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Abstract: With the Internet and data growth increasing trends, big data is becoming an extremely important 

and challenging problem for Data Centers. Many platforms and frameworks are working to bring a cutting edge 

technology to this problem. Apache Hadoop is a software framework addressing the big-data processing and 

storing on clusters, providing reliability, scala-bility and distributed computing. Hadoop has a distributed file 

system to store vast amount of data in distributed environments, and uses Map reduce algorithm to perform the 

computations and process large amount of data, by parallelizing the workload and storage. In comparison to 

other relational database systems, Hadoop works well with unstructured data. Our work is focused on 

performance evaluation of benchmarks of Hadoop, which are crucial for testing the infrastructure of the 

clusters. Taking into consideration the sensitiveness and importance of data, it’s inevitable testing the clusters 

and distributed systems before deploying. The benchmark results can lead to optimizing the parameters for an 

enhanced performance tuning of the cluster. In this paper, we are motivated to study and evaluate the 

performance of Hadoop and a comprehensive listing of bench-marks used to test Hadoop, while providing 

detailed information for their appliance and procedures to run them. We construct a distributed hadoop cluster 

simulation based on VmWare Workstation consisted of multiple nodes running hadoop. we have conducted a 

measurement study on the performance evaluation of hadoop cluster simulation under multiple scenarios. Our 

results demonstrates the trade-off between performance and flexibility. This evaluation study is focused on the 

throughput performance comparisons under different scenarios. The Hadoop performance has been evaluated 

for different size of data sets in this simulation. To measure the performance we set up a Hadoop cluster with 

many nodes and use the fileTestDFSIO.java of the Hadoop version 1.2.1 which gives us the data throughput, 

average I/O rate and I/O rate standard deviation. Our results demonstrates that the HDFS writing performance 

scales well on both small and big data set. The average HDFS reading performance scales well on big data set 

where it is, however, lower than on the small data set. The more nodes a writing/reading operation is run on, 

the faster its performance is. 

Index Terms: Hadoop; Big data; Benchmark; Distributed file system 

 

I. Introduction 

Cloud computing and big data networks has become one of the key part of the content delivery 

technology since the past decade. The demands on cloud for functionality and scalability are growing due to the 

rapid proliferation of new network devices and applications which are generating huge amount of data to be 

stored and processed at the cloud. 

The enormous changes in technology and electronic user devices requires the efficient and fast data 

retrieval from the data centers as well as the reduced processing time. It is expected that annual global data 

center IP traffic will reach 10.4 zettabytes (863 exabytes [EB] per month) by the end of 2019, up from 3.4 

zettabytes (ZB) per year (287 EB per month) in 2014. Global data center IP traffic will grow 3-fold over the 

next 5 years according to Cisco statistics[1]. Overall, data center IP traffic will grow at a compound annual 

growth rate (CAGR) of 25 percent from 2014 to 2019. This dramatic increase in traffic suggests to improve the 

cloud in terms of reliability and performance. Hadoop is a software used for distributed infrastructures with 

particular focus on big data, ensuring scalability and reliability for distributed data centers. Hadoop has its own 

file system, Hadoop File system or HDFS that differs from other filesystem due its large block size, which was 

designed to be robust to many problems that other Distributed File systems couldnt handle such as fault 

tolerance, reliability and scalability. Distributed systems have existed before, but with Hadoop the data and 

work are automatically distributed across machines and the CPU usage are parallelized. As most distributed file 

system, HDFS is based in an architecture where data is separated from the namespace [2]. HDFS is a best effort 

solution to fault tolerance in a very large data center. Its purpose is to distribute large amount of data across 

many machines (nodes). As an input Hadoop receives a very large file and divides it into chunks called blocks, 

which then are stored and replicated across different machines. So when a machine in the distributed 

environment will fail due to some problem, HDFS will provide the missing blocks which were replicated in 

some other machines. In this way HDFS ensures reliability so end users won’t be affected by a single machine 

failure since data is distributed. Although Hadoop is a recently developed framework, there are great 

expectations in its quick development and spreading in the near future [3]. First hand users of Hadoop have 
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confessed that there are still many areas of improvement to the software in regards to security, administration, 

availability and others. However, the open source community is continuously addressing these issues and is also 

steadily contributing to improving Hadoop products which leads to anticipating greater capabilities and usage of 

the software in the next years. 

