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Abstract: This paper presents a novel technique for reconstruction of High-resolution images from multiple 

Low-resolution images. A Multi-frame approach implements fusion of non-redundant information which was 

obtained from several low-resolution images of the same scene. Many papers have been published over last two 

decades proposing a variety of methods for enhancing resolution using the multi-frame approach. This paper 

reviews some of those proposed methods and addresses their various shortcomings. We propose two methods 

that are applicable to both gray-scale and colour images. One approach uses Total Variation Regularization for 

image recovery and deblurring, while the other method implements the use of Wiener filtering for denoising. 

These approaches also provide insight into solving the demosaicing problem. Simulation of the proposed 

methods confirm the effectiveness and superiority of our methods in comparison to the other super-resolution 

methods. 
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I. Introduction 
An image with a higher spatial resolution has a higher pixel density. This means that an image with 

higher resolution has superior level of detailing than an image with lower resolution. This is often desired in 

various day-to-day and specialized applications. However due to many limitations, i.e. Cost and Hardware, 

obtaining images with high resolution is not always feasible by replacing the image sensors. It is imperative to 

synthesize a new approach for increasing spatial resolution so as to overcome the manufacturing limits of sensor 

and optics. 

Image super resolution is a method used to enhance the resolution of an imaging system in general 

image processing. A multi-frame approach to enhancing resolution involves generating a high-resolution image 

from several numbers of blurred and noisy low-resolution images of the same scene. This is achieved by fusing 

the non-redundant information from the multiple low-resolution images. 

Super-resolution Reconstruction is a process that is computationally intensive. The early algorithms on 

super resolution had many limitations. Some methods were proposed without proper mathematical justification 

or were optimal for specific noise and data models. These algorithms produced poor results when they were 

tested on real images. On another front, performing single frame reconstruction to remove artifacts, often failed 

to completely remove such errors. 

Many different methods of iterative nature have been proposed over the last 20 years (e.g. [1], [2] and 

[3]). Neither of these methods have considered noise models other than Gaussian noise, and regularization was 

either limited to Tikhonov regularization or was not implemented at all. Farsiu et al. [4] has proposed an 

algorithm for reconstruction of high-resolution images using Total-Variation [5] where the regularization 

method is based on Total-Variation. Despite being efficient, only single channel images are handled [4]. 

This paper uses L1 norm, for both regularization and error handling. Regularization is essential for 

preserving edges and error handling provides robustness to errors and outliers. The proposed algorithm 

implements the generation of a better HR estimate and its regularization to improve the quality of the image. 

Image registration is done before the HR estimation begins. A constrained approach will enhance the quality if 

motion estimation and therefore result in more accurate reconstruction of the High Resolution images. The HR 

estimate is generated by using better interpolation techniques. Finally, regularization enhances the quality of the 

interpolated grid. We will show that our method performs better than what was proposed earlier[4].  

This paper consists of V sections. Section II illustrates the background of this research and its related 

work. Section III describes the proposed method in its entirety along with the process of generating the HR 

estimate. Section IV illustrates the simulation setup and its results. Section V describes inferences and 

conclusions drawn from the experiments performed in its preceding section.  
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II. Related work 
Many algorithms and approaches have been proposed to solve the problem of Super-resolution which 

is considered as an ill-posed problem. Many noise models have been considered by these algorithms. A popular 

class of methods include enhancements in the spatial domain. However, the methods developed initially were 

non-iterative and computationally expensive. Also approaching the problem in the frequency domain was not 

robust. Even though these methods are computationally cheap and intuitive, they are extremely susceptible to 

model errors. Besides all these methods could not carry out accurate motion estimation.  

Farsiu et al.[4] proposed a robust and computationally efficient algorithm using L1 norm, which was 

proved to be fast converging and superior to the other approaches. A mathematical justification has also been 

given attributing its superior performance over traditional approaches. However, this algorithm is limited to 

single channel pixel manipulation. In case of a colour image, the application of this method might result in 

discrepancies due to mosaicing effects that occur when a colour image is stretched spatially.  

