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Abstract: In this paper we propose a model based approach to determine correspondences and pose of objects 

in automated visual inspection applications. The method does not consider correspondence and pose estimation 

problems as two distinct processes. Rather they are viewed as two cooperative processes and implemented 

through a proposed new composite chromosome structure of Genetic Algorithm (GA). GA evolves sets of poses 

and matched vertices sequences and the evolution process continues until a good accuracy in the values of pose 

parameters are obtained. The strength and robustness of our method are demonstrated by thorough testing on 

both simulated and real data in an Automated Visual Inspection (AVI) system. 
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I. Introduction 
Pose Estimation is one of the fundamental problems in Robotics and Computer Vision. It is used to 

determine 3-D orientation and position of an object with respect to a model reference frame. Pose estimation 

find applications in inspection problems [1]. In manufacturing, the visual inspection is one of the steps in the 

cycle of production of parts and the inspection is automated at relatively slow pace in the industry. Several 

inspection tasks need a substantial quantity of reasoning capability to accept or reject choices, and to classify the 

type of defects. Although Automated Inspection might seem to be a panacea for improving quality and reducing 

cost, it may not be always possible. For automated inspection to be feasible, it must run in real time, be 

consistent, reliable, robust and cost effective. Furthermore, for automated inspection to compete with the human 

inspectors, the inspection procedure must be able to handle objects that are at unknown positions and 

orientations. Flexibility of the object or part whose position and orientation is less constrained under inspection 

would increase the number of automated visual inspection applications. Flexibility is thus one of the important 

research issues in the automated visual inspection arena [2]. Registration of a sensed object model to a reference 

object model is termed as pose estimation since it is the pose transformation that must be estimated in order to 

perform the registration. It is to be noted that in computer vision, pose estimation is usually required to perform 

object recognition. A robust object recognition method provides good accuracy even when the pose estimation 

of the object is not accurate. Hence, object recognition algorithms do not give much emphasis on the high 

accuracy of the estimation of pose transformation. On the other hand, the main objective in inspection is to 

compute the differences between the stored reference model and the sensed object model. That is why the 

registration of the sensed model with the stored reference model should be highly accurate and the difference 

between these two models is not due to the improper registration process. The objective should therefore be to 

design a more robust pose estimation process in which the matching between the image and the object model 

will not be assumed a priori. Ideally, matching and pose estimation processes should be integrated in a common 

framework and should work cooperatively, so that any hypothesized matching can be validated with geometrical 

constraints and estimated poses. We have used genetic algorithm to solve pose estimation from unknown 

correspondences and have proposed a composite chromosome to tackle both the problems of pose estimation 

and matching. The composite structures of the chromosomes used by genetic algorithm help us to implement 

both matching and pose estimation as integrated and cooperative processes. 

We discuss the previous work on pose estimation and matching in Section 2. Section 3 presents the 

mathematical formulation of pose estimation problem. In this section we have also discussed the pose estimation 

and matching using GA. In Section 4 the results of extensive computer experiments are reported. The final 

section presents the conclusions. 

 

II. Related Work 
Both correspondence and pose estimation problems are found in model-assisted object recognition. In 

model-assisted matching, models are brought into correspondence with an image of the object to be recognized. 

There are three classes of matching problems found in the literature viz., (i) Pruned search matching, (ii) Non-

correspondence matching, and (iii) Search in model-to-image transformation space. Pruned search technique 

requires that the maximum subset of paired model and image features under a single transformation. But 
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maximum subset selection is of the order of exponential complexity. In non-correspondence matching, a 

transformation is computed from the global features of a model and an image. In this method, no 

correspondence is assumed between individual parts or features of the model and the image. Cyganski and Orr 

[3] propose a non-correspondence approach where a tensor is computed from the moment of inertia of the 

image. The non-correspondence matching requires that every part of the object should be visible. The method 

fails if certain parts of the object are not visible and the scene contains multiple objects. Methods based on the 

searching for solution in transformation space hypothesizes matching and hence determine the transformation 

there from. David et al. [4] determine the poses by combining two techniques - for matching they have used Soft 

Assign algorithm[5], and Dementhons iterative POSIT algorithm [6] for determining object pose under a full-

perspective camera model. Hati and Sengupta [7] have demonstrated that Artificial Neural Network based 

computation of pose transformation matrix is robust with respect to noise. They assume a matched sequence of 

images and 3-D object model vertices. Hence the objective is to synthesize a more powerful and robust pose 

estimation method where matching between image model and object model will not be assumed a priori. 

