
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 5, Ver. VI (Sep. - Oct. 2016), PP 48-58

www.iosrjournals.org

DOI: 10.9790/0661-1805064858 www.iosrjournals.org 48 | Page

Implementation and Performance Analysis of Apache Hadoop

Song Feng Lu, Husein S Naji Alwerfali
School of Computer Science Huazhong University of Science and Technology, Wuhan, China, 430074

Abstract: With the Internet and data growth increasing trends, big data is becoming an extremely important

and challenging problem for Data Centers. Many platforms and frameworks are working to bring a cutting edge

technology to this problem. Apache Hadoop is a software framework addressing the big-data processing and

storing on clusters, providing reliability, scala-bility and distributed computing. Hadoop has a distributed file

system to store vast amount of data in distributed environments, and uses Map reduce algorithm to perform the

computations and process large amount of data, by parallelizing the workload and storage. In comparison to

other relational database systems, Hadoop works well with unstructured data. Our work is focused on

performance evaluation of benchmarks of Hadoop, which are crucial for testing the infrastructure of the

clusters. Taking into consideration the sensitiveness and importance of data, it’s inevitable testing the clusters

and distributed systems before deploying. The benchmark results can lead to optimizing the parameters for an

enhanced performance tuning of the cluster. In this paper, we are motivated to study and evaluate the

performance of Hadoop and a comprehensive listing of bench-marks used to test Hadoop, while providing

detailed information for their appliance and procedures to run them. We construct a distributed hadoop cluster

simulation based on VmWare Workstation consisted of multiple nodes running hadoop. we have conducted a

measurement study on the performance evaluation of hadoop cluster simulation under multiple scenarios. Our

results demonstrates the trade-off between performance and flexibility. This evaluation study is focused on the

throughput performance comparisons under different scenarios. The Hadoop performance has been evaluated

for different size of data sets in this simulation. To measure the performance we set up a Hadoop cluster with

many nodes and use the fileTestDFSIO.java of the Hadoop version 1.2.1 which gives us the data throughput,

average I/O rate and I/O rate standard deviation. Our results demonstrates that the HDFS writing performance

scales well on both small and big data set. The average HDFS reading performance scales well on big data set

where it is, however, lower than on the small data set. The more nodes a writing/reading operation is run on,

the faster its performance is.

Index Terms: Hadoop; Big data; Benchmark; Distributed file system

I. Introduction

Cloud computing and big data networks has become one of the key part of the content delivery

technology since the past decade. The demands on cloud for functionality and scalability are growing due to the

rapid proliferation of new network devices and applications which are generating huge amount of data to be

stored and processed at the cloud.

The enormous changes in technology and electronic user devices requires the efficient and fast data

retrieval from the data centers as well as the reduced processing time. It is expected that annual global data

center IP traffic will reach 10.4 zettabytes (863 exabytes [EB] per month) by the end of 2019, up from 3.4

zettabytes (ZB) per year (287 EB per month) in 2014. Global data center IP traffic will grow 3-fold over the

next 5 years according to Cisco statistics[1]. Overall, data center IP traffic will grow at a compound annual

growth rate (CAGR) of 25 percent from 2014 to 2019. This dramatic increase in traffic suggests to improve the

cloud in terms of reliability and performance. Hadoop is a software used for distributed infrastructures with

particular focus on big data, ensuring scalability and reliability for distributed data centers. Hadoop has its own

file system, Hadoop File system or HDFS that differs from other filesystem due its large block size, which was

designed to be robust to many problems that other Distributed File systems couldnt handle such as fault

tolerance, reliability and scalability. Distributed systems have existed before, but with Hadoop the data and

work are automatically distributed across machines and the CPU usage are parallelized. As most distributed file

system, HDFS is based in an architecture where data is separated from the namespace [2]. HDFS is a best effort

solution to fault tolerance in a very large data center. Its purpose is to distribute large amount of data across

many machines (nodes). As an input Hadoop receives a very large file and divides it into chunks called blocks,

which then are stored and replicated across different machines. So when a machine in the distributed

environment will fail due to some problem, HDFS will provide the missing blocks which were replicated in

some other machines. In this way HDFS ensures reliability so end users won’t be affected by a single machine

failure since data is distributed. Although Hadoop is a recently developed framework, there are great

expectations in its quick development and spreading in the near future [3]. First hand users of Hadoop have

Implementation and Performance Analysis of Apache Hadoop

DOI: 10.9790/0661-1805064858 www.iosrjournals.org 49 | Page

confessed that there are still many areas of improvement to the software in regards to security, administration,

availability and others. However, the open source community is continuously addressing these issues and is also

steadily contributing to improving Hadoop products which leads to anticipating greater capabilities and usage of

the software in the next years.

