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Abstract: Data mining is an interdisciplinary area of computer engineering. Incremental processing is a 

challenging  approach to refreshing mining results and it uses saved states to avoid the cost of re computation 

from damage. Here, I propose i
2
MapReduce is a novel incremental processing expansion to MapReduce in data 

mining. As compared with the state-of-the-art work on Incoop, instead of using task level re-computation the 

i
2
MapReduce executes the key-value pair level incremental processing .  It helps not only one-step computation 

but also more sophisticated iterative computation. Then it incorporates a set of novel techniques to decrease  

input output level for accessing dedicated  fine-grain computation states in the data mining. The final results on 

Amazon EC2 describe the significant performance development of i
2
MapReduce as compared to iterative and 

plain MapReduce performing re computation. 
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I. Introduction 
Recently, huge amount of digital data is being assembled in many important areas like social network, 

e-commerce, education, finance, health care and environment. It has become increasingly popular to mine such 

big data in order to obtain outputs to help business decisions or to give better personalized and higher quality 

services in data mining. Recently a huge number of computing frameworks [1-10] have been developed for big 

data analysis in data mining. So, among these frameworks the MapReduce [1] with its open-source 

implementations, such as Hadoop is the mostly used in production due to its simplicity and generality and 

maturity. Here, I focus on improving MapReduce performance. Actually, Big data is constantly increasing new 

updates are being collected and the input data of a big data mining algorithm will slowely change. Generally, it 

is desirable to periodically updates the mining computation in order to keep the mining results accurate. Here, 

some are examples like the PageRank algorithm [11] evaluates ranking scores of web pages based on the web 

graph structure for supporting web search in data mining. Here, I explain the nature of the problem and previous 

work, purpose, and the contribution of the paper which shows the structure of mapreduce. The incremental 

processing utilize the fact that the input data of two subsequent computations are similar . Only a very small 

fraction of the input data has changed. Here, system observe and find the realization of this principle in the 

context of the MapReduce computing framework in data mining.  

 

 
Fig.1: computation of Map Reduce 

 

II. Implementation 
1. Mapreduce Background 

Generally, a MapReduce program is made up of a Map function and a Reduce function [1], as shown in 

Fig. 1. Their APIs are as shown below: 

                                                                    Map(k1,v1)-> (<k2,v2>) 

Reduce(k2,v2)->(<k3,v3>) 

Here, the Map function enters  a kv-pair <K1, V1> as input and evaluate zero or more middle kv-pairs 

<K2,V2> in mapreduce function. Now  all <K2, V2> are grouped by K2 and  The Reduce function inserts a K2 

and a list of V 2 as input and computes the final output kv-pairs <K3,V3> in mapreduce. So, a MapReduce  

https://www.google.co.in/search?biw=1280&bih=631&q=define+assemble&sa=X&ved=0ahUKEwiWzpGruPTMAhWLgI8KHSFTD1UQ_SoIHzAA
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normally reads the input data of the MapReduce evaluation from and writes the final results to a distributed file   

system which distributes a file into equal-sized i.e. 64 MB blocks and collects the blocks across a    cluster of 

machines in data mining. The mapreduce system executes a JobTracker process on a master node to concentrate 

the job progress and a set of Task Tracker processes on worker nodes to implement the actual Map and Reduce 

tasks. Then, the Job Tracker starts a Map task per data block and typically assigns it to the TaskTracker on the 

machine that holds the corresponding data block in order to decrease communication. At each Map task calls the 

map function for every input <K1, V1> pair and stores the middle kv-pairs <K2, V2> on local disks in 

mapreduce function. The intermediate results are shuffled to reduce tasks according to a divides the function on 

K2 in pair. So, after a reduce task gets and merges middle pair’s results from all map tasks then it  invokes the 

reduce function on every <K2, V 2>  pair to create the final output kv-pairs <K3, V3>among all pairs. 

