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Abstract: Software development is a very complex process that, at present, is primarily a human activity. 

Programming, in software development, requires the use of different types of knowledge. So, automating 

software development is the most relevant challenge today. AI has the capacity to empower software 

development in that way.  
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I. Introduction 
The disciplines of artificial intelligence and software engineering have developed separately. There is 

not much exchange of research results between them. AI research techniques make it possible to perceive, 

reason and act. Research in software engineering is concerned with supporting engineers to developed better 

software in less period.  

Rech and Altoff (2008) say "The disciplines of artificial intelligences and software engineering have 

many commonalities. Both deals with modeling real world objects from the real world like business process, 

expert knowledge, or process models."  

Now a day's several research directions of both disciplines come closer together and are beginning to 

build new research areas. Software agents play an important role as research objects in distributed AI(DAI) as 

well as in Agent Oriented Software Engineering(AOSE). Knowledge-based System(KBS) are being examine for 

Learning Software Organizations (LSO) as well as Knowledge Engineering(KE). Ambient intelligence(AmI) a 

new research area for distributed, non-intrusive, and intelligent software system both from the direction of how 

to build these system as well as how to designed the collaboration between system. Lastly computational 

intelligence(CI) plays an important role in research about software analysis or project management as well as 

knowledge discovery in machine learning or databases. [1]  

Artificial Intelligence techniques, which aim to create software systems that exhibit some form of 

human intelligence, have been employed to assist or automate the activities in software engineering. Software 

inspections are been applied with great success to detect defects in different kinds of software documents such 

as specifications, design, test plans, or source code by many researchers. [2]  

Automated software engineering is a research area which is constantly developing new methodologies 

and technologies. It includes toolsets and frameworks based on mathematical models (theorem provers and 

model checkers), requirements-driven developments and reverse engineering (design, coding, verification 

validation), software management (configurations and projects), and code drivers (generators, analyzers, and 

visualizers). In the following sections we have tried to review some research techniques to automate each phase 

of software engineering life cycle using artificial intelligence.  

 

 
Fig.1 Interaction between AI and SE 

 

II. Application Of Ai In Requirement Specification 
The main contribution of AI in the requirements engineering phase are in the following areas:  

 Disambiguating natural language requirements by developing tools that attempt to understands the natural 

language requirements and transforming them into less ambiguous representations.  

 Developing knowledge based systems and  ontology to manage the requirements and  model problem 

domains.  
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 The use of computational intelligence to solve  some of the problems associated with requirements such as 

incompleteness and prioritization [3]. A formal specification may be characterized by  three aspects:  

 Expressiveness: The semantics must cover sufficient details to map real-world descriptions.  

 Readability: It helps understanding the specification and thus improves the validation process.  

 Structuring: It encourages specification processing. We mean by processing the set of mechanisms that 

allow refinement, composition, and importation of specifications. A developing method that utilizes a 

formal method to verify the description and feedback to a natural language is proposed by Yoichi Omori 

and Keijiro Araki. A dictionary tool supports this procedure is developed as an Eclipse plug-in and 

cooperates with the existing tool for a formal method. Modeling from the description in the natural 

language into a formal model and feedback from the formal model to the description in the natural language 

is effectively supported through the dictionary [4].  

 

 
Fig.2 Cyclic Development Process 

 

III. Application Of Ai In Requirement Tracing 
Requirements traceability is an important undertaking as part of ensuring the quality of software in the 

early stages of the Software Development Life Cycle. Swarm intelligence is applied to the requirements tracing 

problem using pheromone communication and a focus on the common text around linking terms or words in 

order to find related textual documents. Through the actions and contributions of each individual member of the 

swarm, the swarm as a whole exposes relationship between documents in a collective manner. Two techniques 

have been examined, simple swarm and pheromone swarm. The techniques have been validated using two real- 

world datasets from two problem domains. The swarm agents mimic and borrow useful behavioral features from 

communal insects such as ants and bees to identify and promote candidate links between two sets of documents. 

The simple swarm approach, the heuristic to select a term or traversal path in the search space is based on term 

or document attributes [5].  

 

IV. Application Of Ai In Requirement Specification 
Both architecture design and detailed design require designers to apply their technical knowledge and 

experience to evaluate alternative solutions before making commitments to a definite solution. Normally, a 

designer starts with a guess of the solution, and then goes back and forth exploring candidate design 

transformations until arriving to the desired solution (Tekinerdogan, 2000). This exploration of the design space 

is conceptualized into two main stages: (i) from quality-attribute requirements to (one or more) architectural 

models - called QAR-to-AM phase, and (ii) from an architectural model to (one or more) object-oriented models 

- called AM-to- OOM phase. Making the right design decisions for each phase is a complex, time-consuming 

and error-prone activity for designers. Although tools for specification and analysis of designs exist, these tools 

do not support the designer in making informed decisions based on quality-attribute considerations. Along this 

line, several AI developments have shown the benefits of improving conventional tools with intelligent agents. 