II. Background
Todays most successful internet applications, from search engine to social network, greatly rely on

large scale data processing. Meanwhile, in academia, sheer volume data sets analysis has become a popular

methodology and the fourth paradigm for modern scientific discoveries [4]. Moreover, the Big Data processing

capacity has become the killer ability of some startup internet companies, especially for those providing the

social network applications and business intelligence services.

A. Hadoop Distributed File System (HDFS)

Hadoop is a project develops open-source software for reli-able, scalable, distributed computing. It

consists four module: 1) Map Reduce, a system for parallel processing of large data sets; 2) HDFS, a distributed

file system that provides high throughput access to application data; 3)YARN, a framework for job scheduling

and cluster resource management; 4) Com-mon, the common utilities that support the other Hadoop modules.

The Hadoop Distributed File System (HDFS), an Apache Hadoop subproject, is a highly fault-tolerant

distributed file system designed to provide high throughput access to appli-cation data and is suitable for

applications with extremely large data files (Petabytes and up) on a distributed network of computers[5].

A HDFS cluster consists two kinds of nodes: (a) a single Name Node that works on master server and

maintain the meta-data structure of HDFS namespace includes opening, saving, retrieving, closing and renaming

files and directories. It de-termines the mapping between files and blocks to Data Nodes, and (b) a number of

Data Nodes manage storage attached to the nodes. The Data Nodes serve read and write requests from the

HDFS clients. Data file is split into one or more blocks, and these blocks are stored in a set of different Data

Nodes. The Data Nodes also perform block creation, deletion, and replication upon instruction cooperating with

the Name Node. There are four operation of typical jobs involving HDFS: 1) client send a read comment to the

Name Node, the Name Node then send back metadata to the client in order to confirm the process; 2) Name

Node send metadata to the Data Nodes; 3) Data Nodes read and write the metadata; 4) requested data is sent

back from the Data Nodes to the client via network. The critical factors in the process need to be probed and

adjusted in order to improve the total performance in cloud computing.

B. Map Reduce Framework

Map Reduce was developed by Google as a new framework for processing large data sets. The original

Map Reduce soft-ware framework is not publicly available, but several open-source alternatives such as Hadoop

Map Reduce do exist and is available for the public to use [6]. The Hadoop Map Reduce is the parallel

computation mechanism that is used to realize the transparency about the complexity of parallelization, data

distribution, fault-tolerance, and load balancing to developers, which can be used to focus on developing the

actual algorithm.

Two major functions, Map and Reduce are specified in user program respectively. Although neither

function is explicitly parallel, many instances of these functions are allocated and executed concurrently by the

framework. A master node allocates Map and Reduce tasks to worker nodes for execute client program. The

input files, stored in HDFS, are fetched and split into data chunks. The following steps are then required for

Map Reduce framework to complete the requested jobs: 1) data chunks are distributed to parallel Map tasks for

processing, then key/value records are generated and stored in intermediate files. No communication is allowed

due to parallel Map processing tasks, 2) the output intermediate file are copied to Reduce tasks nodes, 3)

according to the key/value, Sort function is then executed, 4) the Reduce function is accomplished, multiple

outputs are then finally created. Data locality of Map/Copy/Sort/Reduce function is the one of critical factors in

Map Reduce processing, such as distance between storage and compute nodes that is across networks, racks or

nodes. For Map executing phase, the node executing the Map tasks should be close to the node that stores the

input data (preferably local to the same node). For Sort phase, it is required to move the intermediate data

generated by the Map tasks to the Reduce tasks as their input. For Reduce phase, the node executing Reduce

tasks should be close to the Map tasks nodes which generate the intermediate file used as Reduce tasks input.

