
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 4, Ver. V (Jul.-Aug. 2016), PP 31-35

www.iosrjournals.org

DOI: 10.9790/0661-1804053135 www.iosrjournals.org 31 | Page

An electronic algorithm to find the optimal solution for the

travelling salesman problem

M.Sghiar

9 Allée capitaine J.B. Bossu, 21240, Talant, France,

Abstract: I give here an electronic algorithm of the order O(n3) which is a generalization of the atomic

algorithm found in [6] and allows us to find the optimal hamiltonian cycles.

If the atomic algorithm (see [6] and [5]) was inspired by the movement of the particles in the atom, the

electronic algorithm is inspired by the resistor in the electrical circuit.

Keywords: Graph, Hamilton cycles, P=NP, the travelling salesman problem, TSP.

I-Introduction
The travelling salesman problem (TSP), which is an NP-hard problem in combinatorial optimization

(see : [1] , [2] , [3] and [4]) important in operations research and theoretical computer science, asks the

following question: Given a list of cities and the distances between each pair of cities, what is the shortest

possible route that visits each city exactly once and returns to the origin city?

In the articles [5] and [6], I was interested to find the Hamiltonian cycles in a graph - not necessarily

optimal-. And inspired by the movement of the particles in the atom, I demonstrated (in [5] and [6]) the

existence of a polynomial algorithm of the order O(n3) for finding Hamiltonian cycles in a graph.

This algorithm I called Atomic algorithm (See [6]), joins other several methods to find the Hamiltonian

cycles like the Monte Carlo method, Dynamic programming, or DNA computing. And to prevent memory

overflow and the slow execution of the program, I suggested in [6] the use of servers: Each point x i in the

graph will be considered as a server, and each server x i will communicate with each other server x j with

which it is connected . And finally the server x0 will receive and display the Hamiltonian cycles if they exist.

But I found that the full of memory is caused by the fact that each server send all the list he received,

hence the idea to limit the amount that will send each server, and delete as and as the list that do not serve for

anything. This idea was great, since I no longer have the problem of memory overflow and the program runs

faster : thus only in ten minutes, with a non- powerful computer, I was able to find a Hamiltonian cycle for

thousand cities: You can test it with the below improved Feynman code.

And to find an optimal solution to the TSP problem, the solution to find all Hamiltonian cycles and

choose the cycle that have the shortest distance would take time hugely although servers operate simultaneously.

Hence the need to seek other way to find the optimal solutions. Thinking of the servers, we immediately think of

antennas, microwave , frequencies in short, we think to the field of electronics. Hence the idea: If we saw

servers or nodes of the graph as a node in an electrical circuit, and the "distances" between vertices as a resistor

values in a circuit, then more the resistor's value is low and more the current passes quickly, so the particle or its

energy will move faster by taking the shortest route.

 II- Improved of the Feynman code that gives a Hamiltonian cycles :

from scipy import *

import numpy as np

import random

import time

start = time.time()

An electronic algorithm to find the optimal solution for the travelling salesman problem

DOI: 10.9790/0661-1804053135 www.iosrjournals.org 32 | Page

The Feynman code in Python:

Written by sghiar July 21, 2016 at 21:25 p.m..

This code allows you to find the Hamilton cycle if it exists.

Skip Code

We define the Feynman function F.

def F(j, T):

 l= len(T)

 U=[l+1]

 U=[0]*(l+1)

 U[0]=T[0]-1

 for i in range(1,l):

 U[i+1]=T[i]

 U[1]=j

 return U

We define the function R.

def R(T):

 l= len(T)

 U=[]

 for i in range(l-1):

 U.append(T[i+1])

 return U

We define the distance function in a Hamiltonian cycle.

def D(T):

 D=0.0

 l= len(T)

 for i in range(0,l-1):

 D=D+(G[T[i]][T[i+1]])

 return D

We construct the graph G :

print ("number of cities=")

n=input()

G=np.eye(n,n) #

for i in range(n):

 for j in range(n):

 G[i][j]=1

 #G[i][j]=input()

 #print "G[",i,"][",j,"]"

 #G[i][j]=input()

 #if i<=j :

 #G[i][j]=random.randint(0,1)

 #else: G[i][j]=G[j][i]

 #print "G[",i,"][",j,"]=",G[i][j]

d={}

d[0]=[[n,0]]

for j in range(n):

 if G[0][j]!=0 and 0!=j :

 d[j]=[[n-1,j,0]]

 d[0]=[]

An electronic algorithm to find the optimal solution for the travelling salesman problem

DOI: 10.9790/0661-1804053135 www.iosrjournals.org 33 | Page

 #print d[j]

 else :

 d[j]=[[0,j]]

 #print d[j]

L=[]

H=[]

for k in range(0,n**2) :

 if len(H) != 0 :

 print H

 print("Time:", time.time() - start)

 break

 print(k, "Time:", time.time() - start)

 print "The program is looking for the Hamiltonien cycles..."

 if k%n==0:

 for T in d[k%n] :

 if T[0] == 0 :

 H.append(T)

 else:

 pass

 del d[0]

 d[0]=[]

 elif k%n!=0 and len(d[k%n])>0:

 l=len(d[k%n])

 T=d[k%n][l-1]

 for j in range(0,n):

 if T[0]<=0 or (j in R(T) and j!=0):

 pass

 else :

 if G[k%n][j]!=0 and (k%n)!=j :

 d[j]+=[F(j,T)]

 else:

 pass

 d[k%n].remove(T)

#Hamiltonians Cycles :

if len(H)!=0:

 for elt in H:

 print ("There exist the Hamiltonian cycles")

 print(R(elt) ," Is one Hamiltonien cycle, Its distance is :" , D(elt))

else :

 print("No Hamiltonian cycles ")

An electronic algorithm to find the optimal solution for the travelling salesman problem

DOI: 10.9790/0661-1804053135 www.iosrjournals.org 34 | Page

print len(H)

print("Time:", time.time() - start)

End of code

III- An electronic algorithm to find the optimal solution for the travelling salesman problem.

