
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 3, Ver. VI (May-Jun. 2016), PP 21-26

www.iosrjournals.org

DOI: 10.9790/0661-1803062126 www.iosrjournals.org 21 | Page

Balancing Load in Computational Grids: A New Approach

1
Debashreet Das,

2
C.R.Tripathy,

1,2
 Dept. of Computer science and Engineering, Veer Surendra Sai University of Technology, Burla, Odisha,

India,

Abstract: The emergence of grid computing over the internet needs a hybrid load balancing algorithm which

can take into account the various characteristics of the grid computing environment. Hence, this paper

proposes a load balancing strategy called Match-Maker Algorithm, which takes into account the grid

architecture, resource availability and job characteristics. More focus has been given to module migration

algorithm in an automated dynamic manner for the problem of allocating software modules to the processing

nodes.

Keywords: Grid computing, Load Balancing, Reference optimization problem

I. Introduction

The automatic management of distributive system leads to the efficient allocation of software to the

processing elements. However, some of the important objectives which need to be achieved for the allocation

procedure are the avoidance of unwanted communication, usage of the available resources[1], maintaining the

security policies as well as the reliable policies, etc. In addition, Load-balancing can be better defined and

explained using the following five policies[2]:

1. Information Policy: Indicates the type of workload information to be collected, when and where to be

collected.

2. Triggering Policy: Determines the approximate starting time for a load-balancing operation.

3. Resource-Type Policy: Specifies whether a resource is a server or receiver of tasks, depending on the status

of availability.

4. Location Policy: Utilizes the output provided by resource type policy for finding a suitable match either for

a resource provider or a resource receiver.

5. Selection Policy: Specifies the tasks for migrating from overloaded resources to the under-loaded resources.

In addition to these policies for load-balancing, a distributed system also contains policies including

scheduling the loads and fault-tolerant policies as well as for utilization of resources.

II. Related Work
The distribution and balancing the loads in parallel and distributed systems in a broad way has been

studied by B.A. Shiraziet. al[4]. In addition to that, the conundrum of most favorable distribution of loads using

queueing models with various parameters related to performance such as weighted mean response time,

arithmetic average response time, etc. has been studied by H.Kameda[5] .

However, as compared to homogeneous systems, the distribution of load at an optimal level for

heterogeneous and distributed systems having both consecrate and generic applications is studied by F.Bonomi

and A.Kumar[6], K.W.Ross and D.D.Yao[7]. In the past, an attempt has been made for developing the load-

balancing algorithms that are de-centralized with the objective of diminishing the needs for communication and

is the outcome of de-centralization of these algorithms. In addition, Dandamudi[8] classified the load balancing

mechanisms into static and dynamic. Some of the conventional static load-balancing mechanisms are the speed-

weighted random splitting and the load-dependents static mechanisms. According to Dandamudi and Braun , the

activities are dispensed mathematically to different nodes in a de-centralized system, so that each resource can

complete the activities as desired. Moreover, the system has a unwavering degree of threshold on the

performance of the system.

Dandamudi[8] also proposed the concept of balancing the load dynamically where the system time may

be either present in the current state or in the most recent state. This mechanism is used for deciding the way in

which the activities can be allocated to every resource in a de-centralized environment. In case the system is

heavily loaded, the dynamic mechanism relocates the loaded activities to other nodes and gets them executed.

When the overhanging caused due to relocation is controlled and gets bounded within a certain range, the

dynamic load-balancing mechanism becomes preferable over static balancing.

According to Grosu and Chronopoulos[9] and Penmatsa and Chronopoulos[10], the loads among the

systems are balanced by the servers using the mechanism of round-robin. This mechanism depends on gathering

Balancing Load in Computational Grids: A New Approach

DOI: 10.9790/0661-1803062126 www.iosrjournals.org 22 | Page

of information regarding the status of all systems by the server including the loads that are assigned to each

system by other servers, in case of a single-user. The case of multi-users was considered as an extension by

Penmatsa and Chronopoulos by taking communication delay as a parameter. However, Dhakal et.al.[11]

thoroughed about dynamically balancinn the loads in distributed computing systems, thereby developing a

stochastic model considering randomness in delay, but ignoring the presence of resources in different

administrative domains.