The data locality issues can cause a massive

III. Related Work
Much of the work concentrates on Meta data for taking scheduling decisions. However, the inherent

knowledge gained during scheduling is not considered much for improving data related throughput and response

time. Hadoop is originally designed and configured for batch oriented jobs. Due to the widespread adoption of

Implementation and Performance Analysis of Apache Hadoop

DOI: 10.9790/0661-1805064858 www.iosrjournals.org 50 | Page

Hadoop by various industries and academia for simplicity and scalability, several real-time user facing

applications are executed on Hadoop platform. Main-taining fixed number of replicas for blocks leads to heavy

load on popular blocks which affects the jobs response time. To provide better user experience, the availability

of blocks is to be maintained at high level. Sometimes the terms file and block are used interchangeably. [7]

proposed a method to increase the availability of Hadoop through metadata replication. To avoid single point of

failure, all required metadata of critical nodes are replicated into backup node(s). This work only concentrating

on metadata replication to overcome from failure and does not consider the replication of applications data. In

[8], two heuristics are proposed to solve the file allocation problem in parallel I/O systems. The load balance

across all disks and variance of the service time at each disks are simultaneously minimized to achieve better

response time. The product of file access rate and service time, called heat of the file, is used as an objective

function. In case of HDFS, files are stored as a fixed size blocks and hence, the service time may probably same

for all blocks. The metrics such as service times are not suitable in HDFS and the work only considers the

problem of file allocation not replication. Jiong Xie et al. [8] presented a data placement method to balance the

processing load among the nodes in heterogeneous Hadoop clusters. However, replication is not considered in

their work. Wenhao Li et al. [10] proposed an incremental replication strategy to meet reliability requirement

and reduce the storage cost. This work aims to meet required reliability and works well for temporary data or

data with low reliability requirement. The high availability requirements of popular data blocks and load

balancing are not considered. Q. Wei et al. [9] proposed a model to capture the relationship between availability

and replica number. This method dynamically maintains required number of replicas to meet a given availability

requirement. Sai-Qin et al. proposed a multi-objective replication strategy for cloud storage cluster [10] which is

closest to our work. The objective function includes mean file unavailability, mean service time, load variance,

energy consumption and mean latency. The artificial immune algorithm is used to finding replication factor and

replica placement. The main problem here is setting proportionate values of objectives for getting an optimal

solution. This work also does not consider the dynamic workload and load balancing. Several other works [11]

are presented to optimize the replication in distributed file systems. Some of them aim to optimize the replica

number and some of them concentrates on replica placement with respect to various goals such as load

balancing, availability, reliability and energy efficiency. Providing fault-tolerance with techniques other than

replication such as erasure codes [12], are not suitable for Hadoop Framework. Because, replication is not only

useful for fault-tolerance service, but also increases the availability of the data which is essential for Hadoop

like systems. The performance of Hadoop is also based on various other factors, such as block placement, other

than replication. For the sake of simplicity, they are not considered and considering the factors other than

replication is also beyond the scope of this work.

IV. Test Bed
Benchmarking in distributed architecture systems where the performance of your clusters is affected by

many hardware and software components is crucial. Benchmark is the evaluation of the capacity and

performance, measured in many parameters which are yielded as outcome of benchmarking tests. Based on the

results of these parameters we can decide how to tune Hadoop Cluster for best performance. The aim of Hadoop

benchmarks is to push the workload to the limit and find the bottlenecks of cluster, by estimating the cost of

tasks.

Test DFSIO Benchmark is used for testing I/O performance of Hadoop. DFSIO or Distributed

Filesystem Input/Output writes or reads into a specified number of files and sizes. Test DFSIO is used to

evaluate the performance of the through-put, by putting it on a stress test. Stress testing (sometimes called

torture testing) is a form of deliberately intense or thorough testing used to determine the stability of a given

system or entity. It involves testing beyond normal operational capacity, often to a breaking point, in order to

observe the results. This benchmark uses a Map reduce Job to read and

Fig. 1: Topology Diagram

Implementation and Performance Analysis of Apache Hadoop

DOI: 10.9790/0661-1805064858 www.iosrjournals.org 51 | Page

write files into separate map tasks, whose output is used for collecting statistics that are accumulated in the

reduce tasks to produce a summary result. The Benchmark data then is appended to a local file named Test

DFSIO.log and written to standard output.

