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Abstract: A data warehouse is a very large database system that collects, summarizes and stores data from 

multiple remote and heterogeneous information sources. Data warehouses are used for supporting decision 

making operation on an intelligent system. The decision making queries are complex in nature and take a large 

amount of time when they are run against a large data warehouse. To reduce the response time, materialized 

views can be used. Since, all possible views cannot be materialized due to space constraints, an optimal subset 

of views must be selected for materialization. An approach of selecting such subsets of views using Genetic 

Algorithms is proposed in this paper. This approach computes the top-T views from a multidimensional lattice 

and calculates the fitness values for each of them. 

Keywords: Data Warehouse; Genetic Algorithms; Fitness Function; Materialized View; Multidimensional 

Lattice 

 

I. Introduction 
Data warehouses are very large database systems that collect, summarize, and store data from multiple 

remote and heterogeneous information sources, for the purpose of supporting decision making. The queries for 

decision making are usually analytical and complex in nature and their response time is high when processed 

against a large data warehouse. This query response time can be reduced by materializing views over a data 

warehouse [1]. Since all views cannot be materialized, due to space constraints, an optimal subset of views 

should be selected for materialization. Materialized views are used in data warehouses instead of views because 

they store results of a query in a separate schema object which can be used to answer future queries without the 

requirement of calculating the result again, unless the base tables have been updated, and use of materialized 

views decreases the response time of the end user application. In this paper a Genetic algorithm has been 

proposed for the selection of views for materialization. 

 

II. Related Work 
Materialized view selection is the problem of selecting appropriate sets of views for materialization in 

the data warehouse such that the cost of evaluating queries is minimized subject to given space constraints. 

According to the definition given in [2] view selection is defined as “given a database schema R, storage space 

B, and a workload of queries Q, choose a set of views V over R to materialize, whose combined size is at most 

B”. It is not feasible to materialize all possible views as the number of possible views is exponential in the 

number of dimensions, and for higher dimensions it is not possible to store all possible views within the 

available storage space. So, an optimal subset of views should be selected for materialization. There are many 

different algorithms to select views for materialization. Genetic algorithm (GA) is one of them. The majority of 

research in the area of materialized view selection is focused around greedy heuristics based techniques. These 

techniques are unable to select good quality views for higher dimensional data sets because their total view 

evaluation cost is high. GA is n widely used evolutionary technique suitable for solving complex problems 

involving the identification of a good set of solutions from within a large search space [3]. Several GA based 

view selection algorithms have been proposed in literature [5, 6, 7, 8, 9, 10]. These algorithms aim to select 

views for higher dimensional data sets with the key challenge of selecting views of high quality i.e. low total 

view evaluation cost (TVEC). In this paper a GA based algorithm is proposed that selects views from a 

multidimensional lattice. Each chromosome is represented as a string of views selected for materialization. The 

length of each chromosome is T for selecting top-T views for materialization. GA is applied with a pre-defined 

crossover and mutation probability and a set of top-T views are generated after a pre-specified number of 

generations. 
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III. Basics Of Genetic Algorithm 
Genetic algorithms (GAs) are adaptive heuristic search methods based on the evolutionary ideas of 

natural selection and genetics. They are inspired by Darwin’s theory about evolution – “Survival of the fittest.” 

They represent an intelligent exploitation of random search used to solve optimization problems. GAs, although 

randomized, exploit historical information to direct the search into the region of better performance within the 

search space. In solving problems, some solution(s) will be the better than others. The set of all possible 

solutions is called search space or state space. Each point in the search space represents one possible solution, 

which can be marked by its value. This is known as the fitness value for the problem. GA looks for the best 

solution among a number of possible solutions.  

 

Working Principle: 
 

 

 

 

 

 

 

 

 

Fig.1. Working principle of Genetic algorithm 

 

1. Initialization: An initial population of all chromosomes is usually generated randomly within the search 

space. 

2. Evaluation: Once the population is initialized or an offspring population is created, the fitness values of all 

individuals within that population are evaluated using a proper fitness function. 

3. Selection: Selection of two parents with higher fitness values for recombination. The main idea is to prefer 

better solutions to worse ones.  

4. Recombination (or Crossover): Recombination combines parts of two or more parental solutions (or 

individuals) to create new, possibly better solutions (offspring). 

5. Mutation: Mutation basically alters one or more gene values in a chromosome to maintain genetic diversity 

from one generation of a population to the next. 

6. Replacement: The offspring population created by selection, recombination and mutation replaces the 

original parental population. 

7. Repeat steps 2–6 until a terminating condition is met. 

 

IV. Proposed Method 
The proposed GA based method selects the top-T views from a multidimensional lattice as discussed below: 

A. The Multidimensional Lattice  

Views involved in On-Line Analytical Processing (OLAP) queries can be represented as nodes of a 

multidimensional lattice [4, 11]. The multidimensional lattice is a graph with no self-loops or parallel edges.  

The root node of the lattice represents the base facts table. All the views in the lattice either directly or indirectly 

depend on the root view. A view VA is said to be dependent on another view VB when the queries on VA can be 

answered using VB. In the graph, direct dependencies are represented by an edge between two views & indirect 

dependencies are discovered transitively.  

 

 

 

 

 

 

 

 

 

 

 

Fig.2. A 3-Dimensional lattice 
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In Fig. 2, a 3-dimensional lattice is shown. The index is shown in brackets inside the node & the 

frequency of the variables is shown on the top left corner of each node. The root view contains all the variables 

A, B & C. 

 

B. Proposed Algorithm 

1. [Start] Generate random population of n chromosomes. 