The metaphor here is that the agent acts like a personal assistant to the user (Maes, 1994). This  assistant should 
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be able to monitor the designer‟s work, and offer timely guidance on how to carry out design tasks or even 

perform routine computations on her behalf. For example, given a modifiability scenario, a design assistant 

could recommend the use of a Client-Server pattern to satisfy that scenario. If the designer agrees to apply such 

a pattern, the assistant could also take over the assignment of responsibilities to Client and Server components. 

[6]  

 

V. Application Of Ai In Code Generation 
Because of the evolutionary nature of software products, by the time coding is completed, requirements 

would have changed (because of the long processes and stages of development required in software 

engineering): a situation that results in delay between requirement specification and product delivery. There is 

therefore a need for design by experimentation, the feasibility of which lies in automated programming. Some of 

the techniques and tools that have been successfully demonstrated in automated programming environments 

include:  

 Language Feature: this technique adopts the  concept of late binding (i.e. making data structures very 

flexible). In late binding, data structures are not finalized into particular implementation structures. Thus, 

quick prototypes are created which result in efficient codes that can be easily changed. Another important 

language feature is the packaging of data and procedures together in an object, thus giving rise to object-

oriented programming: a notion that has been found useful in environments where codes, data structures 

and concepts are constantly changing. Lisp provides these facilities.   

 Meta Programming: this concept is developed in natural language processing (a sub field of AI). It uses 

automated parser generators and interpreters to generate executable lisp codes. Its use lies in the modeling 

of transition sequences, user interfaces and data transformations.   

 Program Browsers: these look at different portions of a code that are still being developed or analyzed, 

possibly to make changes, thus obviating the need for an ordinary text editor. The browser understands the 

structures and declarations of the program and can focus on the portion of the program that is of interest.           

 Automated Data Structuring: This means going from a high-level specification of data structures to a 

particular implementation structure.  

When systematic changes need to be made throughout a code, it is more efficient and controllable to do 

it through another program (i.e., program update manager) than through a manual txt editor. For instance, a 

change in program X may be required whenever h is being updated by b-1 under the condition that b is less than 

C. Assume that a program W makes a systematic change in all such places. If another program makes a change 

in W, then any program changed by W also must be updated. Thus, program update managers propagate 

changes. Because of this ability, program update managers are useful when prototypes need to be developed 

quickly [7].  

Most automatic code generation tools help developers write software from graphical representations of 

the requirements specifications to visually specify structure and behavior of the program by means of a 

modeling language, e.g. the UML. Some of them instead are able to generate software code from textual 

representations, e.g. a natural language. Few approaches can generate software code from symbolical 

representations such as mathematical models. Thus, engineering tools build software code based on pre-defined 

policies and fixed rules, and then developers specify the program logic.  

State of the art automation of software process mainly deals with automatic code generation. Some 

solution automate verification process and very few of them are able to code software from requirements. 

However, these automated software developments are focused on predefined policies and fixed rules to generate 

code. But the following approach goes beyond this.  

The Autonomous Software Code Generation (ASCG) process carried out by the SDA is an agent 

oriented approach for automated code generation. It relies on the SDA autonomy to make decisions on how to 

analyze, design and implement software applications. The approach initially implements only an agent (role as a 

developer; SDA) who starts dealing with the development of system by reading the requirements specification 

given as a physical configuration of the Software under Development (SuD). System operations or missions are 

also specified.  

The SDA is able to capture this information and queries its own internal knowledge by means of a 

reasoner in order to make decisions to design the software that realizes the system logic. The system logic is 

built of interconnected blocks that can exchange information by receiving data from and sending data to other 

blocks. SA and the OODA loop, are the foundation of the ASCG framework. The SDA is able to start the 

software design with a description of the tanks configuration. Different fuel systems can be graphically 

described through a visual user interface [8].  
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Fig.3 Autonomous Software Code Generation (ASCG) framework 

 

VI. Application Of Ai In Software Testing 
Application of artificial intelligence techniques in engineering and testing of the software is a 

progressive area of research that leads to the cross- fertilization of ideas in the middle of the two fields. Varieties 

of AI tools are used to generate test data, research on data suitability, optimization and analysis of the coverage 

as well as test management. Many automation tasks, such as the generation of test data are developed as 

constraint solving problems. A well-designed test is expected to reveal software faults.[9]  

Several researchers studied the relevance of search algorithms based on AI such as genetic algorithm, 

simulated annealing, swarm intelligence as a better alternative for the development of test data generators and 

have shown promising results. Requirements based testing based on particle swarm optimization(PSO), partition 

testing based on PSO, using PSO and genetic algorithm in the context of evolutionary and structural testing, test 

case minimization using artificial neural network or data mining info-fuzzy network, using neural network for 

pruning test cases, software test data generation using ant colony optimization, test optimization using Artificial 

Bee colony optimization(ABC) are a few techniques where in software testing is made easier using AI.  

