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Abstract:The output of the system is a sequence of actions in some applications. There is no such measure as 

the best action in any in-between state; an action is excellent if it is part of a good policy. A single action is not 

important; the policy is important that is the sequence of correct actions to reach the goal. In such a case, 

machine learning program should be able to assess the goodness of policies and learn from past good action 

sequences to be able to generate a policy. A multi-agent environment is one in which there is more than one 

agent, where they interact with one another, and further, where there are restrictions on that environment such 

that agents may not at any given time know everything about the world that other agents know. Two features of 

multi-agent learning which establish its study as a separate field from ordinary machine learning. Parallelism, 

scalability, simpler construction and cost effectiveness are main characteristics of multi-agent systems. 

Multiagent learning model is given in this paper. Two multiagent learning algorithms i. e. Strategy Sharing & 

Joint Rewards algorithm are implemented. In Strategy Sharing algorithm simple averaging of Q tables is taken. 

Each Q-learning agent learns from all of its teammates by taking the average of Q-tables. Joint reward learning 

algorithm combines the Q learning with the idea of joint rewards.  Paper shows result and performance 

comparison of the two multiagent learning algorithms.  
Keywords: Joint Rewards, Multiagent, Q Learning, Reinforcement Learning, Strategy Sharing 

 

I. Introduction 
 Consider the example market chain that has hundreds of stores all over a country selling thousands of 

goods to millions of customers. The point of sale terminals record the details of each transaction i.e. date, 

customer identification code, goods bought and their amount, total money spent and so forth. This typically 

generates gigabytes of data every day. What the mark et chain wants is to be able to predict who are the likely 

customers for a product. Again, the algorithm for this is not evident; it changes over time and by geographic 

location. If stored data is analyzed and turned into information then it becomes useful so that we can make use 

of an example to make predictions. We do not know exactly which people are likely to buy this product, or 

another product. We would not need any analysis of the data if we know it already. But because we do not 

know, we can only collect data and hope to extract the answers to questions from data.  

We do believe that there is a process that explains the data we observe. Though we do not know the 

details of the process underlying the generation of data – for example, customer behavior - we know that it is not 

completely random. People do not go to markets and buy things at random. When they buy beer, they buy chips; 

they buy ice cream in summer and spices for Wine in winter. There are certain patterns in the data. We may not 

be able to recognize the process completely, but still we can construct a good and useful approximation. That 

approximation may not explain everything, but may still be able to account for some part of the data. Though 

identifying the complete process may not be possible, but still patterns or regularities can be detected.  

Such patterns may help us to understand the process, or make predictions. Assuming that the near 

future will not be much different from the past and future predictions can also be expected to be right.  There are 

many real world problems that involve more than one entity for maximization of an outcome.  For example, 

consider a scenario of retail shops in which shop A sales clothes, shop B sales jewelry, shop C sales footwear 

and wedding house D. In order to build a single system to automate (certain aspects of) the marketing process, 

the internals of all shops A, B, C, and D can be modeled. The only feasible solution is to allow the various stores 

to create their own policies that accurately represent their goals and interests. They must then be combined into 

the system with the aid of some of the techniques. The goal of each shop is to maximize the profit by an increase 

in sale i.e. yield maximization. Different parameters need to be considered in this: variation in seasons, the 

dependency of items, special schemes, discount, market conditions etc. Different shops can cooperate with each 

other for yield maximization in different situations. Several independent tasks that can be handled by separate 

agents could benefit from cooperative nature of agents. 

Another example of a domain that requires cooperative learning is hospital scheduling. It requires 

different agents to represent the regard of different people within the hospital. Hospital employees have a 

different outlook. X-ray operators may want to maximize the throughput on their machines. Nurses in the 
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hospital may want to minimize the patient‟s time in the hospital.  Since different people examine candidate with 

different criteria, they must be represented by cooperative agents. The output of the system is a sequence of 

actions in some applications. There is no such measure as the best action in any in-between state; an action is 

excellent if it is part of a good policy. A single action is not important; the policy is important that is the 

sequence of correct actions to reach the goal.  To be able to generate a policy the machine learning programs 

should able to assess the quality of policies and learn from past good action sequences.   