 

II. Background 
Todays most successful internet applications, from search engine to social network, greatly rely on 

large scale data processing. Meanwhile, in academia, sheer volume data sets analysis has become a popular 

methodology and the fourth paradigm for modern scientific discoveries [4]. Moreover, the Big Data processing 

capacity has become the killer ability of some startup internet companies, especially for those providing the 

social network applications and business intelligence services. 

 

A. Hadoop Distributed File System (HDFS) 

Hadoop is a project develops open-source software for reli-able, scalable, distributed computing. It 

consists four module: 1) Map Reduce, a system for parallel processing of large data sets; 2) HDFS, a distributed 

file system that provides high throughput access to application data; 3)YARN, a framework for job scheduling 

and cluster resource management; 4) Com-mon, the common utilities that support the other Hadoop modules. 

The Hadoop Distributed File System (HDFS), an Apache Hadoop subproject, is a highly fault-tolerant 

distributed file system designed to provide high throughput access to appli-cation data and is suitable for 

applications with extremely large data files (Petabytes and up) on a distributed network of computers[5]. 

A HDFS cluster consists two kinds of nodes: (a) a single Name Node that works on master server and 

maintain the meta-data structure of HDFS namespace includes opening, saving, retrieving, closing and renaming 

files and directories. It de-termines the mapping between files and blocks to Data Nodes, and (b) a number of 

Data Nodes manage storage attached to the nodes. The Data Nodes serve read and write requests from the 

HDFS clients. Data file is split into one or more blocks, and these blocks are stored in a set of different Data 

Nodes. The Data Nodes also perform block creation, deletion, and replication upon instruction cooperating with 

the Name Node. There are four operation of typical jobs involving HDFS: 1) client send a read comment to the 

Name Node, the Name Node then send back metadata to the client in order to confirm the process; 2) Name 

Node send metadata to the Data Nodes; 3) Data Nodes read and write the metadata; 4) requested data is sent 

back from the Data Nodes to the client via network. The critical factors in the process need to be probed and 

adjusted in order to improve the total performance in cloud computing. 

 

B. Map Reduce Framework 

Map Reduce was developed by Google as a new framework for processing large data sets. The original 

Map Reduce soft-ware framework is not publicly available, but several open-source alternatives such as Hadoop 

Map Reduce do exist and is available for the public to use [6]. The Hadoop Map Reduce is the parallel 

computation mechanism that is used to realize the transparency about the complexity of parallelization, data 

distribution, fault-tolerance, and load balancing to developers, which can be used to focus on developing the 

actual algorithm. 

Two major functions, Map and Reduce are specified in user program respectively. Although neither 

function is explicitly parallel, many instances of these functions are allocated and executed concurrently by the 

framework. A master node allocates Map and Reduce tasks to worker nodes for execute client program. The 

input files, stored in HDFS, are fetched and split into data chunks. The following steps are then required for 

Map Reduce framework to complete the requested jobs: 1) data chunks are distributed to parallel Map tasks for 

processing, then key/value records are generated and stored in intermediate files. No communication is allowed 

due to parallel Map processing tasks, 2) the output intermediate file are copied to Reduce tasks nodes, 3) 

according to the key/value, Sort function is then executed, 4) the Reduce function is accomplished, multiple 

outputs are then finally created. Data locality of Map/Copy/Sort/Reduce function is the one of critical factors in 

Map Reduce processing, such as distance between storage and compute nodes that is across networks, racks or 

nodes. For Map executing phase, the node executing the Map tasks should be close to the node that stores the 

input data (preferably local to the same node). For Sort phase, it is required to move the intermediate data 

generated by the Map tasks to the Reduce tasks as their input. For Reduce phase, the node executing Reduce 

tasks should be close to the Map tasks nodes which generate the intermediate file used as Reduce tasks input. 