In short, the four key parameters in their architecture:

Nr Files.

File Size.

result File Name.

Buffer Size.

Expected Output:

Total Throughput Mbps

Average Input/output rate Mbps

Input/output rate standard deviation

Test execution time in seconds

We applied the benchmarks listed above on a Hadoop installed machine, to be able to evaluate the

performance of these benchmarks. Normally, evaluating benchmarks must be done in a real distributed

environment, to be able to extract the key factors when adjusting a Hadoop performance, but in this document

we focused on parameters which can be applied in a single machine and yield some reasonable outcome, based

on which we can conclude their performance. The benchmarking tests were performed in a virtual machine

environment, with a Single Node Hadoop Cluster installed.

Processors: 2 (Intel Core I5- 3532QM CPU 2.50 GHZ) Memory: 2GB

JAVA VERSION: 1.7.0

HADOOP VERSION: 1.2.1 VM TYPE: 64 bit

In this section we will go into the details of the benchmark program TestDFSIO.java in order to

understand how a client creates and submits a Map reduce job in the queue and how the job is processed on the

HDFS. hadoop-1.2.1/bin/hadoop jar TestDFSIO.jar

Usage: Test FDSIO -read j -write j -clean [-nrFiles N] [-file Size MB] [-res File result File- Name] [-buffer Size

Bytes]

1) Client creates control files: At first the client receives the input parameters and creates control files on the

HDFS depending on the parameter -nrFiles (default = 1) with the function createControlFile(fs, fileSize,

nrFiles) 38 . The names of the control files are default in file test io x (x = 0,1,..,N). They are unique and

consist of the file size internally. Accord-ing to these files the client is able to know about the tasks (map

tasks) and input filesize.

2) Client creates and submits a job: The design is that the number of the map tasks are overwritten by the

number of input files (-nrFiles) and each map task performs the operation completely on Data node, which

means the file will be written completely on one Data node. The map function Mapper used here

implements an I/O operation as well as gathers the values of tasks (number of map tasks), size (filesize),

time (executing time), rate and sqrate of each corresponding map tasks and sends them to the Reducer. The

reduced function Reducer counts all the immediate values and save a reduced output file named part-00000

on the HDFS. The Function analyzeResult handles this file and prints out the final values of data

throughput, average IO rate and IO rate standard deviation. After the Reducer receives the outputs of the

Mapper, it sums the intermediate values, calculates Data Throughput (Mb/s), Average IO (Mb/s), Standard

Deviation, etc. and creates reduced output files on the HDFS according to the number of reduced tasks. We

only want to have a single reduced output file on the HDFS consisting all the values we need. So this is the

meaning why the developers code the number of reduced tasks equals 1. Furthermore the client collects

other attributes via files like control files, hadoop-site.xml, hadoop-default.xml, etc. to create job.jar,

job.xml and job.split. Here are the meanings of these files: job.jar includes binary java files for the test, in

this case it is for the class TestDFSIO.java. job.xml includes attributes for the test, e.g. mapred.map.tasks,

mapred.reduce.tasks, dfs.block.size, etc. job.split includes the path to the control files and the java file used

for splitting the input file. These files are useful for creating the job. Then the client deletes these files and

sends the job into the HDFS queue.

3) Master handles jobs via queue: Job trackers and Name nodes daemons are threads running in the

background on HDFS after we start it 18. There is one Thread, namely JobInitThread. This thread gets the

job in sequence from the queue and handles it. According to the number of Map reduce tasks in the job the

Job tracker contacts to the Name node for the nodes on where it should start the Map reduce tasks. The Job

tracker is intelligent to make the job working even the job configuration is bad. For example we have only

m map tasks (configured in hadoop-site.xml), but the number of split data sets is n (n¡m). Each map task

can only work with one split data set.

Implementation and Performance Analysis of Apache Hadoop

DOI: 10.9790/0661-1805064858 www.iosrjournals.org 52 | Page

If the Job tracker starts all of m map tasks, there is m-n map tasks which do nothing. So its wasted and

can occur problems on the HDFS. To avoid it the Job tracker sets them equals as default. Each split data set has

usually many files. The map task will call (or create) for each file a Mapper and this Mapper handles this file. Its

analog to the reduced task. How the Mapper and Reducer work is already described in step 2.