This paper is organized as: Section II gives the concept of multi-agent agent learning, Section III 

describes multi-agent model. Joint Rewards algorithm is given in section IV and Strategy Sharing algorithm is 

given   in Section IV.  Section VI gives experimental setup and Section VII put up the results comparisons of 

both algorithms with final concluding remark and future scope.  

 

II. Multi-Agent Learning 
An agent is a computational mechanism that reveals a high degree of autonomy. Based on information 

received from the environment, the agent performs actions in its environment. A multi-agent environment is one 

in which there is more than one agent, where they interact with one another, and further, where there are 

restrictions on that environment such that agents may not at any given time know everything about the world 

that other agents know[1]. Two features of multi-agent learning which establish its study as a separate field from 

ordinary machine learning. First, because multi-agent learning addresses the problem domains involving 

multiple agents. The search space considered is extraordinarily huge. Small changes in learned behaviors can 

often result in random changes in the resultant macro-level properties of the multi-agent group as a whole due to 

the communication of those agents. Second, multi-agent learning involves multiple learners, each learning and 

adapting in the context of others; this introduces complex issues to the learning process which are not yet fully 

understood[2]. 

Parallelism, scalability, simpler construction and cost effectiveness are main characteristics of multi-

agent systems. Having these qualities, multiagent systems are used to resolve complex problems, search in large 

domains, execute sophisticated tasks, and make more fault-tolerant and reliable systems. In most of the existing 

systems, agents‟ behavior and coordination schemes are designed and fixed by the designer. But, an agent with 

incomplete and fixed knowledge and behavior cannot be adequately efficient in a dynamic, complex or 

changing environment. Therefore, to have all benefits of applying a multi-agent system, agent team must learn 

to manage the fresh, hidden and dynamic situations[3]. 

In approximately all of the present multi-agent teams, agents learn independently. Agents are not 

required to learn all things from their own experiences. Each agent observes the others and learns from their 

situation and behavior. Also, agents can check with more expert agents or get guidance from them. Agents can 

also share their information and learn from this information, i.e. the agent can cooperate in learning.   

In the single-agent system, only one agent interacts with the environment. Multiagent system (MAS) 

consists of multiple agents. These agents all carry out actions and control their environment. Each agent selects 

actions individually, but it is the resulting joint action which manipulates the environment and generates the 

reward for the agents. This leads to severe consequences on the characteristics and the complexity of the 

problem. Work focused on cooperative MASs in which the agents have to optimize a shared performance 

measure[4].   

 

III. Multi-Agent Model 
Parameters for Multiagent Model 

General model parameters for MAS are described. Most model parameters extend the parameters from 

single-agent systems[5]. A Multiagent System can be described using the following model parameters: 

 A discrete time step t = 0, 1, 2, 3, . . . . 

 A group of n agents A = { A1, A2, . . . ,An }. 

 A finite set of environment states S. A state s
t
 є S describes the state of the system at time step t. 

 A finite set of actions Ai for every agent i. The action selected by agent i, Ai at time step t is denoted by a
t
 є 

A. The joint action a ∈ A = A1 × . . . × An is the vector of all individual actions. 

 A reward function R : S × A → R which provides the agent i with a reward r
t+1 ∈ R(s

t
, a

t
) based on the joint 

action a
t
 taken in state s

t
.   

 A state transition function T: S×A×S → [0, 1] which gives the transition probability       p(s
t
|a

t−1
, s

t−1
) that 

the system moves to state s
t
 when the joint action a

t−1 
is performed in state s

t−1
.     

 

These parameters are very similar to the ones in the single-agent case. However, difficulties arise due 

to the decentralized nature of the problem. Each agent selects actions independently, but it is the resulting joint 

action that manipulates the environment and produces the reward.   
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Stochastic games (SGs)   

Stochastic games are a very natural extension of MDPs to multiple agents.  