J.Cao[12] and Junwei Cao et. al.[13] in their articles, suggested an ant-like self-organizing policy in

order to achieve load balancing in a wide network of Grids by collecting local interactions among the nodes of

the grids. In this miniature, a number of resource management agents collaborate in order to achieve automatic

load-balancing of distributed job queues, where each ant requires two sets of “X” number of steps continuously

as for deciding upon which is the least and which is heavily loaded nodes. These two nodes, in turn, again

distribute the loads between themselves. After a sequence of contiguous re-distribution of loads among the

networked nodes, a consistent load-balancing is obtained.

However, Yagoubi and Slimani[14] suggested an algorithm based on layered structure so that the

dynamic load-balancing mechanism in a grid environment could be achieved. The suggested model is based on

a tree model and includes the features related to scalability and heterogeneity, without taking into consideration,

the physical architecture of the Grids. Along with, S.Ludwig and A. Mallem[15] presented two new load-

balancing algorithms that was motivated from distributed swarm intelligence, where one algorithm finds its

basis on ant colony optimization and the second one from particle swarm optimization. Yongsheng Haoet.al[16]

suggested a load-balancing mechanism considering the deadline. They have proved that the mechanism, as

suggested, reduces the completion time as well as the time for re-submission. However, Shah et. al[17] made a

thorough study on dynamic load-balancing in grid systems by estimating the job arrival rate, processing rate and

processor load, without taking into account the distributed architecture along with the method for optimal load

balancing among distributed computing systems.

In addition, Arora et.al[18] also made an observation on dynamic load balancing in grid systems,

ignoring the uncertainty of resources and also the method of optimal load balancing among distributed

computing systems. Moreover, Anand, Ghosh and Mani[19] suggested a de-centralized, dynamic load-balancing

algorithm(ELISA), thereby eliminating the problem of continual information interchange by assessing the load,

depending on information about the state of the system that is obtained at huge intervals of time. The algorithm

was drafted with the aim of diminishing communication delays by diminishing the requirement for interchange

of status. However, Arora et. al[18] suggested an elevated, sender-initiated and scalable algorithm for

scheduling the jobs and balancing the loads of the resources in a heterogeneous and distributed Grid

environment.

The emergence of grid computing over the internet needs a hybrid load balancing algorithm which can

take into account the various characteristics of the grid computing environment. Hence, this paper proposes a

load balancing strategy called Match-Maker Algorithm, which takes into account the grid architecture, resource

availability and job characteristics. More focus has been given to module migration algorithm in an automated

dynamic manner for the problem of allocating software modules to the processing nodes

III. Problem Formulation and Analysis
 In this paper, we have discussed module migration algorithm in an automated and dynamic manner

for the problem of allocating software modules to the processing nodes. The module allocation algorithm is NP-

Complete and belongs to a family of problems with a different formulation. The common idea is to find an

optimal allocation of modules according to a given objective function. However, the module allocation

algorithm is not free from overhead cost, wherein, the systems using static module allocation suffer from

overheads. Besides this, running the algorithm is found to be time consuming. If the load situation in the

network changes, then modules must migrate as they would in the case of the migration algorithm.

The following terms are defined in relation to our problem formulation:

1. Model: It is the distributed module based system to be used as a reference model in case of migration

algorithms. Moreover, a system’s performance depends upon the interaction between the hardware and

software, where, models for both hardware and software are presented in an distributed system where

communication software modules are to be allocated to physical processing nodes in a network.

Physical resources in the model are represented by a collection of processing nodes, denoted by “N”, where,

the resources are considered to be heterogeneous. Due to varying computational facilities at each node, a

particular module incurs different costs when executed on different processors.

