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Abstract: A typical wireless sensor network consists of several tiny and low-power sensors which use radio 

frequencies to perform distributed sensing tasks. Wireless sensor networks are used to detect the occurrence of 

events such as fires, intruders, or heart attacks, malicious data can be injected to create fake events, and thus 

trigger an undesired response, or to mask the occurrence of actual events. In this project we consider directly 

the scenario where an attacker gains full control of one or more sensors and can run arbitrary malware on them 

to fabricate new measurements and report them in place of the observed ones. Our base work only concentrated 

on the malicious data injection, we enhanced our base work with detecting the sink hole attack and avoiding the 

sink hole node to transfer the data. 
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I. Introduction. 
A wireless sensor network consists of sensor nodes capable of collecting information from the 

environment and communicating with each other via wireless transceivers. The collected data will be delivered 

to one or more sinks, generally via multi-hop communication. The sensor nodes are typically expected to 

operate with batteries and are often deployed to not-easily-accessible or hostile environment, sometimes in large 

quantities. It can be difficult or impossible to replace the batteries of the sensor nodes. On the other hand, the 

sink is typically rich in energy.  

 

II. Design 
There are three basic modules of design that are necessary for the detection of malicious node in a WSN. They 

are: 

1) Estimation 

2) Similarity check. 

3) Characterization. 

 

 
Fig.1. Outline of the system. 

 

1) ESTIMATION 

The estimation process consist of estimating the other nodes values, through which a trust based 

mechanism can be established between the nodes and the network to know which node has a possibility of being 

tampered with and the possibility of being a malicious node. 

Consider a node Si, which releases a value of i. here, the value released by the node Si, has to be 

estimated by the other neighboring nodes, in order to create a basic trust within the network. This can be done 

by using two types of estimation processes. 

a) Pair-estimation. 

b) Aggregate estimation. 

 

a) Pair Estimation 

The pair estimation process is done by creating clusters of nodes within the network and selecting the 

cluster heads for the clusters. 
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The process of selecting the cluster head is to calculate the mean and mode of the estimated value in 

estimation. The measurements of two sensors are related, and in particular spatially correlated, because the 

sensed physical phenomena affect and propagate across the environment in which the sensors are placed. 

Ideally, the relationship could be characterized in a mathematically precise way, given by the laws of the 

physical phenomenon and its propagation.  

 

Algorithm 1 Estimation models calculation 

Input: Oi i ∈S 

Output: (aij, bij) ∀i ≠j 

1: {Initialization: align the measurements with the inter-sensor delay} 

2: for all i ∈S do 

3: for all j ∈N(i) do {N(i) indicates i‘s neighbors} 

4: aij= cov(Oi,Oj)/var(Oi) 

5: bij= E[Oi] − aijE[Oj] 

6: store (aij, bij) 

7: end for 

8: end for 

 

b) Estimate Aggregation 

For every new measurement collected by a sensor, multiplepairwise estimates are calculated through 

the estimation models.At this point we aggregate them into a final estimate ˆOithat approximates Oiand allows 

us to detect the presence ofmalicious data injections. To achieve this, ˆOimust aggregate estimates in a way that 

is both accurate andminimally corruptedby malicious estimates. In particular, the second requirementdemands 

us to not trust the relationships between differentestimates. Indeed, different estimates for the same 

measurementsshare some mutual information, or in other words theinformation brought in by an estimate is 

reduced by knowledge of other estimates. Nevertheless, such property holds only in theabsence of malicious 

interference. With respect to malicious data injections instead, even two estimates that are expectedto be 

perfectly correlated bring in independent information,since we assume independent probabilities of compromise 

fordifferent nodes. For this reason, our weighting scheme does notconsider inter-estimate correlation. 

Two candidates to aggregate pairwise estimates are weightedmean and the weighted median: both take 

as input a set ofestimates and their prior weights and return an aggregatedvalue. The weighted mean can achieve 

a smaller error thanthose of the single estimates. However, it is highly sensitiveto compromise, since the final 

result is proportional to the input values: even one compromised (outlier) estimate canintroduce an arbitrary 

deviation in the result. In contrast, theweighted median is more resistant to compromise. It first sorts the values 

ascendingly,then arranges the weights withthe same order, transforms them into substrings with a length 

proportional to the weight and picks the element at the half-lengthof the resulting string. Its drawback is that by 

pickingone among all estimates, the error cannot be reduced further. 