Matching and pose estimation procedures ought to be coordinated in a typical structure and ought to work 

agreeably, with the goal that any assumed matching can be accepted with geometrical constraints and evaluated 

poses. We have utilized genetic algorithm to unravel pose estimation from unknown correspondences and have 

proposed a composite chromosome to handle both the issues of pose estimation and matching. The composite 

structures of the chromosomes utilized by genetic algorithm help us to realize matching and pose estimation as a 

coordinated and agreeable methodology. Schweighofer and Pinz [8] determine the position and orientation of a 

camera from the knowledge of given four co-planar points in real time. They have shown that pose 

determination from planar targets suffers from pose ambiguities. In their work they find two local minima of the 

error function that exist for wide angle lenses and closed range planar targets. They give a thorough explanation 

of the two minima and develop an algorithm for unique and robust pose estimation from a planar target. Lu, 

Shao and Xiao [9] treat pose estimation and segmentation as inter-wined problem that provide cues for each 

other. They put object segmentation and pose estimation into a joint optimization. Pose estimation like image 

segmentation is formulated as a binary optimization problem. The top-down pose shaped cues, bottom-up visual 

cues, and the consistency constrained are used to derive the final ob-jective function. They have verified their 

results on Ramanan benchmark data-set. Assa and Janabi [10] propose multi-camera sensor fusion technique to 

pose estimation. They have employed Kalman filter based sensor fusion approach for pose estimation. The 

method is robust to camera motion and image occlusion. 

Our approach based on GA search simultaneously both in matching space as well as in transformation 

space. Hence, it consists of two objective functions, one objective function evaluating how good the model to 

image matching is and another objective function looks for model to image transformation. Classical 

optimization techniques transform multiple objective functions into a scalar function and find a single pareto - 

optimal solution at a time. Genetic algorithm is well suited to multi-objective optimization. Parameters can 

search for multiple solutions, eventually taking advantage of any similarities available in the family of possible 

solutions to the problem [11]. 

 

III. Pose Estimation Problem 
Let the n points in object space be denoted by xi = (x, y, z)

T
 , i = 1, …, n. Let the corresponding image 

points in 2D image space after perspective projection be (pi1, pi2), i = 1, …, n. The object space to image space 

relationship is given by [12],  

 

  

 
 

Where f is the focal length of the camera, t is the 3-D translation vector, and R is the 3 × 3 rotational 

matrix. Let us assume that the object under inspection is on a plain surface and has three degrees of freedom – t1 

and t2, two translation parameters along X and Y axes and θ, the rotational parameter about Z-axis. Our problem 

is to determine the translation vector t and the rotation matrix R from the unknown correspondences of xi and pi, 

i = 1, …, n. Fig. 1 demonstrates the our model-based AVI system. Here we consider a flexible automated visual 

inspection system where the object under inspection may get displaced from its pre-defined orientation and 

position. Let the test object has a pose (Δx, Δy, Δθ), where Δx and Δy denote the translation of the object along X 

and Y axes and θ denote the rotation of the object about Z-axis with respect to the pre-defined model orientation 

and position. Eq (1) and Eq (2) can be expanded to Eq (3) and Eq (4) as given below [13]. 
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Figure 1: Model diagram of our AVI system 

 

In Fig. 2 we have shown the schematic diagram of our pose estimation system using genetic algorithm. 