V. Results

The objective of our simulation is to analyze the perfor-mance of small cluster thereby evaluating the

feasibility of this network. We present a measurement study to understand how it performs under different

workloads and types of traffic. The objective is to understand the practicality of the system. The test was

accomplished on the cluster with nine nodes with the configuration: Two nodes for masters (one for Name node,

one for Job tracker) and the remaining nodes are Data nodes.

Each Map reduce task will run on one Data node and the task distribution is made by the Job-Tracker.

A. Test scenarios

The tests deliver the writing/reading performance with the small (512 MB) /big (2 and 4 GB) data set with the

block size 64/128 MB

Write / Read 512 MB with block size 64/128 MB

Write / Read 2 GB with block size 64/128 MB

Write / Read 4 GB with block size 64/128 MB

The measure and belongs to one (map-) tasks. That means if we have five tasks and the measure and is

equal to X Mb/s we will have altogether 5*X MB/s. For all test scenarios the writing/reading performance is

tested three times and a median value will be compared to the other to avoid outliers. To know about the

locations of blocks we can run the fsck tool on the Name node, for instance: hadoop-1.2.1/bin/hadoop fsck path

to file -blocks -files –locations Algorithm

B. Write Operation Throughput Evaluation

1) 512 MB with Block size of 64 MB: The figure 2 refers to the graph for 3 tests taken with a replication

factor of 1 and dateset of 512 MB with a block size of 64 MB. The test is repeated 3 times for taking

throughput and the input/output performance of the system thereby taking the standard deviation and the

mean value.The graph in 2 shows that the average throughput achived is nearly 34 Mbps for the given

dataset and replication factor of 1. A very low standard deviation value fo 0.006 shows that there is not

much difference of throughput among the test values.

2) 2GB with Block size of 64 MB: After the first evaluation test with the 512 MB dataset we increase the

dataset to 2GB and evaluate it against the same block size of 64 MB and the replication factor of 1. The

figure 3 refers to the graph for 3 tests taken with a replication factor of 1 and dateset of 2GB with a block

size of 64 MB. The test is repeated 3 times for taking throughput and the input/output performance of the

system thereby taking the standard deviation and the mean value.The graph in 3 shows that the average

throughput achived is nearly 33 Mbps which is a little lower the the previous test results mentioned in 2 for

the given dataset and replication factor of 1. The standard deviation value of 1.20 is also comparatively

higher for the bigger size of the dataset.

Fig. 2: Write Operation Throughput Evaluation for 512 MB, Block size of 64 MB

Implementation and Performance Analysis of Apache Hadoop

DOI: 10.9790/0661-1805064858 www.iosrjournals.org 53 | Page

Fig. 3: Write Operation Throughput Evaluation for 2GB, Block size of 64 MB

Fig. 4: Write Operation Throughput Evaluation for 4GB, Block size of 64 MB

Fig. 5: Write Operation Throughput Evaluation Summary

Implementation and Performance Analysis of Apache Hadoop

DOI: 10.9790/0661-1805064858 www.iosrjournals.org 54 | Page

3) 4GB with Block size of 64 MB: Now we increase the replication factor to 3 and evaluation test with the

4GB dataset. We evaluate it against the same block size of 64 MB. The figure 4 refers to the graph for 3

tests taken with a replication factor of 3 and dateset of 4GB with a block size of 64 MB. The test is repeated

3 times for taking throughput and the input/output performance of the system thereby taking the standard

deviation and the mean value.The graph in 4 shows that the average throughput achived is nearly 32.2

Mbps which is a little lower the the previous test results mentioned in 2 and 3 for the given dataset and

replication factor of 1.