This paper attempts to address and overcome these issues. We propose a method that not only extended 

the algorithm proposed by Farsiu et al.[4] to colour images, it also provides a relief against mosaicing effects 

that occur in manipulation of colour images. Also a frequency domain based approach is suggested which is 

robust, computationally efficient and provides a balance between quality and execution time. 

 
III. Proposed Method For Super-Resolution 

A multi-frame reconstruction of high resolution images involves fusing information from within the 

low-resolution images which are obtained through image acquisition system. The result of such fusion produces 

a high-resolution image that has less blur and noise than the low-resolution images used to construct it. 

 

1.1 Super Resolution as an Inverse Problem 

The work of Super-Resolution algorithms is to reconstruct images of high-resolution from its corrupted 

acquisition by the constrained optical imaging system This is observed as in inverse problem, where the 

information source (high resolution image or HR image) is estimated from the data observed (low resolution 

image or LR image). Fig. 1 illustrates this inverse process. First, a forward model must be constructed to solve 

an inverse problem. The most common forward model for the problem of super-resolution is the linear model 

[6] which is given as: 

nkxMBDy kkkk       pk ,1   (1) 

       

 Where yk represents p LR images; matrix D down samples a HR image of dimensions N1N2  x  

r2N1N2  into an aliased LR image of dimensions N1  x  N2 ; matrix Bk represents blur matrix which is the point 

spread function (PSF) of the imaging system; Mk is a warping matrix that describes the motion that occurs 

during acquisition of the LR images; x is the desired HR image; and nk is additional noise. 

 

 
Fig. 1. Super-resolution observation model 

 

Combining DkBkMk  into an imaging system M, equation (1) takes the form: 

NMXY        (2) 

Where matrix Y is the data measured (single or collection of images), matrix X is the unknown but 

desired high resolution image or images, matrix N is the random noise inherent to any imaging system. 

 Armed with a forward model, a clean but practically naive solution to (2) can be achieved via the direct pseudo-

inverse technique: 

  YMMMY TT 1
      (3) 
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An intrinsic difficulty with inverse problems is the task of inverting the forward model without 

amplifying the noise in the data measured. For a linear model, this results from the very large (almost infinity) 

condition number for the model matrix M. Solving the inverse problem, requires inversion of the effects of the 

system matrix M. This system matrix is ill-conditioned at best, thus making its stable inversion a challenge in 

itself. Therefore, for the problem of super-resolution, certain form of regularization becomes imminent in the 

cost function to constrain the space of solutions to a finite space and stabilize the problem. 

Tikhonov regularization [7] is employed widely as a form of regularization method, which has been 

driven from an analytic standpoint to substantiate certain specific mathematical factors of the estimated solution. 

Very little attention is given however to the consequences of such straightforward regularization on the super-

resolution results. For example, higher frequencies in the solution are often penalized by regularization, opting 

for a smooth and hence blurry solution. Considering a statistical standpoint, regularization is included as a 

prerequisite about the solution. Using the Maximum A-Posteriori (MAP) estimator consequently causes 

emergence of a richer class of regularization functions, enabling us to understand the specifics of the particular 

application. Such robust methods, unlike the conventional Tikhonov penalty terms, are adept in carrying out 

adaptive smoothing considering the local structure of the image. 

 

1.2 Proposed Method 

This paper outlines the use of two methods for reconstructing images with high resolution. Both 

methods are applied as a series of similar steps with the difference lying in the reconstruction phase. 

Fig. 2 illustrates how the image reconstruction is carried out from the multiple low resolution frames. 

 

 
Fig. 2 Proposed method 

 
1.2.1 Image registration: 

The goal of image registration is to determine an alignment between sequences of successive image 

frames of the same scene. Image registration implements a motion estimation algorithm so as to improve the 

alignment based on a set of motion parameters. A global translational model is implemented as it is 

computationally efficient. Lucas-Kanade method [8] is used for measuring the optical flow, which is also less 

sensitive to image noise. 

 

1.2.2 Calculation of initial HR estimate: 

After the frames are registered, it is time to interpolate the image onto a higher-resolution grid. In this 

step, upsampling and warping is performed using bicubic interpolation and lanczos interpolation. These 

methods are computationally heavy, but they yield excellent results in terms of quality. The image frames are 

then combined using a median shift filter [9]. A median filter ensures that the computation is more robust to the 

outliers that might result from inaccuracies in image acquisition.  

