

the sequences A=”ACAAGACAGCGT” and B=”AGAACAAGGCGT”[7]. 

 

 
Fig-1 Global Alignment of two sequences 

 

The objective is to match identical subsequences as far as possible. In the example, nine matches are 

highlighted with vertical bars. However, if the sequences are not identical, mismatches are likely to occur as 

different letters are aligned together. Two mismatches can be identified in the example: a “C” of A aligned with a 

“G” of B, and a “G” of A aligned with a “C” of B. The insertion of spaces produced gaps in the sequences. They 

were important to allow a good alignment between the last three characters of both sequences [13]. 

Once the alignment is produced, a score can be assigned to each pair of aligned letters, called aligned 

pair, according to a chosen scoring scheme. We usually reward matches and penalize mismatches and gaps.  

The similarity of two sequences can be defined as the best score among all possible alignments between them. 

Note that it depends on the choice of scoring scheme. In the next sections, the problem of finding the best 

alignment of two sequences (an alignment that gives the highest score) will be addressed[13]. 

 

C. Substitution Matrices 

In the previous example, fixed scores were given for matches, mismatches and gap penalties. However, 

biologists frequently use scoring schemes that take into account physicochemical properties or evolutionary 

knowledge of the sequences being aligned. This is common when protein sequences are compared.  

For instance, for some reason one might want to penalize the mismatch of an aspartic acid (D) with 

leucine (L) more heavily than a mismatch between the same aspartic acid with, say, histidine (H). [13]. 

This type of scoring schemes is called alphabet-weight scoring schemes, and is usually implemented by 

a substitution matrix. Currently, two types of amino acid substitution matrices are being largely used by biologists 

for practical protein sequence alignment: PAM and BLOSUM. They were developed from different concepts but 

have the same structure. In fact, they are a series of matrices with varied degrees of sensibility. 

The PAM matrices (acronym for point accepted mutations) are extrapolated from data obtained from 

very similar sequences to reflect an amount of evolution producing on average one mutation per hundred amino 

acids. The BLOSUM matrices (acronym for blocks substitution matrix), in contrast, were developed to detect 

more distant relationships [14]. In particular, BLOSUM50 and BLOSUM62 are being widely used for pairwise 

alignment and database searching [15]. 

 

III. YM Algorithm 
In [10], The Authors presented a new global alignment algorithm that can be implemented using parallel 

computing (such as grid computing) to overcome the Needleman-Wunsch sequential computing limitation. 

Their algorithm assumes that length of SEQ1 is greater than or equal length of SEQ2. The algorithm 

searches for the maximum length consecutive match in SEQ1 andSEQ2. The authors defined the consecutive 

match as the consecutive sequence of residues in SEQ1 and SEQ2 such that the cumulative score increases as 

long as one residue of the first consecutive sequence is compared with its corresponding residue of the second 

consecutive sequence. After finding the maximum length consecutive match, SEQ1 and SEQ2 are split into three 

sub-sequences each, the left side of consecutive match (L_SEQ1, L_SEQ2), the maximum consecutive match 

(M_SEQ1, M_SEQ2), and the right side of consecutive match (R_SEQ1, R_SEQ2). Again, search for the 

maximum consecutive match is applied recursively for the (L_SEQ1, L_SEQ2) and (R_SEQ1, R_SEQ2). For each 
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recursive iteration, the algorithm add the gaps required to keep the maximum consecutive match in each part 

aligned, finally the algorithm concatenate these three parts[10].  

The algorithm divided into three main sub-modules: Consecutive match sub-module (CM), split 

sequence sub-module (SS), and combine sub-sequences submodule (CS)[10].  

The CM algorithm obtains all possible consecutive matchesand saves the parameters of each match in a 

parameters table (P_TABLE). These parameters include WORD1 (the consecutive matched residues ofSEQ1) 

start index, WORD2 (the consecutive matched residues of SEQ2) start index, the consecutive match length 

(W_LENGTH), and the consecutive match score (SCORE)[10].  

Eventually, P_TABLE is searched to obtain the maximum consecutive match (M_SEQ1, M_SEQ2) as 

well as other maximum consecutive match parameters (M_SEQ1 start index, M_SEQ2 start index, W_LENGTH).  