Since there is a trade-off between accuracy and compromiseresistance, we propose to combine the two 

operators with thefollowing heuristic: first, the weighted median operator is applied; then the weighted mean is 

calculated with new weights,the posterior weights (w+ij), obtained as the prior weights times a function which 

penalizes values distant from the result ofthe first step. Such function is the complementary 

cumulativedistribution function of the estimation error, where the latter iscalculated as the difference between 

the pairwise estimates and the result of the weighted median. 

 

pij(ˆO’, ˆOij)=P(|ϵij| >|ˆOˋi− ˆOij|) 

=1−erf|ˆOˋi−ˆOij| 

√2std(ϵij) (2) 

 

Where erfis the error function and std(ϵij) is the residualstandard deviation, calculated together with the 

respectiveestimation model. The overall procedure is detailed inAlgorithm 2 below, where ˆOiN(i) are the 

estimates for i‘sobserved measurement from its neighbors and w−iN(i) are theirrespective prior weights. 

 

Algorithm 2 Calculation of the aggregated estimation 

Input: w−iN(i), ˆOiN(i) 

Output: ˆOi 

1: ˆOˋi= weightedMedian(w−iN(i),ˆOiN(i)) 

2: for all j ∈N(i) do {Calculate the posterior weights} 

3: w+ij= w−ij· pij(ˆOˋ, ˆOij) 

4: w+iN(i).append(w+ij ) 
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5: end for 

6: w+iN(i)=w+iN(i) 

    ∑j∈N(i) w+ij 

7: ˆOi= weightedMean(w+iN(i), ˆOiN(i)) 

8: return ˆOi 

 

To control the aggregation result, an attacker must ensure that the weighted median is one of the 

compromised estimates andthus that the sum of the weights of compromised estimates is>0.5. This condition 

enables non-detectable injections into asingle sensor but is not sufficient to keep the attack undetected.The 

attacker also needs to control the estimations for the othercompromised sensors. The total number of sensors 

neededto keep all compromised sensors undetected depends on thestrength of the pairwise correlations. Instead, 

the number ofsensors needed to mask or elicit an event depends on theevent detection criterion. Our empirical 

evaluations show thatalthough a few sensors are generally required to subvert theevent detection, a substantial 

additional number of sensors isrequired to avoid detection. 

 

2) SIMILARITY CHECK 

From the estimate aggregation step, each reported measurementSi has an estimate ˆOiof the observed 

value. To detectdata injections in Si, we compare the two using a similaritymetric that must be consistent with 

the event detection criterion. So, two signals that are similar according to the metric mustalso have similar 

effects on the event detection and vice-versa. Here we propose two tests that capture the characteristicsof most 

event detection criteria. 

a) Magnitude Test 

b) Shape Test 

 

a) Magnitude Test-This test verifies that reported measurements are close in magnitude to their estimates. 

b) Shape Test-This test verifies that the estimate and reportedsignal have a similar shape. The choice of the 

most appropriatetest, or a combination of the two should be made at design timebased on the event 

detection criterion. 

 

a) Similarity Test 1: Magnitude 

In some WSNs, events are triggered when measurements are higher or lower than a reference value. 

For example, firealarms trigger when the temperature is above a threshold. An attacker must therefore inject 

measurements, which differ in magnitude with the observed ones. In such cases we use Mi=(ˆOi− Si)—the 

difference between the reported measurementand its estimate—to build a magnitude test, which checks thatthe 

difference is small enough.We assumed that the regression residual, i.e. the error betweena value and its 

estimate, is zero-mean and normallydistributed. Even if ˆOiis the result of the aggregation, the error ϵi = (ˆOi− 

Oi) can still be assumedto be normally distributed. Indeed, our aggregate is a weightedmean of pairwise 

estimates, so it equals the true value plusthe weighted mean of the pairwise residuals as shown below,where 

ϵijdenotes the residual in the regression of sensor i‘smeasurement based on sensor j‘s. 

 

ˆOi=∑j∈N(i)w+∑ijˆOij=∑j∈N(i)w+ij(Oi+ϵij)=Oi+∑j∈N(i)w+ijϵij(3) 

 

Assuming that neighbors have independent residuals (e.g.,because of independent noise), _i is a linear 

combination ofindependent normally distributed samples, and is thus normally distributed too. Its mean is still 

zero, and its variance is: 

 

var(ϵi) =∑j∈N(i)w+ij2var(ϵij) (4) 

 

This equation has an important characteristic: the variance ofthe estimate is a combination of the 

variances given by eachneighbor. Therefore, if a sensor joins or leaves the network,it is sufficient that all its 

new/old neighbors re-compute thevariance instead of learning a new one. Since ϵistd(ϵi) follows the standard 

normal distribution, also ϵMi= Mistd(ϵi) does when the measurements are genuine.We refer to ϵMias the 

magnitudedeviation. 