The data locality issues can cause a massive 

 

III. Related Work 
Much of the work concentrates on Meta data for taking scheduling decisions. However, the inherent 

knowledge gained during scheduling is not considered much for improving data related throughput and response 

time. Hadoop is originally designed and configured for batch oriented jobs. Due to the widespread adoption of 
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Hadoop by various industries and academia for simplicity and scalability, several real-time user facing 

applications are executed on Hadoop platform. Main-taining fixed number of replicas for blocks leads to heavy 

load on popular blocks which affects the jobs response time. To provide better user experience, the availability 

of blocks is to be maintained at high level. Sometimes the terms file and block are used interchangeably. [7] 

proposed a method to increase the availability of Hadoop through metadata replication. To avoid single point of 

failure, all required metadata of critical nodes are replicated into backup node(s). This work only concentrating 

on metadata replication to overcome from failure and does not consider the replication of applications data. In 

[8], two heuristics are proposed to solve the file allocation problem in parallel I/O systems. The load balance 

across all disks and variance of the service time at each disks are simultaneously minimized to achieve better 

response time. The product of file access rate and service time, called heat of the file, is used as an objective 

function. In case of HDFS, files are stored as a fixed size blocks and hence, the service time may probably same 

for all blocks. The metrics such as service times are not suitable in HDFS and the work only considers the 

problem of file allocation not replication. Jiong Xie et al. [8] presented a data placement method to balance the 

processing load among the nodes in heterogeneous Hadoop clusters. However, replication is not considered in 

their work. Wenhao Li et al. [10] proposed an incremental replication strategy to meet reliability requirement 

and reduce the storage cost. This work aims to meet required reliability and works well for temporary data or 

data with low reliability requirement. The high availability requirements of popular data blocks and load 

balancing are not considered. Q. Wei et al. [9] proposed a model to capture the relationship between availability 

and replica number. This method dynamically maintains required number of replicas to meet a given availability 

requirement. Sai-Qin et al. proposed a multi-objective replication strategy for cloud storage cluster [10] which is 

closest to our work. The objective function includes mean file unavailability, mean service time, load variance, 

energy consumption and mean latency. The artificial immune algorithm is used to finding replication factor and 

replica placement. The main problem here is setting proportionate values of objectives for getting an optimal 

solution. This work also does not consider the dynamic workload and load balancing. Several other works [11] 

are presented to optimize the replication in distributed file systems. Some of them aim to optimize the replica 

number and some of them concentrates on replica placement with respect to various goals such as load 

balancing, availability, reliability and energy efficiency. Providing fault-tolerance with techniques other than 

replication such as erasure codes [12], are not suitable for Hadoop Framework. Because, replication is not only 

useful for fault-tolerance service, but also increases the availability of the data which is essential for Hadoop 

like systems. The performance of Hadoop is also based on various other factors, such as block placement, other 

than replication. For the sake of simplicity, they are not considered and considering the factors other than 

replication is also beyond the scope of this work. 

 

IV. Test Bed 
Benchmarking in distributed architecture systems where the performance of your clusters is affected by 

many hardware and software components is crucial. Benchmark is the evaluation of the capacity and 

performance, measured in many parameters which are yielded as outcome of benchmarking tests. Based on the 

results of these parameters we can decide how to tune Hadoop Cluster for best performance. The aim of Hadoop 

benchmarks is to push the workload to the limit and find the bottlenecks of cluster, by estimating the cost of 

tasks. 

Test DFSIO Benchmark is used for testing I/O performance of Hadoop. DFSIO or Distributed 

Filesystem Input/Output writes or reads into a specified number of files and sizes. Test DFSIO is used to 

evaluate the performance of the through-put, by putting it on a stress test. Stress testing (sometimes called 

torture testing) is a form of deliberately intense or thorough testing used to determine the stability of a given 

system or entity. It involves testing beyond normal operational capacity, often to a breaking point, in order to 

observe the results. This benchmark uses a Map reduce Job to read and 

 

 
Fig. 1: Topology Diagram 
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write files into separate map tasks, whose output is used for collecting statistics that are accumulated in the 

reduce tasks to produce a summary result. The Benchmark data then is appended to a local file named Test 

DFSIO.log and written to standard output. 

In short, the four key parameters in their architecture: 

Nr Files.  

File Size.  

result File Name. 

Buffer Size.  

Expected Output: 

Total Throughput Mbps  

Average Input/output rate Mbps  

Input/output rate standard deviation 

Test execution time in seconds  

 

We applied the benchmarks listed above on a Hadoop installed machine, to be able to evaluate the 

performance of these benchmarks. Normally, evaluating benchmarks must be done in a real distributed 

environment, to be able to extract the key factors when adjusting a Hadoop performance, but in this document 

we focused on parameters which can be applied in a single machine and yield some reasonable outcome, based 

on which we can conclude their performance. The benchmarking tests were performed in a virtual machine 

environment, with a Single Node Hadoop Cluster installed. 