4) Comparison of Write Performance: Hadoop is designed for clients, which dont run on a Hadoop daemon

itself. If a client performs a writing operation, normally this operation will run on the Name node and it will

split the input data set and spread the split parts across the Data nodes. Otherwise if we want to perform the

writing operation for some reason on any Data nodes internally, this operation will only performed locally

to avoid congestion on the network. The writing performance with both blocksize 64 MB and 128 MB

looks similar to each other. It scales very well with both the small as well as big data set. Writing with a

replicated file logically produces a slower performance. The 5 shows a comparison of all the performed test

to evaluate the write performance. The writing performance of Hadoop scales better than reading with small

data sets. But it doesnt matter because Hadoop is designed for the batch processing on huge data sets. So in

this case its quite fine with the scalability. Furthermore the writing and reading performance are fast. If we

write or read a data set with 20 GB distributed on 5 nodes, we will end up with approximately 160 MB/s

and 181 MB/s. The more data nodes we have, the faster it is.

Fig. 6: Read Operation Throughput Evaluation for 512 MB, Block size of 64 MB

C. Read Operation Throughput Evaluation

1) 512 MB with Block size of 64 MB: The figure 6 refers to the graph for 3 tests taken with a replication

factor of 1 and dateset of 512 MB with a block size of 64 MB. The test is repeated 3 times for taking

throughput and the input/output performance of the system thereby taking the standard deviation and the

mean value. The graph in 6 shows that the average throughput achieved is nearly 70.2 Mbps for the given

dataset and replication factor of 3. A very low standard deviation value of 0.012 shows that there is not

much difference of throughput among the test values.

2) 2GB with Block size of 64 MB: After the first evaluation test with the 512 MB dataset we increase the

dataset to 2GB and evaluate it against the same block size of 64 MB and the replication factor of 3. The

figure 7 refers to the graph for 3 tests taken with a replication factor of 1 and dateset of 2GB with a block

size of 64 MB. The test is repeated 3 times for taking throughput and the input/output performance of the

system thereby taking the standard deviation and the mean value.The graph in 7 shows that the average

throughput achieved is nearly 67 Mbps which is a little lower the the previous test results mentioned in 6

for the given dataset and replication factor of 1. The standard deviation value of 0.011 is also comparatively

higher for the bigger size of the dataset.

3) 4GB with Block size of 64 MB: Now we keep the replication factor to 3 and evaluation test with the 4GB

dataset. We evaluate it against the same block size of 64 MB. The figure 8 refers to the graph for 3 tests

Implementation and Performance Analysis of Apache Hadoop

DOI: 10.9790/0661-1805064858 www.iosrjournals.org 55 | Page

taken with a replication factor of 3 and dateset of 4GB with a block size of 64 MB. The test is repeated 3

times for taking throughput and the input/output performance of the system thereby taking the standard

deviation and the mean value.The graph in 8 shows that the average throughput achived is nearly 53 Mbps

which is lower the the previous test results mentioned in 6 and 7 for the given dataset and replication factor

of 3.

Fig. 7: Read Operation Throughput Evaluation for 2GB, Block size of 64 MB

51

Fig. 8: Read Operation Throughput Evaluation for 4GB, Block size of 64 MB

4) 512 MB, 2GB, 4GB with Block size of 128 MB: In the following experiments we analyse the results by

comparison with the increased block size of 128 MB. The figures 9, 10, 11 refers to the graph for 3 tests

taken with a replication factor of 3 and dateset of 512 MB, 2GB and 4GB with a bigger block size of 128

MB. The test is repeated 3 times for taking throughput and the input/output performance of the system

thereby taking the standard deviation and the mean value. The graph in 9, 10, 11 is 68, 65 and 58 Mbps

which is showing a gradual decreasing trend in the throughput values and shows that the average

throughput achieved is nearly 65 Mbps for the given dataset and replication factor of 3. A very low standard

deviation value of 0.009 shows that there is not much difference of throughput among the test values.

Implementation and Performance Analysis of Apache Hadoop

DOI: 10.9790/0661-1805064858 www.iosrjournals.org 56 | Page

Fig. 9: Read Operation Throughput Evaluation for 512 MB, Block size of 128 MB

Fig. 10: Read Operation Throughput Evaluation for 2GB, Block size of 128 MB

5) Read Operation performance Evaluation: The reading performance with both block size 64 MB and 128

MB looks similar to each other too and faster than the writing. The reading performance with small files

(e.g. 512 MB) is faster than with the big data set (e.g. 2 and 4 GB). Reading with a replicated file logically

produces a slower performance. The 12 describes a comparison of all the read tests in the results and

produces and graphs of throughput with respect to dataset size and the block size.