Frank Padberg et.al. Proposed a method for estimating the defect content after an inspection using 

machine learning. It uses the zero-one matrix of an inspection and an empirical database collected during past 

inspections as input for computing the estimate. This approach identifies defect content estimation for software 

inspections as a nonlinear regression problem. A major motivation for our approach was the discovery that some 

features of an inspection can carry significant nonlinear information about the defect content of the inspected 

document. Using this information can greatly improve the accuracy of the estimates [10]. 

 

VII. Application Of Ai In Gui Testing 
A growing interest can be seen in use of AI for GUI testing. There has been some research into how 

GUI testing could be dealt with the help of AI. The various forms of this technique have been found in a quick 

glance to ACM library search on the topic. Some of these techniques include generating the GUI based on a 

model, generating tests based on a model, and automating test case generation to make it possible to regenerate 

the tests each time GUI changes and making automated oracles which model the behavior of the user interface. 

There have also been peeks into generating tests based on artificial intelligence (AI) planning techniques and 

genetic modeling. [9] 

 

VIII. Application Of Ai In Software Estimation 
Defect tracking using computational intelligence methods is used to predict software readiness by Tong 

Seng Quah and Mie Mie Thet Thwin. Their research extended currently software quality prediction models by 

including structural/architecture considerations into software quality metrics. The genetic training strategy of 

NeuroShell Predictor is used in their study. The Genetic Training Strategy uses a “genetic algorithm” or survival 

of the fittest technique to determine a weighting scheme for the inputs. The genetic algorithm tests many 
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weighting schemes until it finds the one that gives the best predictions for the training data [11].  

Ricardo de A. Araujo et.al. proposed a hybrid intelligent method, referred to as Morphological-Rank-

Linear Hybrid Intelligent Design (MRLHID), using a Modified Genetic Algorithm (MGA) and The Least Mean 

Squares (LMS) algorithm to design „MRL Perceptrons‟ was proposed to solve the Software Development Cost 

Estimation (SDCE) problem. The proposed method used the MGA to determine the best particular features to 

improve the MRL perceptron performance, as well as the initial parameters of MRL perceptron. Furthermore, 

for each individual of MGA, it is used a gradient steepest descent method (using a Least Mean Squares (LMS) 

algorithm with a systematic approach to overcome the problem of non-differentiability of the morphological-

rank operator) to optimize the MRL perceptron parameters supplied by MGA Two different metrics (PRED(25) 

and MMRE) were used to measure the performance of the proposed MRLHID model.  

A fitness function was designed with these two well-known statistic error measures in order to create a 

global indicator of the prediction model performance, where the main idea was to maximize the PRED(25) 

metric and to minimize the MMRE metric. The justification of the inclusion of this metrics to evaluate the 

proposed method is that most of the existing literature frequently employ the Mean Squared Error (MSE) for 

estimation evaluation, however it may be used to drive the model in the training process, but it cannot be 

considered a conclusive measure for comparison of different models. An experimental validation of the method 

was carried out using the Desharnais and COCOMO databases, showing the robustness of the proposed 

MRLHID model through a comparison, according to two performance measures and a fitness function, of 

previous results found in the literature (SVR-Linear, SVR-RBF, Bagging, GA-based with SVR Linear, GA-

based with SVR RBF and MRL). This experimental investigation indicates a better, more consistent global 

performance of the proposed MRLHID model, having around 11% of improvement (Desharnais database) and 

around 12% of improvement (Cocomo database) regarding the best result reported in the literature. It is possible 

to notice that the main advantages of the proposed MRLHID model, apart from its superior predictive 

performance compared to all analyzed models, are (1) it has both linear and nonlinear components (it means that 

the model can use a distinct percentage of the linear and nonlinear components according to the linearity or 

nonlinearity of the problem), and (2) it is quite attractive due to its simpler computational complexity, according 

to analysis presented in [12].  

 

 
Fig. 4 MRLHID for Software Development Cost Estimation 
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IX. Conclusion 
Software Engineering remains a highly skilled human intensive activity and relies on problem solving 

skills of human knowledge and experiences. Therefore Artificial intelligence, Expert System, and Knowledge 

Engineering will continue to play a major role in automating numerous software development activities. The 

interplay between Artificial Intelligence and Software Engineering is significant and it makes sense to take 

advantage of their mutual strengths.  

The survey conducted in this paper has highlighted some trends in the application of AI techniques in 

the software development process. Further, there is much scope for exploring and evaluating the use different AI 

techniques in the automation of Software Engineering in future.  
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