Definition 1: A stochastic game is a tuple (n, S, A1…n ,T, R1…n ),where n is the number of agents, S is a set of 

states, Ai is the set of actions available to agent i with A being the joint action space A1×…×An, T is a 

transition function S×A×S→[0,1], and Ri is a reward function for the i
th

 agent S×A→R. SGs are a very natural 

extension of MDPs to multiple agents[6]. 

 

Model of Multiagent Q-learning   

Model of multiagent Q-learning with ε-greedy exploration is presented here. Effect of ε -greedy 

mechanism and the presence of other agents on learning the process of one agent are studied to develop the 

model.  The derivation of a continuous time equation for the Q-learning rule is firstly demonstrated. Then the 

limits of this equation for the case of a single learner are analysed. It indicates how they change dynamically 

when multiple learners are considered. Finally, it is proved that the ε-greedy mechanism affects the shape of the 

modeled function[7].  

Consider the situation composed of 2 agents with 2 actions each and a single state. The reward 

functions of the agents, in this case can be described using tables of the form: 

 

       A= 
𝑎11 𝑎12
𝑎21 𝑎22

         B=  
𝑏11 𝑏12
𝑏21 𝑏22

  

 

where A describes the rewards, for the first  agent and B the rewards for the second agent.  Q-learning update 

rule can be simplified for only one state as:  

Qai := Qai + α(rai − Qai )………………..........……..(1) 
 

where  

Qai Q-value of agent a for action i  

rai  reward that agent a receives for executing action i. 

 a   agent         and      i    action  

 

Analysis 

The update rule for the first agent can be rewritten as: 

Qai (k + 1) − Qai (k) = α(rai (k + 1) − Qai(k))…........(2) 

 

This difference equation explains the absolute growth in Qai between times k and k + 1. To obtain its 

continuous time version, consider Δt ∈ [0, 1] to be a small amount of time. 

Qai (k + Δt) − Qai (k) ≈ Δt × α(rai(k+Δt) − Qai (k))..(3) 

to be the approximate growth in Qai during Δt.  

if  Δt = 0 then the equation becomes identity. 

If  Δt = 1 then it becomes Qai (k + 1) − Qai (k) = α(rai (k + 1) − Qai(k)) i.e. equation 5. 

If  Δt = {0,1} then it becomes linear approximation.  

 

Divide both sides of the equation by Δt  
Qai (k + Δt) − Qai (k)

Δt
 ≈  α(rai(k+Δt) − Qai (k))………....(4) 

taking limits Δt→0 on both sides  

lim Δt→0

Qai (k + Δt) − Qai (k)

Δt
 ≈  lim Δt→0 α ( rai ( k + Δt ) − Qai (k)) 

lim Δt→0

Qai (k + Δt) − Qai (k)

Δt
 ≈  α ( rai (k) − Qai (k)) 

dQai (k)

dt
≈  α ( rai (k) − Qai (k))……….. ………....…(5) 

It is an approximation for the continuous time version of Equation 2. 

Solution to this equation found by integration as 

Qai(k)=C𝑒−𝛼𝑡   + rai…………...………………........(6) 

where C is the constant of integration.  

As 𝑒−𝑥  is a monotonic function and limx→∞𝑒−𝑥=0, it is easy to observe that the limit of Equation 3            

when t→  is rai: 

ai(K) = C +  rai = rai…...……..(7) 

It is considered that only the first agent is learning and that the second agent is using a pure strategy 

then it will always generate the same reward for the first agent. In this case, the derivation above is sufficient to 

prove that Qai will monotonically increase or decrease towards rai, for any initial value of Qai. More particularly, 
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the function is monotonically increasing if Qai (0) < rai and monotonically decreasing if Qai (0) > rai. The model 

build here will be used to determine how one learning strategy affects the action selection of another learning 

agent.   

 

IV. Joint Rewards Algorithm 
To extend Q-learning into a multi-agent system, two main challenges exist. One is how to deal with the 

huge Q-table with the increment of dimension in a multi-agent system. The other challenge is how to utilize the 

cooperative behavior among agents to obtain more efficient learning results. Joint rewards ensure agents to learn 

in a multiagent environment. The experiment results show the efficiency and well convergence of the algorithm. 