This algorithm is almost similar to the Feynman algorithm (See [5]) to a slight change near : Let G be

a graph on E= {x0, , xn−1} , where G [xi][x j]= 1 or 0, and the "distance" between x i and x j is noted

d
ij .

we can reduce to the case where d
ij is a nonzero positive : dij>0 ,∀ i , j

We note {d0 , ,dl }= {dij } with d i≤d j if i≤ j .

As we have seen in the introduction, thinking of the servers, we immediately think of antennas,

microwave , frequencie in short, we think to the field of electronics. Hence the idea: If we saw servers or

nodes of the graph as a node in an electrical circuit, and the "distances" between vertices as a resistor values in a

circuit, then more the resistor's value is low and more the current passes quickly, so the particle or its energy

will move faster by taking the shortest route.

And there is a link between time and the "distance" :

 tij=
1

vij

dij

Where v
ij is the speed of the electrons in the electrical circuit.

So :

 ωij= v ij

1

d ij

Where ωij is the frequency.

Otherwise seen : The server i communicate with the server j with the frequency ωij .

Time progresses, the server x0 sends the energy to other servers, the other servers will send it in turn

to others. But as the exchange between two servers x i and x j occurs at a frequency ωij , to a factor, let

vij= 1 .

We shall have :

 tij= d ij and ωij=
1

d ij

 We start with the high frequencies : in other words by the smallest resistor value.

We first see the smallest resistor value ds0 between x0 and x i such as G [x0][xi]= 1 .

In the step i=1 (mod l) :
x0 will give its energy to the other points x i through the resistors ds0 .

And as in the Feynman algorithm, we construct the Feynman vector for the point x i :

 F (x i)= (
Exi

x i

⋮
x0

)

An electronic algorithm to find the optimal solution for the travelling salesman problem

DOI: 10.9790/0661-1804053135 www.iosrjournals.org 35 | Page

And we construct the Feynman matrix for the point x i :

 M (F , x i)=(
Ex i

⋯

xi ⋯
⋮ ⋯
x0 ⋯

)

In this step, those points x i will have as energy value Exi
= n−1 .

In the step i=2 (mod l) :

Among the points x i related to x0 we choose the minimum resistor value ds 1 such that ds1>ds0 if it exist,

else we choose the minimum resistor value ds 1 such that ds 1≤d s 0 .

Each point x i linked to a resistor with value ds 1 will give its energy to other points through the resistor ds 1 .

In the step i+1 (mod l) :
We continue this process and as the energy decreases; the algorithm, as the Feynman algorithm, will stop, and

will display the Hamiltonian cycle with a shorter distance (if the Hamiltonian cycles exist).

Example :
We can check this technique for example for the Graph G on the basis with : G(x, y)=1, , and with

the distances : d(a,c)=3, d(a,b)=d(a, d)=d(b,d)=1, d(b, c)=2, d(c,d)=4. We check that acbda is the first

hamiltonian cycle that we find and that it have a minimal distance 7. The other cycle with the distance 8 will

be found after because it do not have a minimum distance, and the cycle with the distance 9 will not be found

for the same reason.

Note :
1- The above improved Feynman algorithm indicates whether the Hamiltonian cycles exist.

2- If the Hamiltonian cycles exist, the electronic algorithm allows us to find the optimal Hamiltonian cycles.

3- The electronic algorithm is also of the order O(n3) like the Feynman algorithm.

4- The electronic algorithm is a generalization of the Atomic algorithm.

5- With this way I could find by hand the optimal Hamiltonian cycles for some graphs of a small size : See the

example above.

References
[1]. Lizhi Du. A polynomial time algorithm for hamilton cycle. IMECS, I:17–19, March 2010. Hong Kong.

[2]. L.Lovasz. Combinatorial problems and exercises. Noth-Holland, Amsterdam, 1979.

[3]. D.S.Johnson M.R.Garey. Computers and intractability:a guid to the theory of np-completeness. Freeman,San Francisco, 1979.
[4]. R.Diestel. Graph theory. Springer, New York, 2000.

[5]. M. Sghiar. Algorithmes quantiques, cycles hamiltoniens et la k-coloration des graphes. Pioneer Journal of Mathematics and

Mathematical Sciences, 17-Issue 1:51–69, May 2016.

[6]. M. Sghiar. Atomic algorithm and the servers’ s use to find the hamiltonian cycles. International Journal of Engineering Research

and Applications (IJERA), ISSN: 2248-9622, 6-Issue 6:23–30, jun 2016.