Figure 2 shows the pseudo code of CM algorithm[10].  

 

CM algorithm  

Input: SEQ1, SEQ2, P_TABLE, FIRST_TIME  

If FIRST_TIME  

{  

FIRST_TIME ← FALSE  

For k=0 to length(SEQ1)  

{  

SCORE ← 0  

 For j=0 to length(SEQ2)  

 {  

     SEQ1_INDEX ← j+k (modulo length(SEQ1)) 

 If S (SEQ1_INDEX,j) > 0  

 {  

  If W_LENGTH=0  

Get WORD1_START_INDEX,  

WORD2_START_INDEX  

  SCORE  ← SCORE+ S (SEQ1_INDEX, j)   

  Add SEQ1(SEQ1_INDEX) to WORD1   

  Add SEQ2(j) to WORD2  

  WLENGTH ← WLENGTH+1  

Add the match parameters to P_TABLE     

}  

 Else  

 {  

  SCORE ← 0  

  WORD1 ← ""  

  WORD2 ← ""   

  W_LENGTH ← 0  

 }  

 }  

 }  

}  

Get the maximum consecutive match parameters from match parameters table  

Output: P_TABLE, Maximum consecutive match parameters  

Fig-2   CM Algorithm 

 

The SS algorithm obtains (L_SEQ1, L_SEQ2)), (R_SEQ1, R_SEQ2) and the match parameters table 

(P_TABLE) to generate match parameter tables (LP_TABLE, RP_TABLE) for (L_SEQ1, L_SEQ2) and (RSEQ1, 

RSEQ2), respectively. LP_TABLE only considers the consecutive matches in L_SEQ1 and L_SEQ2, and 

RP_TABLE only considers the consecutive matches inR_SEQ1 and R_SEQ2. Figure 3 shows the pseudo code of 

SS algorithm[10].  
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CS algorithm 

Input: Maximum consecutive match parameters, P_TABLE  

Get L_SEQ1,L_SEQ2  

Get R_SEQ1, R_SEQ2  

For each record in P_TABLE  

If match parameters belong to L_SEQ1, L_SEQ2 {  

If (L_SEQ1 overlaps M_SEQ1) or  

(L_SEQ2 overlaps M_SEQ2)  

Modify parameters  

Add these parameters to LP_TABLE  

}  

else if match parameters belong to LSEQ1, LSEQ2 {     

If (RSEQ1 overlaps MSEQ1) or  

(RSEQ2 overlaps MSEQ2)  

Modify parameters  

Add these parameters to RP_TABLE  

}  

Output: L_SEQ1, L_SEQ2, R_SEQ1, R_SEQ2, LP_TABLE,  

RP_TABLE  

Fig 3 CS Algorithm 

 

CS algorithm simply concatenates (L_SEQ1, M_SEQ1, R_SEQ1) and concatenates (L_SEQ2, M_SEQ2, 

R_SEQ2).  

For each iteration, gaps might be added to either L_SEQ1or L_SEQ2, to make their length equal and keep 

maximum length consecutive match aligned. Similarly, gaps might be added to eitherR_SEQ1 or R_SEQ2 for the 

same reason. 

 

IV. Grid Computing 
A grid is a type of parallel and distributed system that enables the sharing, selection, and aggregation of 

geographically distributed resources dynamically at runtime depending on their availability, capability, 

performance, cost, and users’ quality of-service requirements. At the basic level, a grid can be viewed as an 

aggregation of multiple machines (each with one or more CPUs) abstracted to behave as one “virtual” machine 

with multiple CPUs. The GDS is a .NET based computational grid environment implemented in MTI University 

[11]. The GDS Grid allow the seamless aggregation of the computing power of multiple distributed machines 

connected through network into a virtual super computer. The GDS grid computing framework was conceived 

with the aim of making grid construction and development of grid software as easy as possible without sacrificing 

flexibility, scalability, reliability and extensibility [11]. 

GDS has practical capabilities of connecting up to 4096 workstations. In addition, GDS is hardware 

scalable in which workstations could be easily replaced with a high-end server through the GDS plug and play 

agent feature. The GDS will automatically utilize the new powerful resources in the new connected agents [16]. 