2. Load: In the model, the term “load” is defined as the workload generated by the software modules running

on physical processors with the assumption that the load of a module running on a processor can be

measured. It is also claimed that delay becomes extremely large due to high load on a network.

Balancing Load in Computational Grids: A New Approach

DOI: 10.9790/0661-1803062126 www.iosrjournals.org 23 | Page

3. Module: The software in the system is represented by “M” modules. A module is an atomic entity such as

object or component that can be migrated from node to node. The execution load for a module is denoted

by “N *M” matrix “E”, where, the element “eij” is the execution load for module “j” allocated to node “I”.

eij = if module “j” may not be allocated to node “I” due to security or domain membership reasons.

Modules interact using an RPC –like protocol in this communication model, where the actual

communication cost between two modules is zero if they are co-allocated on the same node. Otherwise, the

communication load is given by an “M*M” matrix “C”[0][0].

Fig : Model of the system

Reference Optimization Problem-

The main objective of Module allocation Problem is to allocate modules to physical Nodes. The main

conflict of objectives for performance is between clustering and distribution of modules. As we have to study

the load balancing using Module Migration , We choose an objective that minimizes the load imbalance in the

system.

First, let the the workload wi for node i given allocation α be:

 M

wi(α) =∑(ejαij + ∑cjk αij(1-αik)) -equ (1)

 J=1 k=1

Our objective is to minimize the system load imbalance. This means total load on node i should

be as close as possible to the average load wref;i for node i given allocation α. In our notation, the load

imbalance L given allocation α is

 N M

L=∑ ∑ │wi(α)- wref;i(α)│ -----------equ(2)

i=1 j=1

wherewref;i(α) is the average load of the nodes weighted by node capacity. Each node may not be allocated

more than it's capacity

0 ≤ wi< 1:0; i = 1....N ---------------------equ(3)

The optimization problem is to find the α that minimizes L subject to equ (3).

The Match-maker algorithm:

The objective of the Match-maker algorithm is to balance the load on nodes and minimizes the load

imbalance. The balancing operation is performed by matching nodes with high loads with nodes with low load

and the migration will take place between the pairs.

Step-1:Node_ list .sort ()

Step-2:for each n in node_ list:

 Step-3: n. module_ list .sort()

Step-4: i = 1

Step-5:k=node_ list .length() (N)

Step-6:whilei< k:

Step-7:ns=node_ list(i)

Step-8:nd=node _list(k)

Balancing Load in Computational Grids: A New Approach

DOI: 10.9790/0661-1803062126 www.iosrjournals.org 24 | Page

Step-9:ifns.load>ns.wrefand nd.load<nd.wref :

Step-10:j = 1

Step-11: while j ≤ ns.module_ list.length():

Step-12:m=ns.module _list(j)

Step-13: if nd.can accommodate(c) and

Step-14: nd.load + m.load<nd.wref :

Step-15:migrate(ns,nd,m)

Step-16: else:

Step-17:j = j + 1

Step-18:i = i + 1

Step-19:k = k - 1

Each pair has one node .High load called the source node ns and low load called the destination node

nd. Here module migrated from source node to destination node. The algorithm works in intervals of length T.

The system is measured during the interval load. The matching operation is performed at a centrally located

coordinator node collects load information and then redistributes it toother nodes.

The matching procedure is made by load imbalance order: The first pair has the most overloaded node

and the must under-loaded node, the second pair has the second most overloaded node and the second most

under-loaded and so on.

For each (ns; nd) pair, the module to be migrated is selected in a greedy fashion: migrate the largest (in

load) module that will fit on nd, since this will simultaneously decrease the load imbalance on both nodes the

most. The can _accommodate(mod) function handles non-performance related allocation policies, such as

security or reliability.

Comparison with Other Algorithms:
Here we will discuss some load balancing algorithms that are published earlier and will compare them

theoretically with our algorithm.