 

Processors: 2 (Intel Core I5- 3532QM CPU 2.50 GHZ) Memory: 2GB  

JAVA VERSION: 1.7.0  

HADOOP VERSION: 1.2.1 VM TYPE: 64 bit  

In this section we will go into the details of the benchmark program TestDFSIO.java in order to 

understand how a client creates and submits a Map reduce job in the queue and how the job is processed on the 

HDFS. hadoop-1.2.1/bin/hadoop jar TestDFSIO.jar 

Usage: Test FDSIO -read j -write j -clean [-nrFiles N] [-file Size MB] [-res File result File- Name] [-buffer Size 

Bytes] 

1) Client creates control files: At first the client receives the input parameters and creates control files on the 

HDFS depending on the parameter -nrFiles (default = 1) with the function createControlFile(fs, fileSize, 

nrFiles) 38 . The names of the control files are default in file test io x (x = 0,1,..,N). They are unique and 

consist of the file size internally. Accord-ing to these files the client is able to know about the tasks (map 

tasks) and input filesize.  

2) Client creates and submits a job: The design is that the number of the map tasks are overwritten by the 

number of input files (-nrFiles) and each map task performs the operation completely on Data node, which 

means the file will be written completely on one Data node. The map function Mapper used here 

implements an I/O operation as well as gathers the values of tasks (number of map tasks), size (filesize), 

time (executing time), rate and sqrate of each corresponding map tasks and sends them to the Reducer. The 

reduced function Reducer counts all the immediate values and save a reduced output file named part-00000 

on the HDFS. The Function analyzeResult handles this file and prints out the final values of data 

throughput, average IO rate and IO rate standard deviation. After the Reducer receives the outputs of the 

Mapper, it sums the intermediate values, calculates Data Throughput (Mb/s), Average IO (Mb/s), Standard 

Deviation, etc. and creates reduced output files on the HDFS according to the number of reduced tasks. We 

only want to have a single reduced output file on the HDFS consisting all the values we need. So this is the 

meaning why the developers code the number of reduced tasks equals 1. Furthermore the client collects 

other attributes via files like control files, hadoop-site.xml, hadoop-default.xml, etc. to create job.jar, 

job.xml and job.split. Here are the meanings of these files: job.jar includes binary java files for the test, in 

this case it is for the class TestDFSIO.java. job.xml includes attributes for the test, e.g. mapred.map.tasks, 

mapred.reduce.tasks, dfs.block.size, etc. job.split includes the path to the control files and the java file used 

for splitting the input file. These files are useful for creating the job. Then the client deletes these files and 

sends the job into the HDFS queue.  

3) Master handles jobs via queue: Job trackers and Name nodes daemons are threads running in the 

background on HDFS after we start it 18. There is one Thread, namely JobInitThread. This thread gets the 

job in sequence from the queue and handles it. According to the number of Map reduce tasks in the job the 

Job tracker contacts to the Name node for the nodes on where it should start the Map reduce tasks. The Job 

tracker is intelligent to make the job working even the job configuration is bad. For example we have only 

m map tasks (configured in hadoop-site.xml), but the number of split data sets is n (n¡m). Each map task 

can only work with one split data set.  
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If the Job tracker starts all of m map tasks, there is m-n map tasks which do nothing. So its wasted and 

can occur problems on the HDFS. To avoid it the Job tracker sets them equals as default. Each split data set has 

usually many files. The map task will call (or create) for each file a Mapper and this Mapper handles this file. Its 

analog to the reduced task. How the Mapper and Reducer work is already described in step 2. 

 

V. Results 

The objective of our simulation is to analyze the perfor-mance of small cluster thereby evaluating the 

feasibility of this network. We present a measurement study to understand how it performs under different 

workloads and types of traffic. The objective is to understand the practicality of the system. The test was 

accomplished on the cluster with nine nodes with the configuration: Two nodes for masters (one for Name node, 

one for Job tracker) and the remaining nodes are Data nodes. 

Each Map reduce task will run on one Data node and the task distribution is made by the Job-Tracker. 