The computer representation of the object to be inspected is done using solid modeling technique [14]. Edge 

based data structure – Winged-edge data structure [15] is used to store and represent the vertices, edges and 

faces of the solid object to be inspected. For a given camera position and orientation, we extract the visible view 

of the object to be inspected using hidden edge removal algorithm. The visible view consists of visible edges 

and  

 
Figure 2: Block diagram of our model based Pose Estimation System 

 

faces. Output of the hidden edge removal algorithm is the set of visible edges. We construct the visible faces 

from these visible edge segments using Franklin’s algorithm [5]. The visible edge segments are kept in a doubly 

circular linked list. This link list is referred to as “list of 3D model vertices”. Now, the edges from the boundary 
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of the image of the object are extracted. These edges are listed in a doubly connected circular linked list. This 

link list is referred to as “list of 2D image vertices”. From Fig. 2, it is clear that for each of the estimated poses 

in a set of chromosomes, the list of 3-D model vertices from the doubly connected circular linked list will be 

changed by the comparing pose, according to Equations (3) and (4) and we might get the relating anticipated set 

of 2-D model vertices. For each of the conjectured representations, the matcher will assess the closeness of the 

2-D list of model vertices with the 2-D list of image vertices. Let B = {b1, b2 , …, bM} be the m image points at 

the boundary of the processed image corresponding to the n model points at the boundary of the model view 

stored in A = {a1, a2, …, aN}. The matcher establishes the correspondences between the sets A and B and it 

utilizes genetic algorithm to hypothesize both pose parameters and matching at the same time. 

 

 
Figure 3: Reference Diagram of a Composite Chromosome 

 
Genetic algorithm uses a composite chromosome comprising of a real chromosome of pose parameters 

and a list chromosome of vertices. In Fig. 3 we have demonstrated the schematic diagram of a composite 

chromosome. Different fields of the composite chromosome are detailed as follows. 

 

Pose Parameters: Three pose parameters (Δx, Δy, Δθ) are represented by three fields of the real chromosome. 

 

Direction Bit: The direction bit can assume values either 0 or 1 for either clockwise or anti-clockwise directions 

of traversals respectively along circular doubly connected linked list matching sequence. 

 

Start Index: This field generates the starting vertex index from which the correspondence starts between the 

sets A and B. 

 

Excess Counter: This field generates the number of spurious or missing vertices. 

 

List Chromosome: This chromosome consists of the list of integers. These integers are both model vertices and 

image vertices indices. Genetic algorithm generates random orders of these model and image vertices indices. 

We distinguish the image vertices indices from the model vertices indices in a list chromosome by re 

indexing the image vertices indices. We re-index the image vertices indices by L + i, where i = 0, 1, 2, ..., I − 1 

are image vertices indices and L is a constant indicating the maximum value of the model vertices indices. The 

model vertices indices are indicated by j = 0, 1, 2, …, M − 1 where M < L. It is to be noted that the number of 

model vertices and number of image vertices are known to us from solid model and the image analysis module 

respectively and these two numbers are constant throughout the chromosome set. The following two cases may 

arise depending on the number of model and image vertices detected. 

Case-1: M > I Here, it is at least (M − I) unmatched vertices from the model. Let P (<= I) be the number of 

matched model and image vertices. Therefore, we have (I − P ) number of unmatched image vertices (referred to 

as “spurious”) and (M −P ) number of unmatched model vertices (referred to as “missing”). The excess counter 

field E contains the hypothesized count of missing vertices. This will be used to pick up those many number of 

missing model vertices from the list chromosome. In the example illustrated in Fig. 3, the list chromosome 

contains image vertices indices Ij and model vertices’ indices mi, interleaved in any random way. Here, each of 

the mi’s may assume any value in the range 0 <= mi <= L − 1 and each of Ij ’s may assume any value in the 

range L <= Ij <= L + M − 1 + SP , where SP is the number of spurious vertices. Now the first E vertices of the 

list chromosomes which are model vertices, will be regarded as “missing”. We would correspondingly consult 