It is not enough for each agent to proceed selfishly in order to reach a globally optimal strategy in a multi-agent 

environment. It is not possible to accomplish with only one agent to accomplish a task.   

The section presents a joint reward learning algorithm which combined the Q-learning with the idea of 

joint rewards to meet above two challenges partly. In a multi-agent system, every agent needs to maintain a Q 

table which contains the information about its and others agent‟ states and actions, i.e. the situation of the whole 

environment. In order to encourage cooperative behavior among agents to get global optimal rewards, it should 

take account of the other agents‟ actions. Here, we use a simplified of vicarious rewards for feasible to realize. 

We call „joint reward‟[9],  

jri = b.pri + (1 - b). ……………………………………………………….(8) 

where pr is the personal reward of agent i, and the sum of rewards of other agents except i and 

0 < b ≤ 1 is the personal weight, denoting how much importance is given to agent‟s personal reward 

compared to that of other agents. The improved update rule of Q-learning values of agent i can be 

formulated as 

Qi
new

 (xi, ai) := (1 - α) Qi
Old

(xi, ai) + α (jri + β maxa Q(s, a))......................................(9) 
 

Algorithm 1: Multiagent learning using Joint Reward Algorithm  

1. For each agent i (0 < i < m) the learning procedure as  

2. for all a ∈  A and s  ∈S  initialize Q(s,a) = 0 

3. let t = 0,  = 0  

4. Loop: 

5. select action a
i
 which has max Q value  

6. execute action a
i
 

7. receive an immediate reward   

8. observe the new state s 

9. calculate joint rewards  as  

10. jri = b.pri + (1 - b).          //   sum of rewards of other agents except i  

11. update Q learning values of agent i as  

Qi
new

 (xi, ai) := (1 - α) Qi
Old

(xi, ai) + α (jri + β maxa Q(s, a)) 

12. end 
 

V. Strategy Sharing Algorithm 
One way for knowledge sharing in multi-agents is knowledge averaging. We can divide averaging in 

two general categories, simple averaging and weighted averaging. In simple averaging, which is called strategy 

sharing, each Q-learning agent learns from all of its teammates by taking the average of Q-tables[8].  

 = ……………………………(10) 

The SS treats all agents similarly, ignoring their level of knowledge. This method does not consider agents‟ 

different expertise levels. SS algorithm is described as:  

 

Algorithm 2 : Strategy Sharing Algorithm  

1. initialize  

2. while not EndOfLearning do 

3. begin 

4. if InIndividualLearning Mode then 
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5. begin {Individual Learning} 

6. xi := FindCurrentState() 

7. ai := SelectAction() 

8. DoAction(ai) 

9. ri := GetReward() 

10. yi := GoToNextState() 

11. v(yi) := Maxb 
∈actionsQ(yi,b) 

12. Qi
new

 (xi,ai) := (1 - βi)Qi
Old

(xi,ai)+ βi(ri +γiV(yi) ) 

13. end 

14. else {Multiagent Learning} 

15. begin 

16. for j := 1 to n do 

17. Qi
new

 := 0 

18. for j := 1 to  n do 

19. begin 

20. Qi
new

 := Qi
new 

 +  1/n ∑ Qj
old 

         // strategy sharing by simple averaging of Q tables 

21. end 

 

VI. Experimental Setup 
Model design:  

Maximize the sale of products that depends on price of product, customer age and period of sale. These 

are the information available to each agent i.e. shop. So it becomes the state of environment. Final result is to 

maximize profit by increasing total sale of products[10].  