 

A. Test scenarios 

The tests deliver the writing/reading performance with the small (512 MB) /big (2 and 4 GB) data set with the 

block size 64/128 MB 

Write / Read 512 MB with block size 64/128 MB  

Write / Read 2 GB with block size 64/128 MB  

Write / Read 4 GB with block size 64/128 MB  

 

The measure and belongs to one (map-) tasks. That means if we have five tasks and the measure and is 

equal to X Mb/s we will have altogether 5*X MB/s. For all test scenarios the writing/reading performance is 

tested three times and a median value will be compared to the other to avoid outliers. To know about the 

locations of blocks we can run the fsck tool on the Name node, for instance: hadoop-1.2.1/bin/hadoop fsck path 

to file -blocks -files –locations Algorithm 

 

B. Write Operation Throughput Evaluation 

1) 512 MB with Block size of 64 MB: The figure 2 refers to the graph for 3 tests taken with a replication 

factor of 1 and dateset of 512 MB with a block size of 64 MB. The test is repeated 3 times for taking 

throughput and the input/output performance of the system thereby taking the standard deviation and the 

mean value.The graph in 2 shows that the average throughput achived is nearly 34 Mbps for the given 

dataset and replication factor of 1. A very low standard deviation value fo 0.006 shows that there is not 

much difference of throughput among the test values. 

2) 2GB with Block size of 64 MB: After the first evaluation test with the 512 MB dataset we increase the 

dataset to 2GB and evaluate it against the same block size of 64 MB and the replication factor of 1. The 

figure 3 refers to the graph for 3 tests taken with a replication factor of 1 and dateset of 2GB with a block 

size of 64 MB. The test is repeated 3 times for taking throughput and the input/output performance of the 

system thereby taking the standard deviation and the mean value.The graph in 3 shows that the average 

throughput achived is nearly 33 Mbps which is a little lower the the previous test results mentioned in 2 for 

the given dataset and replication factor of 1. The standard deviation value of 1.20 is also comparatively 

higher for the bigger size of the dataset. 

 

 
Fig. 2: Write Operation Throughput Evaluation for 512 MB, Block size of 64 MB 
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Fig. 3: Write Operation Throughput Evaluation for 2GB, Block size of 64 MB 

 

 
Fig. 4: Write Operation Throughput Evaluation for 4GB, Block size of 64 MB 

 

 
Fig. 5: Write Operation Throughput Evaluation Summary 
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3) 4GB with Block size of 64 MB: Now we increase the replication factor to 3 and evaluation test with the 

4GB dataset. We evaluate it against the same block size of 64 MB. The figure 4 refers to the graph for 3 

tests taken with a replication factor of 3 and dateset of 4GB with a block size of 64 MB. The test is repeated 

3 times for taking throughput and the input/output performance of the system thereby taking the standard 

deviation and the mean value.The graph in 4 shows that the average throughput achived is nearly 32.2 

Mbps which is a little lower the the previous test results mentioned in 2 and 3 for the given dataset and 

replication factor of 1.  

4) Comparison of Write Performance: Hadoop is designed for clients, which dont run on a Hadoop daemon 

itself. If a client performs a writing operation, normally this operation will run on the Name node and it will 

split the input data set  and spread the split parts across the Data nodes. Otherwise if we want to perform the 

writing operation for some reason on any Data nodes internally, this operation will only performed locally 

to avoid congestion on the network. The writing performance with both blocksize 64 MB and 128 MB 

looks similar to each other. It scales very well with both the small as well as big data set. Writing with a 

replicated file logically produces a slower performance. The 5 shows a comparison of all the performed test 

to evaluate the write performance. The writing performance of Hadoop scales better than reading with small 

data sets. But it doesnt matter because Hadoop is designed for the batch processing on huge data sets. So in 

this case its quite fine with the scalability. Furthermore the writing and reading performance are fast. If we 

write or read a data set with 20 GB distributed on 5 nodes, we will end up with approximately 160 MB/s 

and 181 MB/s. The more data nodes we have, the faster it is. 

 

 
Fig. 6: Read Operation Throughput Evaluation for 512 MB, Block size of 64 MB 

 

 

C. Read Operation Throughput Evaluation 

1) 512 MB with Block size of 64 MB: The figure 6 refers to the graph for 3 tests taken with a replication 

factor of 1 and dateset of 512 MB with a block size of 64 MB. The test is repeated 3 times for taking 

throughput and the input/output performance of the system thereby taking the standard deviation and the 

mean value. The graph in 6 shows that the average throughput achieved is nearly 70.2 Mbps for the given 

dataset and replication factor of 3. A very low standard deviation value of 0.012 shows that there is not 

much difference of throughput among the test values. 

