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Abstract: I give here an electronic algorithm of the order  O(n3)  which is a generalization of the atomic 

algorithm found in [6] and allows us to find the optimal hamiltonian cycles.  

If the atomic algorithm (see [6] and [5] ) was inspired by the movement of the particles in the atom, the 

electronic algorithm is inspired by the resistor in the electrical circuit.  
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I-Introduction  
The travelling salesman problem (TSP), which is an NP-hard problem in combinatorial optimization 

(see : [1] , [2] , [3]  and [4]) important in operations research and theoretical computer science, asks the 

following question: Given a list of cities and the distances between each pair of cities, what is the shortest 

possible route that visits each city exactly once and returns to the origin city?  
 
In the articles [5] and [6], I was interested to find the Hamiltonian cycles in a graph - not necessarily 

optimal-. And inspired by the movement of the particles in the atom, I demonstrated (in  [5] and [6]) the 

existence of a  polynomial algorithm of the order O(n3)    for finding Hamiltonian cycles in a graph.  

This algorithm I called Atomic algorithm (See [6]), joins other several methods to find the Hamiltonian 

cycles like the Monte Carlo method, Dynamic programming, or DNA computing. And to prevent memory 

overflow and the slow execution of the program, I suggested in [6] the use of servers: Each point x i  in the 

graph will be considered as a server, and each server x i  will communicate with each other server x j with 

which it is connected . And finally the server x0  will receive and display the Hamiltonian cycles if they exist. 

But I found that the full of memory is caused by the fact that each server  send all the list he received, 

hence the idea to limit the amount that will send each server, and delete as and as the list that do not serve for 

anything. This idea was great, since I no longer have the problem of memory overflow and the program runs 

faster : thus only in ten minutes, with a non- powerful computer, I was able to find a Hamiltonian cycle for 

thousand cities: You can test it with the below  improved Feynman code.  
 
And to find an optimal solution to the TSP problem, the solution to find all Hamiltonian cycles and 

choose the cycle that have the shortest distance would take time hugely although servers operate simultaneously. 

Hence the need to seek other way to find the optimal solutions. Thinking of the servers, we immediately think of 

antennas, microwave , frequencies .... in short, we think to the field of electronics. Hence the idea: If we saw 

servers or nodes of the graph as a node in an electrical circuit, and the "distances" between vertices as a resistor 

values in a circuit, then  more the resistor's value is low and more the current passes quickly, so the particle or its 

energy will move faster by taking the shortest route. 
 
 II- Improved of the Feynman code that gives a Hamiltonian cycles : 

  

from scipy import * 

import numpy as np  

import random    

import time 

start = time.time()
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# The Feynman code in Python: 

# Written by sghiar July 21, 2016 at 21:25 p.m.. 

# This code allows you to find the  Hamilton cycle if it exists. 

# Skip Code 

# We define the Feynman function F. 

def F(j, T): 

    l= len(T) 

    U=[l+1] 

    U=[0]*(l+1) 

    U[0]=T[0]-1 

    for i in range(1,l): 

        U[i+1]=T[i] 

    U[1]=j 

    return U 
 

# We define the function R.   

def R(T): 

 l= len(T) 

 U=[] 

 for i in range(l-1): 

  U.append(T[i+1]) 

 return U 
 

# We define the distance function in a Hamiltonian cycle. 
 

def D(T): 

    D=0.0 

    l= len(T) 

    for i in range(0,l-1): 

        D=D+(G[T[i]][T[i+1]]) 

    return D     
 

# We construct the graph G : 
 

print ("number of cities=")   
 

n=input() 

  

G=np.eye(n,n) #  

                   

for i in range(n): 

    for j in range(n): 

        G[i][j]=1 

        #G[i][j]=input() 

        #print "G[",i,"][",j,"]" 

        #G[i][j]=input() 

  #if i<=j : 

   #G[i][j]=random.randint(0,1) 

  #else:  G[i][j]=G[j][i]  

  #print "G[",i,"][",j,"]=",G[i][j] 
 

d={} 
 

d[0]=[[n,0]] 
 

for j in range(n): 

        if G[0][j]!=0 and 0!=j : 

                d[j]=[[n-1,j,0]] 

                d[0]=[] 
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                #print d[j] 

        else : 

                        d[j]=[[0,j]] 

                        #print d[j] 
 

 

L=[] 

H=[] 
 

for k in range(0,n**2) : 

    

    if  len(H) != 0 : 

                

                print H 

                print("Time:", time.time() - start) 

                break  

                

    print(k, "Time:", time.time() - start) 

    print "The program is looking for the Hamiltonien cycles..." 