 

Input Data set:  
We define the action set as the sale of possible product. i.e. A={p1,p2,p3…….p10}. Hence action a 

A. State of the system is queue of customer in the particular month for the given shop agent. So state can be 

described as  

X(t) = { x1(t), x2(t),m } 

where  

x1  customer queue with age ==> { Y, M, O } i.e. young, middle and Old age customer 

x2  price of product queue ==> { H, M, L } i.e. High, Medium, Low 

m   month of product sale ==> { 1,2,3,4……..12 } 

 

In the system minimum, 108 states and actions are possible. The number of state-action increases as the 

number of transactions increases. For simplicity, it is assumed that single state for each transaction else the state 

space becomes infinitely large. Shop agent observes the queue and decides product i.e. action for each 

customer/state. After every sale reward is given to the agent.  The table shows the snapshot of the dataset 

generated for single shop agent.  

 

Table 1: Snapshot of Dataset used 

 

 

 

 

 

 

 

 

In a particular season, the sale of one shop increases. With the help of cooperative learning, other shops 

learn about an increase in the sale & they can take necessary actions for their profit maximization[11].  At time 

0, the process X(t) is observed and classified into one of the states in the possible set of states (denoted by S).  

After identification of state, the agent chooses a product action from A.  If the process is in state i and agent 

chooses a A, then 

i. The process transition into state jS with probability Pij(a)  

ii. Conditional on the event that the next state is j. The time until next transition is a random variable with 

probability distribution Fij(./a) 

After the transition occurs, product sale action is chosen again by the agent and (i) and (ii) are repeated. 

 

TID Age Price Month Action Selected (Product) 

1 Y L 1 P1,P2,P4 

2 Y M 1 P2,P3 

3 Y H 1 P3,P4 

4 M L 1 P1,P2 

5 M M 1 P1,P2,P3 

6 M H 1 P4,P2 

7 O L 1 P1,P3 
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VII. Results 
The simulation results show the efficiency of the learning algorithm. In multiagent learning algorithms 

are applied to shop dataset of cloth, jewellery & footwear shop and the result analysis is done for a year, the 

specific number of products is purchased by particular customer age group.  Shop agent will understand that in a 

year number of products is to be sold to the customers having different age group.   Figure 1 shows the results of 

Strategy Sharing Algorithm Products Vs Customer Age Count. Figure 2 gives the results Joint Reward 

Algorithm Products Vs Customer Age Count. Figure 3 shows the results of Strategy Sharing Algorithm for 

Products Vs Quantity and Figure 4 gives the results of Joint Rewards Algorithm for Products Vs Quantity.   

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Strategy Sharing Algorithm Products Vs Customer Age Count 

 

 

 

 
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 2: Joint Reward Algorithm Products Vs Customer Age Count 
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Figure 3: Strategy Sharing Algorithm Products Vs Quantity  

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: Joint Rewards Algorithm Products Vs Quantity  

 

Joint Reward Learning algorithm gives precise results than Strategy Sharing learning algorithm and 

gives good predictions of the products. It gives the pattern of product sale with customer age group for a period.  

The Q function values are tabulated for obtaining some insights. Q tables show the best action (that is optimal 

the product) for different individual states. By knowing the Q function, the shop agent can compute best 

possible product for a given state that gives maximum profit to it. Single agent learning, multi-agent learning, 

cooperative learning and improved cooperative learning algorithms are implemented and results are compared. 

It has shown how a shop agent can effectively use reinforcement learning in setting products dynamically so as 

to maximize its profit matrix. It is believed that this is a promising approach for profit maximization in retail 

market environments with limited information.  In multiagent learning the result analysis is done for a year, the 

specific number of products is purchased by particular customer age group. Shop agent will understand that in a 

year number of products is to be sold to the customers having the different age group. Joint Reward Learning 

algorithm gives precise results than Strategy Sharing learning algorithm and gives good predictions of the 

products. These products are combined together for the increase in sale.  

 

VIII. Conclusion 
Learning algorithms are best suitable for decision making. Multiagent learning has more knowledge 

and information available. In this method, sharing of information and policy is possible. Multiagent learning 

always performs better compared to single agent learning. However, multiagent learning is still lacking in 

proper communication between agents. Sharing of more knowledge and information is possible and all agents‟ 

knowledge is used equally, jointly solves the problem cooperatively is the future scope of this paper.  
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