the doubly-connected linked list for the model and leave these vertices from matching. Since, genetic algorithm 

generates and hypothesized E, it is now possible to derive the number of spurious image vertices SP which is 

given by, 

 
The above equation can be explained as follows. The number of model vertices is (M − E) which are to be 
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matched and consequently the number of image vertices which are spurious is I − (M − E). We consider now the 

first SP number of vertices of the image from the list chromosome, which are labeled as ILIL+1 … IL+SP , which 

will be labeled as ”spurious”. We will leave out these vertices from the doubly connected linked list of image 

vertices and exactly (M − E) number of remaining model and image vertices in the linked list will be considered 

for matching in the given order. 

Case-2: M <=I Here, genetic algorithm generates the ExcessCounter value E as the number of hypothesized 

spurious vertices. The number of missing vertices (MI), as in Case-1, can be shown to be 

 

 
 

1. Fitness Function 

Genetic algorithm evolves the composite chromosomes and these chromosomes exhibit randomness 

with respect to pose parameters, as well as the hypothesized match sequence that is derived from the start vertex  

 

 
Figure 4: Block Diagram of list order Crossover            Figure 5: Block Diagram of Uniform Crossover 

 
index, the excess count and the list chromosome structure. Each composite chromosome should be evaluated for 

its fitness with respect to combined pose estimation and matching. We derive two counts from a given 

chromosome – the missing vertex count MI and the spurious vertex count SP. We mark the corresponding 

missing and spurious vertices from the 3-D model dcll and the 2-D image dcll respectively. Then we have P 

number of unmarked and matchable vertices from both the dclls. Now we want to determine a matching score. 

For this purpose we first require to transform all the P unmatched vertices from the 3-D model dcll to the 

projected 2-D space as per Equations (3) and (4) using the hypothesized pose parameters given in the 

chromosome under consideration. 

Let us suppose that  as the transformed unmarked model vertices in 2-D and 

 as the unmarked image vertices in 2D space (see Fig. 2). Let the co-ordinates of the vertices 

 be , ,  …, ( ) respectively and those of the vertices  be 

, …,  respectively. In terms of these coordinates, the fitness function of the 

chromosome is given by, 

 
 

2. Genetic Crossover and Evolution of the Chromosomes 

Initially we create a set of composite chromosomes by randomly varying the fields, viz., pose 

parameters, direction bit, start vertex index, number of missing or spurious vertices and the list chromosome 

indices. Matching and pose parameters are hypothesized in this way. Then genetic algorithm operators i.e., 

crossover and mutation are applied on these chromosomes. It is to be noted that crossover and mutation 

operators are invoked separately for each part of the composite chromosome. The uniform crossover operation 

is applied on real chromosomes and listorder crossover operation is applied on the list chromosomes. They are 

explained in Fig. 4 and Fig. 5 respectively. A random unit Gaussian noise is added to each field of pose 

parameters for the mutation of real chromosomes. For the mutation of the list chromosomes we have used swap 

mutators which randomly selects two positions in the list and exchanges the contents of the nodes in these two 

positions. Let ( ) be a list chromosome before mutation. After mutation the exchange of the 
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contents in node i with that in node j, the list chromosome reduce to ( ). After the crossover 

and the mutation operations, a new generation is created. In this new generation, the chromosomes consist of 

parents as well as their offsprings and all these chromosomes are evaluated for their fitness function and exactly 

the original number of chromosomes is retained according to their fitness values. The lots of chromosomes with 

low fitness values are eliminated. These fit chromosomes in the new generation go through the processes of 

selection, crossover and mutation again and the whole process is repeated again and again, till the convergence 

is obtained. 

 

IV. Results and Discussions 
The genetic evolution of the proposed composite chromosome structure is tested using (1) simulated 

point vertices (2) real image data. Various experiments performed are described below. 