Cooling Algorithm

The Cooling Algorithm as suggested by V. Kalogeraki, P. M. Melliar-Smith and L. E. Moser[20] of

Department of Electrical and Computer Engineering, University of California in their paper Dynamic Migration

Algorithms for Distributed Object Systems has the following pseudo code:

Cooling algorithm ()

Find overloaded Processor p with loadp> HIGH

While loadp> HIGH

For all objects i of processor p in decreasing object_loadi,

Find processor q to host oject I using best-fit allocation

If (object_loadi + Loadq< Min (HIGH, loadp))

Move object i from processor p to q

Update processor_name of object i

Loadp =loadq - loadi

Loadq = loadq+object_loadi

Upon a thorough study, the following major differences were found between Cooling algorithm and Match

Maker Algorithm:

SL NO Match Making Algorithim Cooling Algorithm

1 The Match Making Algorithm first finds

(ns; nd) pairs (after sorting the nodes on the
basis of Load Imbalance) and then attempts

migration within each pair.

The most heavily loaded node is always the source node, and

the module with highest load on that node is the primary
candidate for migration.

2 Destination Node depends on the pair
chosen.

The destination node is the least loaded node that can
accommodate the candidate module.

3 Several migrations can be made in parallel. More difficult in the case of the Cooling algorithm.

4 The source node knows what modules it has

and is likely to be able to choose a good
candidate for migration.

The Cooling algorithm requires all lists of module loads to be

submitted by nodes at end of every interval.

Balancing Load in Computational Grids: A New Approach

DOI: 10.9790/0661-1803062126 www.iosrjournals.org 25 | Page

Factors Restricting Cooling Algorithm’s Software Simulation:

Following factors affect on the selection of overloaded processor (node) which makes it practically infeasible to

simulate on software:

1. Actual computation and execution times of the methods of the objects

2. The usage on the processor's resources during the executions.

3. Parameters of the invocations, the current state of the invoked and invoking objects and the load of the

processors.

4. Frequency of measurements.

5. Processing time of the method to execute locally on the processor.

6. Time the method spends on the Scheduler's queue waiting for the CPU to be released.

7. The order with which the methods will be executed depends on the other objects currently scheduled or

queued on the processor.

8. The proportion of the processing load, the amount of memory and the disk bandwidth required for executing

the method locally on the processor.

9. HIGH limit of a particular processor.

10. Any physical constraints on the objects. For example, a multimedia object that grabs live images from a

camera is tight to a specific processor and cannot be reallocated.

11. Importance metric of the tasks to decide which task to remove from the system.

Normal Algorithm[21]:

This algorithm is another deviation of the Match Making Algorithm. The algorithm was developed in

the process of developing the Match Making Algorithm.

In the Normal algorithm, we follow almost same steps as that in the Match Making Algorithm with the

exception that we do not sort the nodes and modules before migration. Thus the pseudo-code reduces to:

Normal Algorithm

Step 1: for each node n repeat step 3.

Step 2: Let I =1

Step 3: Let k be the total number of nodes

Step 4: While i<k repeat step 5 to 14

Step 5: Let ns represents the ith node.

Step 6: Let nd represents the k th node.

Step 7: if Load of ns >wref of ns and load of nd is <wref of nd then go to step 8 else go to step13.

Step 8: Let j=1

Step 9: While j <= number of modules allocated to ns repeat steps 10 to 12.

Step 10: Let m is the jth module of ns.

Step 11: If nd can accommodate a node and sum of the load of nd and m is less than wef of nd then migrate the

module m from node ns to node nd.

Step 12: increment j by 1.

Step 13 increment i by 1.

Step 14: increment k by 1.

IV. Conclusion

As with any thesis, several ideas have come to light that may improve the performance of our system

but have not been implemented. Some of these did not seem to provide additional benefit. In this chapter, we

describe some of these ideas and our intuition as to whether their implementation would be beneficial.