Increasing the threshold reduces false positives, but decreasesthe detection rate. However, in event 

detection WSNsthe false positives can be partly reduced without losing thedetection rate by elaborating 

magnitude deviations in the sameway as the event detection criterion elaborates the measurements.Consecutive 

magnitude deviations are unlikelyto cause genuine anomalies with a long duration, unless thereis a permanent 

fault that the fault-detection module shoulddetect. Anomalies due to compromise, instead, have a longer 
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duration as the attacker aims to subvert the event detectionresult. The final step consists of comparing the 

elaboratedmagnitude deviation to the threshold TM.  

 

b) Similarity Test 2: Shape 

Some event detection algorithms trigger based on changes inthe time evolution of measurements such 

as changes in trend orof frequency. These are characteristics of the shape of the signal rather than its magnitude.  

A metric that measures similarity in the shapes of two signalsis the Pearson correlation coefficient. 

Since our purpose is to check the shape of the measurements used for event detection,we calculate this 

coefficient within a moving time window ofsizeWE: the event detection time window. Calculating 

Pearsoncorrelation for all sensor pairs in a neighborhood would have a computational complexity of 

O(N2NWE), with NN beingthe neighborhood size. In contrast, we evaluate the Pearsoncorrelation coefficient of 

a sensor‘s measurements with itsestimates, achieving a complexity of O(N2N+ WENN). Indeed,we compute the 

coefficient RSi,ˆOi, between WE consecutivevalues of Si and ˆOi, and compare it against the distributionof 

ROi,ˆOi. Specifically, if the coefficient is below the median, we check if at least 100 − CR% samples are 

expected to be solow by testing 

ROi,ˆOi=ROi,ˆO i−MED(ROi,ˆO i)DRi>1, where DRiistheCR-th percentile of ROi,ˆOi. 

To eliminate the need for the distribution of ROi,ˆOi,the quantities MED(ROi,ˆOi) andDRiare 

approximated withMED(ROi,ˆOi) and ˆDRirespectively. These are calculated witha heuristic described in 

Algorithm 3 for a generic sensor i.We find the best neighbor j∗, for which the median Pearsoncorrelation 

coefficient is maximum. Then we approximateMED(ROi,ˆOi) with its median and DRiwith its 

respectivedistance to the CR-th percentile. We characterize the samples below the median since the injected 

measurementsare supposed to have a low correlation with the real values. 

 

Algorithm 3 Characterization of the distribution of RSi,Oi 

Input: Rij:j∈N(i)(r), CR 

Output: MED(ROi,ˆOi), ˆDRi 

1: for all j ∈N(i) do 

2: MEDRij= MED(Rij(r)) 

3: MEDRij.append(MEDRij) 

4: rLOW= {r :r<MEDRij} 

5: DRij= percentile(MEDRijRij(rLOW),CR) 

6: DRij.append(DRij) 

7: end for 

8: j∗ = argmaxj∈N(i)(MEDRij) 

9:MED(ROi,ˆOi) = MEDRij[j∗] 

10: ˆDRi= DRij[j∗] 

11: return (ϵMED(ROi,ˆOi), ˆDRi ) 

 

In the absence of the distributions Rij∈N(i)(r), we estimateMEDRijand DRijon historical data. For 

genuine sensors Si = Oi, then_R Si,ˆOi≤ 1 for CR% genuinesamples. We thus define_R Si,ˆOias the shape 

deviation andcalculate CR as the lowest value that achieves a reasonablefalse alarm rate. The false positives due 

to short term anomaliescan be reduced in a similar way to that used in the magnitudetest i.e., by computing the 

median of WSmconsecutive correlationcoefficients calculated on overlapping time windows. WSmshould never 

exceed WE, otherwise the information from disjoint time windows would be merged. 

 

3) CHARACTERIZATION 

When the similarity check fails for a sensor, the sensormay have been compromised by malicious data. 

However, insome cases the similarity check could also fail on genuinesensors, because the wrong modality was 

chosen (e.g., a non-eventmodality rather than an event modality) or because the estimation was disturbed by 

compromised sensors. 

The latter occurs when several nearby sensors collude inproviding malicious estimates. However, to 

bias the estimates for genuine sensors by a certain quantity and increase theirdeviation, compromised nodes 

typically need to inject measurementsthat have even larger deviations (if they do not need this, colluding sensors 

have probably enough influenceover the measurements to remain undetected). Therefore, ourcharacterization 

step consists in removing the sensors with thehighest deviation, one by one, and re-computing the 

similaritycheck on the remaining sensors in the neighborhood. Eachtime we remove a sensor, which we presume 

compromised,the genuine sensors gain in consistency with their estimatewhereas colluding sensors lose the 

benefits of the removed sensor‘s estimates. The procedure stops when all the remainingsensors pass the 

similarity check. The overall characterization algorithm is shown in Algorithm 4, where SCheck is thesimilarity 
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check and Di is the generic deviation (coming from the magnitude/shape tests) calculated for the similarity 

check. 