VI. Conclusion
In this paper, we have evaluated the performance of an a small hadoop cluster. We built a simulated

environment of a hadoop cluster comprising of name nodes and data nodes. To measure the performance we set

up a Hadoop cluster with 9 nodes and use the fileTestDFSIO.java of the Hadoop version 1.2.1 which gives us

the data throughput, average I/O rate and I/O rate standard deviation. The HDFS writing performance scales

well on both small and big data set. The average HDFS reading performance scales well on big data set where it

is - however - lower than on the small data set. The more nodes a writing/reading operation is run on, the faster

its performance is.

Implementation and Performance Analysis of Apache Hadoop

DOI: 10.9790/0661-1805064858 www.iosrjournals.org 57 | Page

Fig. 11: Read Operation Throughput Evaluation for 4GB, Block size of 128 MB

Fig. 12: Read Operation Throughput Evaluation Summary

Our results show that the writing performance of Hadoop scales better than reading with small data

sets. But it doesnt matter because Hadoop is designed for the batch processing on huge data sets. So in this case

its quite fine with the scalability. Furthermore the writing and reading performance are fast. If we write or read a

data set with 20 GB distributed on 5 nodes, we will end up with approximately 160 MB/s and 181 MB/s. The

more data nodes we have, the faster it is. In comparison with the local file system on the cluster the HDFS

writing/reading performance is lower approximately 25 to 30 percent. The loss of HDFS performance is caused

by the HDFS management and maybe Java IO overhead. Hadoop allows writing/reading parallel on all data

nodes like other distributed file system. In addition, with Map reduce it is possible to perform Map reduce

operations parallel and flexibly depending on users purposes.

References
[1] C. V. N. Index, “Forecast and methodology, 2014-2019 white paper,” Retrieved 23rd September, 2015.
[2] P. Zikopoulos, C. Eaton et al., Understanding big data: Analytics for enterprise class hadoop and streaming data. McGraw-Hill

Osborne Media, 2011.

[3] J. Dittrich and J.-A. Quiane´-Ruiz, “Efficient big data processing in hadoop mapreduce,” Proceedings of the VLDB Endowment,
vol. 5, no. 12, pp. 2014–2015, 2012.

[4] T. Hey, S. Tansley, K. M. Tolle et al., The fourth paradigm: data-intensive scientific discovery. Microsoft research Redmond, WA,

2009, vol. 1.
[5] H. Liao, J. Han, and J. Fang, “Multi-dimensional index on hadoop distributed file system,” in Networking, Architecture and Storage

(NAS), 2010 IEEE Fifth International Conference on. IEEE, 2010, pp. 240– 249.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Communications of the ACM, vol. 51, no. 1,

Implementation and Performance Analysis of Apache Hadoop

DOI: 10.9790/0661-1805064858 www.iosrjournals.org 58 | Page

pp. 107–113, 2008.

[7] F. Wang, J. Qiu, J. Yang, B. Dong, X. Li, and Y. Li, “Hadoop high availability through metadata replication,” in Proceedings of the

first international workshop on Cloud data management. ACM, 2009, pp. 37–44.
[8] L.-W. Lee, P. Scheuermann, and R. Vingralek, “File assignment in parallel i/o systems with minimal variance of service time,”

IEEE Transactions on Computers, vol. 49, no. 2, pp. 127–140, 2000.

[9] W. Li, Y. Yang, and D. Yuan, “A novel cost-effective dynamic data replication strategy for reliability in cloud data centres,” in
Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth Interna-tional Conference on. IEEE, 2011, pp. 496–502.

[10] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “Cdrm: A cost-effective dynamic replication management scheme for cloud

storage cluster,” in 2010 IEEE international conference on cluster computing. IEEE, 2010, pp. 188–196.
[11] S.-Q. Long, Y.-L. Zhao, and W. Chen, “Morm: A multi-objective optimized replication management strategy for cloud storage

cluster,” Journal of Systems Architecture, vol. 60, no. 2, pp. 234–244, 2014.

[12] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench bench-mark suite: Characterization of the mapreduce-based data

analysis,” in New Frontiers in Information and Software as Services. Springer, 2011, pp. 209–228.