References
[1]. Yagoubi B., Slimani Y, “Load Balancing Strategy in Grid Environment”, Journal of Information Technology and Applications,

Vol.1, No. 4, 2007, pp.285-296.

[2]. Yagoubi et.al., “Load Balancing in Grid Computing”, Asian Journal of Information Technology, 5(10), 2006, pp. 1095-1103.
[3]. Patel D., Das D., Tripathy C.R., “A new Approach for Grid Load Balancing among Heterogeneous Resources with Bandwidth

Consideration”,
[4]. Shirazi B.A. et.al., “Scheduling and Balancing in Parallel and Distributed Systems”, IEEE Computer Society, 1995.

[5]. Kameda et.al., “An Algorithm for optimal static load balancing in distributed computing systems”, IEEE Transactions on

Computers, 1992.
[6]. Bonomi F, Kumar A., “Adaptive Optimal Load Balancing in a non-homogeneous multi-server system with a central job scheduler”,

IEEE Transactions on Computers,1990, pp. 1232-1250.

[7]. Ross K.W., Yao D.D., “Optimal Load Balancing and Scheduling in a Distributed Computer System”, ACM Digital Library, 1991,
pp.676-689.

[8]. Abawajy H.J, Dandamudi SP., “Parallel Job Scheduling on multicluster computing system”, IEEE International Conference on

Cluster Computing”, pp. 11-18.

Balancing Load in Computational Grids: A New Approach

DOI: 10.9790/0661-1803062126 www.iosrjournals.org 26 | Page

[9]. Grosu D., Chronopoulous T.A.,Leung Y.M, ”Cooperative Load Balancing in Distributed Systems”, Wiley Online Library, Vol.

20,2008,pp. 1953-1976.

[10]. Chronopoulous T.A., Penmatsa S., “Job Allocation Schemes in Computational Grids on Cost Optimization”, International
Symposium on Parallel and Distributed Processing, 2005, pp. 180a.

[11]. Dhakal S. et.al., “A Regeneration-Based Approach for Resource Allocation in Co-operative Distributed Systems”, IEEE

International Conference on Acoustics, Speech and Signal Processing, 2007, pp. 1261-1264.
[12]. Cao J., “Self-Organizing Agents for Grid Load Balancing”, IEEE/ACM International Workshop on Grid Computing, 2004, pp. 388-

395.

[13]. Cao J. et.al., “Grid Load Balancing using Intelligent Agents”, Issue 1, Vol. 21, pp. 135-149.
[14]. Yagoubi B., Slimani S., “Dynamic Load Balancing Strategy for Grid Computing”, No. 7, Vol. 2, 2008.

[15]. Ludwig S., Maollem Azin, “Swarm Intelligence Approaches for Grid Load Balancing”, Journal of Grid Computing,2011, pp. 279-

301.
[16]. Hao Y. et.al. “An enhanced load balancing mechanism based on deadline control on Gridsim”, Future Generation Computer

Systems, Issue 4, Vol. 28, 2012, pp. 657-665.

[17]. Shah R. et.al. “On the Design of Adaptive and De-centralized Load Balancing Algorithms with Load Estimation for Computational
Grid Environments”, IEEE Transactions on Parallel and Distributed Systems, Issue 12, Vol. 18, pp. 1675-1686.

[18]. Arora M. et.al. “ A De-centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environment”, International

Conference on Parallel Processing, 2002, pp. 499-505.
[19]. Anand L. et.al. “ELISA: an estimated load information scheduling algorithm for distributed computing systems”, Issue 8, Vol. 37,

1999, pp. 57-85.

[20]. Kalogeraki V. et.al. “Dynamic Migration Algorithms for Distributed Object Systems”,
[21]. Diasse A, Kone F., “Dynamic-Distributed Load Balancing for High performance and Responsiveness Distributed-GIS”, JGIS, 2011.