 

1.2.3 Regularization: 

This constitutes the third block of Fig. 2. Image registration is considered a coarse method. The super-

resolution process attempts to converge to a solution by minimization using steepest descent. This means that 

the solution is stable in presence of outliers and inaccuracies added to the image by inaccurate registration or 

noise. 

 

1.2.3.1 Bilateral Total Variation based implementation: 

The regularization terms [8][10] presented attempts to minimize the absolute difference between the 

estimated and several shifted versions of the initial estimate. This is referred to as total variation (TV). This is 

implemented by using a bilateral filter and hence the name Bilateral Total Variation(BTV). The gradient is given 

by the following equation: 
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Here, λ is a regularization weight determining the importance of the bilateral TV term as compared to 

the data fidelity term. The spatial decay constant, α, ranges from 0 to 1 and controls the relevance of more 

distant pixels. Higher values give blurrier results, requiring pixels to be more similar to their distant neighbours. 

β is a scalar measure defining the step-size in the direction of the gradient. The kernel radius, P, is normally 

fixed at 2. Sl
x and Sm

y are shift operators that shift the image to the right by l pixels and down by m pixels, 

respectively. The matrices F, H, D, S, and their respective transposes are interpreted as image operators such as 

shift, blur, and decimation 

 

1.2.3.2 Wiener Filter based implementation: 

Murli et al. [11] focuses on the computational aspects of Wiener filter, which was introduced long 

before Bilateral Total Variation was conceived. Wiener filter can be regarded as a Tikhonov Regularization 

method which is applied in the Fourier domain where the regularization parameter is equal to the square-root of 

the signal to noise ratio. Wiener filters are extremely efficient to remove noise to provide a finer quality of the 

desired signal. 

 

3.2.4 Solving the demosaicing problem 

A colour image is typically represented by combining three separate monochromatic images. Here, 

each pixel reflects a data measure one for each of the colour bands, Red, Blue and Green. In practice, to reduce 

production cost, various digital cameras have only one colour measurement (red, green, or blue) per pixel. The 

sensor array is a grid of CCDs(Charge Coupled Devices), each made sensitive to one colour by placing a colour-

filter array (CFA) in front of the CCD. The values of the missing colour bands at every pixel are usually 

constructed by means of some form of interpolation methodology from neighbouring pixel values. This process 

is known as colour demosaicing.  

Supporting the regularization component [8], a computationally efficient estimation method to fuse and 

demosaic a set of low-resolution frames (which may have been colour-filtered by any CFA) resulting in a colour 

image with higher spatial resolution and reduced colour artifacts is proposed. The BTV based algorithm solves 

this using the classical approach [12] while Wiener filter implements a more implicit method [11].  

 

  
Fig. 4 Classical approach(BTV)   Fig. 5 Implicit method(Wiener) 

 

IV. Experimental Validation 
In this section, the proficiency of the proposed methods is calculated by means of experimentation on 

real data. Following subsections illustrate the entire process: 

 

1.3 Experimental Setup 

The entire process is implemented in MATLAB 8.5.1(R2015a) on a 64-bit Windows 10 machine with 

2.20 GHz Intel core i3 processor and 3GB RAM. 

The image parameters are as follows: 

1) All images used are 256 x 256 resolution. These are considered to be the High Resolution images. Both 

colour and grayscale images are used. The images are first decimated into 128 x 128 resolution by 

convolution with noise and blur. These are reconstructed into high resolution of 256 x 256 using 

i) Total Variation Regularization. 
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ii) Wiener Filter Regularization. 

iii) Total Variation Regularization with Bilateral Filter. 

2) For Total Variation Regularization, separate functions are executed for Grayscale and Colour images. This 

illustrates the implementation of solution to demosaicing as explained in the previous section. 

3) Wiener Filter Deconvolution is directly implemented for both grayscale and colour images alike. 

4) Total Variation Regularization with Bilateral Filter is implemented by extending the algorithm used for 

total variation and applying a bilateral filter to it. 