2) 2GB with Block size of 64 MB: After the first evaluation test with the 512 MB dataset we increase the 

dataset to 2GB and evaluate it against the same block size of 64 MB and the replication factor of 3. The 

figure 7 refers to the graph for 3 tests taken with a replication factor of 1 and dateset of 2GB with a block 

size of 64 MB. The test is repeated 3 times for taking throughput and the input/output performance of the 

system thereby taking the standard deviation and the mean value.The graph in 7 shows that the average 

throughput achieved is nearly 67 Mbps which is a little lower the the previous test results mentioned in 6 

for the given dataset and replication factor of 1. The standard deviation value of 0.011 is also comparatively 

higher for the bigger size of the dataset.  

3) 4GB with Block size of 64 MB: Now we keep the replication factor to 3 and evaluation test with the 4GB 

dataset. We evaluate it against the same block size of 64 MB. The figure 8 refers to the graph for 3 tests 
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taken with a replication factor of 3 and dateset of 4GB with a block size of 64 MB. The test is repeated 3 

times for taking throughput and the input/output performance of the system thereby taking the standard 

deviation and the mean value.The graph in 8 shows that the average throughput achived is nearly 53 Mbps 

which is lower the the previous test results mentioned in 6 and 7 for the given dataset and replication factor 

of 3. 

 

 
Fig. 7: Read Operation Throughput Evaluation for 2GB, Block size of 64 MB 

 

 
51 

Fig. 8: Read Operation Throughput Evaluation for 4GB, Block size of 64 MB 

 

4) 512 MB, 2GB, 4GB with Block size of 128 MB: In the following experiments we analyse the results by 

comparison with the increased block size of 128 MB. The figures 9, 10, 11 refers to the graph for 3 tests 

taken with a replication factor of 3 and dateset of 512 MB, 2GB and 4GB with a bigger block size of 128 

MB. The test is repeated 3 times for taking throughput and the input/output performance of the system 

thereby taking the standard deviation and the mean value. The graph in 9, 10, 11 is 68, 65 and 58 Mbps 

which is showing a gradual decreasing trend in the throughput values and shows that the average 

throughput achieved is nearly 65 Mbps for the given dataset and replication factor of 3. A very low standard 

deviation value of 0.009 shows that there is not much difference of throughput among the test values. 
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Fig. 9: Read Operation Throughput Evaluation for 512 MB, Block size of 128 MB 

 

 
Fig. 10: Read Operation Throughput Evaluation for 2GB, Block size of 128 MB 

 

5) Read Operation performance Evaluation: The reading performance with both block size 64 MB and 128 

MB looks similar to each other too and faster than the writing. The reading performance with small files 

(e.g. 512 MB) is faster than with the big data set (e.g. 2 and 4 GB). Reading with a replicated file logically 

produces a slower performance. The 12 describes a comparison of all the read tests in the results and 

produces and graphs of throughput with respect to dataset size and the block size. 

 

VI. Conclusion 
In this paper, we have evaluated the performance of an a small hadoop cluster. We built a simulated 

environment of a hadoop cluster comprising of name nodes and data nodes. To measure the performance we set 

up a Hadoop cluster with 9 nodes and use the fileTestDFSIO.java of the Hadoop version 1.2.1 which gives us 

the data throughput, average I/O rate and I/O rate standard deviation. The HDFS writing performance scales 

well on both small and big data set. The average HDFS reading performance scales well on big data set where it 

is - however - lower than on the small data set. The more nodes a writing/reading operation is run on, the faster 

its performance is. 
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Fig. 11: Read Operation Throughput Evaluation for 4GB, Block size of 128 MB 

 

 
Fig. 12: Read Operation Throughput Evaluation Summary 

 

Our results show that the writing performance of Hadoop scales better than reading with small data 

sets. But it doesnt matter because Hadoop is designed for the batch processing on huge data sets. So in this case 

its quite fine with the scalability. Furthermore the writing and reading performance are fast. If we write or read a 

data set with 20 GB distributed on 5 nodes, we will end up with approximately 160 MB/s and 181 MB/s. The 

more data nodes we have, the faster it is. In comparison with the local file system on the cluster the HDFS 

writing/reading performance is lower approximately 25 to 30 percent. The loss of HDFS performance is caused 

by the HDFS management and maybe Java IO overhead. Hadoop allows writing/reading parallel on all data 

nodes like other distributed file system. In addition, with Map reduce it is possible to perform Map reduce 

operations parallel and flexibly depending on users purposes. 
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