 

2 Fine- Grain Incremental Processing For One-Step Computation 

Here, we start by describing the basic idea of fine-grain incremental processing in the mapreduce 

function . it shows the main design including the MRBGraph abstraction and the incremental processing engine 

in mapreduce process. Here  we divide it into two aspects of the design. i.e. the mechanism that maintain the 

fine-grain states and the handling of a special case where the Reduce function performs collection function. 

 

2.1 MRBGraph Abstraction 

We use a MRBGraph i.e. Map Reduce Bipartite Graph is the abstraction to model the data flow in 

MapReduce function. As shown in Fig. 2(a) every vertex in the Map task represents an single Map function call 

instance on a pair of <K1,V1> nodes. At every vertex in the Reduce task represents an individual Reduce 

function call instance on a group of <K2; V 2>. The range from a Map instance to a Reduce instance means that 

the Map instance creates  a <K2,V2> pair that is shuffled to become part of the input to the Reduce instance of 

pair. Here, for example the input of reduce instance getting from map instance 0, 2, and 4 respectively. 

Therefore, i
2
MapReduce will maintain (K2, MK, V 2) for each MRBGraph edge in given function. 

 

 
Fig. 2. MRB Graph 

 

2.2 Fine-Grain Incremental Processing Engine 

Here, figure shows the fine-grain incremental function engine with an example application which 

evaluates the addition of in-edge weights for each vertex in a graph of MRBG. So,  as shown  the input data i.e. 

the graph structure  includes over time in running process.  We present and explains that how the engine 

performs incremental processing to update  the analysis results in mapreduce techniques. 

 

III. Algorithms 
In data mining and analysis the fundamental algorithms form field of data science  which includes 

default methods to analyze patterns and models for all kinds of data with applications ranging from scientific 

discovery to business intelligence and analytics at the time of algorithm selection [8]. 

 

3 General-Purpose Support For Iterative Computation 

3.1 Analyzing Iterative Computation : 

PageRank is a iterative graph algorithm for ranking web pages in data mining. So, it evaluates a ranking score 

for each vertex in a graph in algorithm. 
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Algorithm 1: PageRank in MapReduce 

 
Kmeans : The Kmean  is a generally used clustering algorithm that partitions points into k clusters . 

 

 
Fig. 3. Incremental processing for an application 

 

Algorithm 2: kmeans in MapReduce 

 
 

4 Incremental Iterative Processing 
Here, we shows the  incremental processing techniques for iterative evaluation. But  it is not sufficient 

to simply gather the above solutions for incremental one step processing  and iterative computation   given 

below  we discuss 3 main aspects that we noticed  in order to obtaine an effective design of i
2
mapreduce. 

 

 
Fig. 6. Iterative model of i2MapReduce. 
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IV. Result Analysis 
As we described all the algorithms which are helpful for i

2
mapreduce Solutions. Actually, our 

experiments compare four solutions initially PlainMR recomp re-computation on vanilla Hadoop then iterMR 

recomp and re-computation on Hadoop optimized for iterative evaluation. Secondly, hadoop re-computation on 

the iterative Mapreduce framework Hadoop  which controls mapreduce by providing a structure data caching 

mechanism then in i
2
Mapreduce our proposed solution is to best of our knowledge the task-level coarse-grain 

incremental processing system. Here, Incoop  is not normally present that’s why we can’t compare 

i
2
MapReduce with Incoop technique. So, the statistics describes that without careful data partition almost all 

tasks see changes in the experiments and making task-level incremental processing less important than the other. 

 

 
Fig. 7. Run time of individual stages in PageRank. 

 

 
Fig. 8. Normalized runtime. 

 

V. Conclusion 
In data mining includes mapreduce function described i

2
MapReduce technique.  A MapReduce based 

framework for incremental big data process is used for i
2
mapreduce function.  I

2
MapReduce collects a fine-grain 

incremental engine and a general-purpose iterative model also a set of useful techniques for incremental iterative 

evaluation. The real-machine experiments describes that i
2
MapReduce can significantly decrease the run time 

for updating the big data mining results as compared to the recomputation on both plain and  iterative 

MapReduce. 
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