 

Algorithm 4 Characterization algorithm 

Input: Di ∀i ∈S 

Output: compromisedSet 

1: compromisedSet= {} 

2: residualSet= S 

3:whileORi∈residualSet(SCheck(Di)fails)do 

4: s∗ = argmaxi∈residualSetDi 

5: compromisedSet.append(s∗) 

6: residualSet.remove(s∗) 

7: for all j ∈S :s∗∈N(j) do 

8: N(j) = N(j) \ s∗ 

9: re-compute Dj 

10: end for 

11: end while 

12: return compromisedSet 

 

Another factor to consider when the similarity check failsis the modality assumption (Section IV-A1). 

When differentmodalities are used in event conditions and non-event conditions,there is some uncertainty about 

which modality touse because malicious data may have compromised the eventdetection output. In this case, the 

wrong estimation model may be used and genuine sensors may fail it. Our solutionis to run Algorithm 4 in both 

modalities when the similaritycheck fails and then choose the modality in which the smallestcompromised set is 

returned. It is reasonable to choose thecorrect modality based on a majority approach, as the attackcosts increase 

with the number of measurements that need to be controlled. Note that this is different from event detectionwith 

majority voting, since the measurements are not requiredto trigger in majority, but to reflect event propagation 

and showgraceful transitions in their measurements. 

 

III. Project Analysis 
The calculations rely on solid raw measurements of the nodes which are trustworthy. These 

calculations are sent to the base station which has a global view on and can deal with collusion of compromised 

nodes. This is also the case with aggregate and estimate nodes that have a defect in their measurements. For the 

WSN nodes that do not act as aggregators, the estimation-based framework adds no overhead, because no 

additional software is run on the sensor nodes to manage votes or trust values like in high integrity sensor nodes. 

For the base station and aggregators, the most computationally expensive operation of our approach is the 

calculation of the estimation models. When this operation is done one-off, powerful devices may be used 

offline, but when this is not possible, for instance because there is not enough historical data, the models need to 

be estimated in real time. In this case using external devices may be infeasible, and an efficient calculation is 

required to estimate the models with the sensor nodes. 

 

IV. Results Discussion 
Our current approach has shown to detect malicious interference also with sophisticated attacks, based 

on injection of credible measurements. Based on our characterization algorithm, we are able to detect correctly 

the set of compromised sensors when the number of genuine sensors is low compared to the expected 

correlation. 
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Fig.2.Estimation Graph 

 
Fig.3. Shape Graph 

 

The number of compromised sensors that can be tolerated is correlation-dependent. In one of our 

experiments attacks could be detected whenever fewer than 88% sensors were compromised. Voting-based 

frameworks instead, cannot tolerate more than 50% compromised sensors and, when our algorithm tolerated less 

than 50% compromised sensors, majority voting tolerated a substantially lower percentage. The reason behind 

this result is that the correlation between the sensors used in the experiments is not high enough to guarantee 

correct votes from all the genuine sensors and votes become inaccurate. 

We simulate the attacks by injecting measurements describing normal circumstances but thatsubvert 

the event detection result, i.e., elicit a non-existent event, or mask a real event. In some cases, the attacker may 

need to inject measurements substantially different from the observed ones, but this will not be easily noticeable 

because the data describes wrong but still normal circumstances.  

 

VII. Conclusion And Future Work 
In this paper we have focused on detecting malicious data injections in event detection WSNs, in 

particular when collusion between compromised sensors occurs. We have proposed an algorithm that can be 

customized and used in different applications, and for different kinds of events. 

Addressing this challenge has exposed several trade-offs in the design of the algorithm. Firstly, 

resistance to collusionrequires to compare measurements over a broader set of sensors and thus introduces 

additional complexity and computational cost. This trade-off is particularly visible in the selection of 

neighborhoods, which becomes a simple ranking-based choice when using our pairwise estimation models. 

Another trade-off arises when merging information with potentially malicious sources. While information 

coming from genuine sensors increases the estimates accuracy, it is important to select only information that 

appears reliable. Colluding sensors should not be allowed to compensate for each other in the detection metric 

whilst still injecting malicious data. This requires the use of pairwise comparisons and an aggregation operator 

that is accurate in the presence of genuine measurements as well as resistant to malicious data. 
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