 
1. Pose Estimation from a set of simulated vertices 

In this experiment, we simulate 3D vertices in world coordinates with respect to a fixed camera 

position and orientation. The vertices are then subjected to a rigid body translation and rotation. We estimate the 

pose parameters and the results so obtained are compared with the actual values. The experiment is done in the 

following way. We generate a set of N vertices, starting with N=12. The co-ordinates of the vertices are 

generated using uniform distribution. The interval chosen for the x and y co-ordinates is [100, 400] and that of 

z-coordinate is [0, 150]. The pose of the camera is fixed during the experiments. The position and orientation of 

the camera does not affect the estimation results and hence an arbitrary viewing position and orientation of the 

camera is chosen. The gimbal center of the camera is chosen at the point (0, 0, 200) and the tilting and spanning 

angles of the camera are chosen at  and  respectively. 

 

 
(c) 

Figure 6: Error in Pose Estimation Parameters against the Number of Control Points 

 

We demonstrate the robustness of GA-based integrated correspondences and pose estimation by 

conducting a set of 100 trials. Estimation error in x, y and θ are plotted in Fig. 6 for one of these trials. As no 

conclusion can be made from the results of one experiment and the variability indicated in the graph are random 

in nature, a set of definite conclusions can be made from the results of 100 trials. 

                                                                                                                                                                                                       

• The maximum error in x and y is less than 1 unit of world coordinate and is well below 1 degree for the 

parameter θ. 

• Even at lower values of N, the accuracy in pose estimation is excellent and similar accuracy is not possible 
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from classical methods, such as in Haralick et. al. [16]. 

• The approach is robust as at 20 dB SNR with 10% missing and 10% spurious vertices and the results are 

well accepted. 

 

1.1 Correctness of Correspondences from the Set of Simulated Points 

We have considered the number of points, N=28 in this experiment. We have added noise in a similar 

way as described in the last experiment. The number of correctly matched points continues to be 100% at 40 dB 

SNR with 30% of the vertices labeled as missing and 30% as spurious. At 20 dB SNR, when the percentage of 

missing and spurious vertices increases to 30%, the correctness of correspondences starts degrading. This is 

shown in Table 1. 

 

Table 1:  Effect of missing and spurious vertices on matching process 

 

 
 
2. Pose Estimation using Real Data 

In our work we have used QICAM FAST 1934 digital CCD camera. Its specification is compatible 

with IEEE 1394 Firewire digital CCD camera. In Fig. 7 we have shown three images of objects grabbed from 

different viewpoints. Fig. 7 (a), 7 (c), 7 (e) define three standard positions and orientations of the objects. In Fig. 

7 (b), Fig. 7 (d) and Fig. 7 (f) we have shown translated and rotated version of objects mentioned before. We 

compute the translation and rotation of the objects using our method. Wireframes of the models of the objects 

are constructed using winged-edge data structure [15]. Now we align the wireframe of the models of the objects 

with the images using the knowledge of computed translation and rotation. The results are shown in Fig. 7 (b), 

Fig. 7 (d) and Fig. 7 (f). 

 

 
 

 
 

SNR % of missing and spurious vertices 

0% 10% 20% 30% 

40 dB 100% 100% 100% 100% 

20 dB 100% 100% 100% 85% 
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Figure 7: Alignment of wireframe models with the objects in real images. 

 

V. Conclusion 
Pose Estimation is one of the fundamental problems in Robotics and Computer Vision. The purpose of 

this work is to help to design a flexible automated visual inspection system. In this regard we have discussed a 

genetic algorithm based solution to pose estimation problem when the correspondences between object space 

and image space points are not known. In this method of solution, matching and pose estimation have been 

viewed as a single monolithic integrated process. We have proposed a composite chromosome structure by 

fusing two chromosome hypothesizes the process of correspondence. Most of the work on pose estimation 

found in the literature is from known correspondence. They avoid the overhead of matching while estimating the 

pose accurately. Our genetic algorithm based approach shows its robustness with respect to noise, and missing 

and spurious vertices and hence it is suitable for designing a flexible inspection system.   
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