     

    if k%n==0: 

         

        for T in d[k%n]  : 

            if  T[0] == 0 : 

                H.append(T) 

                

            else: 

                pass    

        

        del d[0] 

        d[0]=[]    

           

                

    elif k%n!=0 and len(d[k%n])>0: 

   l=len(d[k%n]) 

   T=d[k%n][l-1]  

   for j in range(0,n): 

     

    if T[0]<=0 or (j in R(T) and j!=0): 

     pass 

    else :  

     if  G[k%n][j]!=0 and (k%n)!=j  : 

      d[j]+=[F(j,T)] 

     else: 

      pass 

   d[k%n].remove(T) 

          

   

#Hamiltonians Cycles  : 
 

if len(H)!=0: 

 for elt in H: 

   

   print ("There exist the Hamiltonian cycles") 

   print(R(elt) ," Is one Hamiltonien cycle, Its distance is :" , D(elt) ) 
 

else : 

    print("No Hamiltonian cycles ")     
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print len(H) 

print("Time:", time.time() - start) 

# End of code 

 
III- An electronic algorithm to find the optimal solution for the travelling salesman problem. 

This algorithm  is almost similar to the Feynman algorithm (See [5] ) to a slight change near :  Let G be 

a graph on E= {x0, .... , xn−1} , where G [xi][x j]= 1  or 0, and the "distance" between x i  and x j  is noted 

d
ij  . 

we can reduce to the case where d
ij  is a nonzero positive  : dij>0 ,∀ i , j  

 
 

We note  {d0 , .... ,dl }= {dij } with d i≤d j if  i≤ j . 

As we have seen in the introduction, thinking of the servers, we immediately think of antennas, 

microwave , frequencie .... in short, we think to the field of electronics. Hence the idea: If we saw servers or 

nodes of the graph as a node in an electrical circuit, and the "distances" between vertices as a resistor values in a 

circuit, then  more the resistor's value is low and more the current passes quickly, so the particle or its energy 

will move faster by taking the shortest route. 

And there is a link between time and the "distance" :  

                                  tij=
1

vij

dij  

 

Where v
ij is the speed  of the electrons in the electrical circuit.  

So :  
 

                                  ωij= v ij

1

d ij
 

 

Where ωij  is the frequency.  
 

Otherwise seen : The server i communicate  with the server j  with the frequency ωij .  

Time progresses, the server x0  sends the energy to other servers, the other servers will send it in turn 

to others. But as the exchange between two servers x i  and x j  occurs at a frequency ωij , to  a factor, let 

vij= 1 .  

We shall have : 
 

                            tij= d ij and ωij=
1

d ij
 

 
 
 We start with the high frequencies : in other words by the smallest  resistor value. 

 

We first see the smallest resistor value ds0  between x0  and  x i such as G [x0][xi]= 1 . 

In the step i=1 (mod l) : 
x0 will give its energy to the other points x i  through the resistors  ds0 . 

And as in the Feynman algorithm, we construct the Feynman vector  for the point x i : 

                                                                      F (x i)= (
Exi

x i

⋮
x0

) 
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And we construct the Feynman matrix  for the point x i : 
 

                                                                     M (F , x i)=(
Ex i

⋯

xi ⋯
⋮ ⋯
x0 ⋯

) 

In this step, those points x i will have as energy value Exi
= n−1  . 

In the step i=2 (mod l) : 
 

Among the points x i related to x0 we choose the minimum resistor value ds 1  such that  ds1>ds0  if it exist, 

else we choose the minimum resistor value ds 1   such that  ds 1≤d s 0  . 

Each point x i linked to a resistor with value  ds 1  will give its energy to other points through the resistor ds 1 . 

In the step i+1 (mod l) : 
We continue this process and as the energy decreases; the algorithm, as the Feynman algorithm, will stop, and 

will display the Hamiltonian cycle with a shorter distance (if the Hamiltonian cycles exist). 

 

Example : 
We  can check this technique for example for the Graph G on the basis with : G(x, y)=1,  , and  with  

the distances : d(a,c)=3, d(a,b)=d(a, d)=d(b,d)=1, d(b, c)=2, d(c,d)=4. We check that acbda is the first 

hamiltonian cycle that we find and that it  have a minimal distance 7.  The other cycle with the  distance 8  will 

be found after because it do not have a minimum distance, and the cycle with the distance 9 will not be found 

for the same reason.  

 

Note : 
1- The above improved Feynman algorithm  indicates whether the Hamiltonian cycles exist. 

2- If the Hamiltonian cycles exist, the electronic algorithm allows us to find the optimal Hamiltonian cycles. 

3- The electronic algorithm is also of the order O(n3)  like the Feynman  algorithm. 

4- The electronic algorithm is a generalization of the Atomic  algorithm. 

5- With this way I could find by hand the optimal Hamiltonian cycles for some graphs of a small size : See the 

example above. 
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