 

1.4 Execution Parameters 

The image set here consists of 2 images of each type. “sail.png” and “eye.png” are used as colour 

images, whereas “lena.png” and “cartap.png” are used as grayscale images. These images are decimated into 

lower resolutions using interpolation and noise is added to them. 

Noise Parameters: Two types of noises are used. Standard Noise and Gaussian Noise. These images are 

tested for different values of the noise parameters which here is spread value (σ for additive Gaussian noise and 

θ for standard noise). The noise parameters take the values 1,3 and 5. 

Magnification factor achieved is 2 (This is because a 128 x 128 image is resized into an image of 

higher resolution of 256 x 256). 

 

Test set includes the following images: 

 

    
(a) “sail.png” (b) “eye.png” (c) “cartap.png” (d) “lena.png” 

Figure 6(a) – (d) Test images used in the experiment. 
 

These images are each tested with the given algorithms. The runtime of the algorithms is also 

calculated. The following section gives the results of the given algorithms. 

 

1.5 Results  

The quality of the output is measured by comparing the reconstructed images with the original high-

resolution that were decimated. This output is measured in terms of peak signal-to-noise ratio(PSNR) and 

execution runtime. 

Peak Signal to Noise Ratio (PSNR): It is an expression for the ratio between the maximum possible power of a 

signal and the power of noise that affects the quality of its representation.  Because many signals have a very 

extensive dynamic range, the PSNR is usually expressed in terms of the logarithmic decibel scale.  

Runtime: It is the time elapsed from the initiation of execution to completion, when the output image is 

produced. Depending on the number of processes running in background, the runtime values may vary. All open 

applications were closed before starting MATLAB. Since the output images printed on paper look similar, it is 

more appropriate to compare the results by tabulating the output parameters (i.e. PSNR and runtime). 

 
 

1.5.1 Total Variation Regularization 

Table 1. Results of TV regularization 
Image Noise level (θ) PSNR (dB) Runtime(seconds) 

Lena 1 49.85 0.006 

3 25.28 0.006 

5 16.54 0.006 

Cartap 1 37.56 0.006 

3 28.75 0.006 

5 25.06 0.008 

Sail 1 22.80 0.72 

2 16.69 0.97 

3 13.21 1.21 

Eye 1 23.00 0.68 

2 17.05 0.95 

3 13.59 1.17 
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1.5.2 Wiener Filter 

Table 2. Results of Wiener Filter Regularization 
Image Noise level (σ) PSNR (dB) Runtime(seconds) 

Lena 

1 93.20 0.47 

3 79.65 0.35 

5 79.47 0.34 

Cartap 

1 93.21 0.39 

3 75.67 0.36 

5 76.54 0.33 

Sail 

1 93.51 0.97 

3 77.88 0.94 

5 77.84 0.95 

Eye 

1 93.27 0.94 

3 81.50 1.02 

5 81.30 1.05 
 

1.5.3 Total Variation Regularization with Bilateral Filter 

Table 3. Results of BTV Regularization 
Image Noise level (θ) PSNR (dB) Runtime(seconds) 

Lena 

1 76.00 2.62 

3 77.87 2.65 

5 80.20 2.65 

Cartap 

1 78.21 2.62 

3 79.01 2.57 

5 82.15 2.56 

Sail 

1 78.17 6.18 

3 78.11 5.89 

5 77.24 6.38 

Eye 

1 78.11 5.90 

3 78.69 6.15 

5 79.73 6.40 

 

V. Conclusion 
Resolution enhancement has garnered a wide interest among research scholars over the years. This is a 

result of the need for high-resolution images which is affected by the limitations of hardware in image 

acquisition. In this paper, the proposed methods are adept in reconstructing high-resolution images from noisy 

and blurry low-resolution images. The total variation based regularization is a robust technique which gives 

good results in terms of quality, and application of a bilateral filter improves the results drastically. Besides 

these algorithms are extended for colour images thereby solving the demosaicing problem.  

To summarize, it is important to achieve a balance between quality of output and the subsequent 

efficiency of the algorithm. Wiener deconvolution proves to be very efficient as a reconstruction model for our 

purpose. Utilization of bilateral filter works slower for colour images. An in case of total variation, the 

algorithm works relatively slower for colour images. However, Wiener filter regularization works consistently.   
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