 

V. The Implemented Approaches 
The authors of YM-Algorithm tested their algorithm in simulated environment using MATLAB. We 

implemented the YM-Algorithm in Microsoft C# 6 and .NET Framework 4.5.2. The first implementation 

approach was exactly as the authors of the YM-Algorithm presented in their pseudo code. In which, The CM 

submodule called for the first run with the flag FIRST_TIME is true, while called with the flag FIRST_TIME is 

false for all subsequent iterations.  During the implementation of the first approach we notice that the parameter 

table P_TABLE generated in the first time is complete and valid for all iterations. Accordingly, In the second 

approach the parameter table P_TABLE will be readjusted instead of building it in each subsequent iteration.The 

start indices and/or the length of each record in the P_TABLEwill be readjusted according to the selected best 

consecutive match. Consequently, we decide to implement those two approaches and test them side to side. 

 

VI. Experiments And Discussions 
In this paper, it has been decieded to firstly test the YM-Algorithm 2 implmenation approaches in a real 

parallel environment before put them to test in the GDS grid.  The implementedapproaches tested using a 

workstation with the specifications in TABLE I.The experiments ran for each approach on a single core 

(sequential), 2 Cores, and 4 Cores. In addition to comparing the sequential results to a standard implementation of 

unmdified NeedlemanWuanch. The experiments done on a 2 sequences of an equal variable lengths starting from 

10,000x10,000 characters up to 40,000x40,000 characters.  



A Study to the different implementation approaches for the Grid YM-Algorithm DNA alignment 

DOI: 10.9790/0661-1806011621                                           www.iosrjournals.org                                   20 | Page 

TABLE II shows some of the experiment results of the 1
st
 implmentation approach.TABLE III shows some of the 

experiment results of the 2
nd

 implementation approach. 
 

TABLE II.  FIRST APPROACH RESULTS 

Sequences 

Length 

Cores 

Single Dual Quad 

10000 14.586 10.548 9.020 

11000 19.994 14.459 12.364 

12000 26.980 19.511 16.684 

13000 22.154 16.021 13.700 

14000 27.793 20.099 17.187 

20000 55.451 40.100 34.291 

25000 90.421 65.390 55.916 

30000 116.634 84.346 72.127 

35000 142.848 103.303 88.337 

40000 169.061 122.259 104.547 

 

TABLE III.  SECOND APPROACH RESULTS 

Sequences 

Length 

Cores 

Single Dual Quad 

10000 26.603 20.778 19.879 

11000 30.972 24.901 26.257 

12000 37.490 31.270 31.163 

13000 42.573 36.145 32.720 

14000 48.643 40.478 43.732 

20000 106.036 92.732 86.700 

25000 145.550 126.371 118.577 

30000 188.113 163.324 153.178 

35000 230.676 200.276 187.778 

40000 273.239 237.228 222.378 

 

 
Figure 4 Sequential Processing 

 

 
Figure  5  Processing using 2 Cores 
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Figure 6  Processing using 4 Cores 

 

The pervious expirements show that the YM-Algorithm has a huge data dependence between threads 

running in parallel which limits the processing on parallel multi-cores environment. In a real grid environment, 

there is more overheads to provide access to these shared data for the working agents. These overheads due to 

many factors such as network bandwidths, … etc. Therefore,its obvious that the authors of the YM-Algorithm 

assumption to apply the algorithm on grid is not completely suitable due to the need to a shared memory 

environment. 

 

VII. Conclusion 

The paper presented a couple of implementation approaches for the newly proposed YM-Algorithm for 

DNA multiple sequence alignment. Unfortunately, the experiments done in this work proved that the authors of 

the paper assumption to apply the algorithm on grid is not completely satisfactory in the shared memory 

environment. Consequently, the YM-Algorithm will suffer a lot in a real grid computing environment due to the 

low compuatation to communication ratio. After a series of experiments, Its observable that the plain YM-

Algorithm is preferred to be implemented as a sequential rather than parallel implementation. The results show 

that the 2
nd

 impementation approach for the YM-Algorithm has the nature to be implemented in parallel mode 

than in sequential mode. 
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