2. [Fitness] Use the fitness function f(x) to calculate the fitness value of each chromosome x in the population. 

3. [Test] If the end condition is satisfied, i.e. , a chromosome with the desired fitness value is found in the 

population or a value close to that value is found (& further repetition does not generate a chromosome with 

a better fitness value) then stop & return the best solution that is found. 

4. [New Population] Create a new population by repeating the following steps until the new population is 

complete. 

a. [Selection] Select two parent chromosomes from a population according to their fitness value. The higher 

the fitness value, the better the chances for it to be selected. 

b. [Crossover] With a crossover probability pc, combine the parent chromosomes to generate a new offspring.  

c. [Mutation] With a mutation probability pm, mutate the offspring at each locus. 

d. [Accepting] Place the offspring in the new population. 

5. [Replace] Replace the new population with the previous population & go to step 2. 

 

C. Chromosome Representation 

Each chromosome is represented as a string of distinct views. Each distinct gene corresponds to a view. 

The chromosome string contains only the index values of those views that are materialized.  The chromosome 

representation for selecting the top-5 views for materialization is shown below: 

 

 

 

 

 

 

 

 

Fig.3. Chromosome representation for selecting top-5 views 

 

D. Fitness Function  

The fitness function is used to give an estimate of how much fit a chromosome is for being selected for 

crossover. The quality of solution obtained by the GA based algorithm depends on the correctness & the 

appropriateness of the fitness function. Here, the fitness function is based on the frequency of attributes used in 

a view. The higher the total frequency of a chromosome, the better is its chances to be selected for crossover. 

The fitness function is given below: 

 
TFV = Total Frequency Value 

n = Total number of genes or views 

x = Number of materialized views 

y = Number of non-materialized views 

n = x + y 

Mat(Vi) = Frequency of attributes for view Vi where Vi is materialized 

AncNMat(Vj) = Frequency of a materialized ancestor with maximum frequency among other ancestors of a non-

materialized view Vj 

For example, if views VAC, VBC, VA, VB & VC are selected for materialization and, x=5 & y=3 then the TFV 

computation is as follows: 

 
 = Mat(VAC) + Mat(VBC) + Mat(VA) + Mat(VB) + Mat(VC) 

= 70 + 96 + 60 + 40 + 32  

= 298 
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 = Mat(VABC) + Mat(VAB) + Mat(VNONE) 

= 0 +0 + 60  

= 60 

         
 

E.  Fitness Function Algorithm 

The fitness function takes the following parameters as its inputs:  

1. The adjacency matrix adj[][] for the entire multidimensional lattice,  

2. freq[] array which contains the frequencies of attributes for each view, 

3. level[] which contains the level of each view in the graph(lattice),  

4. The total number of distinct genes (tot_gene), 

5. The number of genes to be materialized (mat_gene), and 

6. The size of the population popl.  

 The procedure RAND (1, tot_gene) generates a random number between 1 & n where n is the total number 

of distinct genes.  

 The procedure LINEAR (topt, k, i, mat_gene) checks if the item k is present in the i
th

 chromosome or not. If 

it is, it returns true. Otherwise, it returns false. 

 The procedure MAX (anc) finds out the maximum number in the anc [] array, i.e. the materialized ancestor 

of a non-materialized gene which has the maximum frequency.   

 

The algorithm proceeds in the following way: 

 First it generates the initial population and stores the chromosomes in array topt [][].  

 Calculates total frequency value for each chromosome in the population. This value is termed asTFV1. 

 Finds out the non-materialized views in each chromosome and finds the maximum frequency materialized 

ancestor for each of those non-materialized views.  

 Calculates the sum of attribute frequencies of these ancestors for each chromosome. This value is termed as 

TFV2.  

 Add TFV1 and TFV2 for each chromosome to generate the Total Frequency Value (TFV).  

Algorithm FITNESS (adj[][], freq[], level[], tot_gene, mat_gene, popl) 

begin 

 for i = 1 to popl do 

    for j = 1 to mat_gene do 

       while (true) do  //Loop for removing duplicate genes  

  flag = false; 

  rand = RAND(1, tot_gene); 

   for k = 1 to j do 

    if (topt[i][k] == rand)  then     //If the gene is already present in the 

chromosome then generate a new number 

     flag = true; 

     break; 

   end for  
   if (flag == false) then 

       topt [i][j] = rand; 

       break; 

  end while 

   end for 

end for 
for i = 1 to popl do 

   tv1=0; 

      for j = 1 to mat_gene do 

    k = topt[i][j]; 

         tv1 = tv1 + freq[k]; 

   end for 
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  tfv1 [i] = tv1; 

end for 
flag = false; 

for i = 1 to popl do 

  k = 1; l = 0; 

    while (k <= tot_gene  and  l < n_mat_gene) do 

  flag = LINEAR(topt, k ,i, mat_gene);      

  if(flag == false) then 

   mma [i][l]=k; 

   l++; 

       k++; 

    end while 

      end for 
for i = 1 to popl do 

  tv2 = 0 ; 

  for j=1 to n_mat_gene do 

  k = mma[i][j];  

  q=0; 

  anc[]={0,0,0,0,0}; 

  for  p= 1 to tot_gene do 

   if(level[k]==1) 

    break; 

   else if ((adj[k][p] == 1) and (level[p] == (level[k]-1))) then  //If entry in 

adjacency matrix is 1 & the node is in the    //previous level then it is an ancestor 

   anc[q++] = freq[p];  //Add the ancestor to anc[] 

  end for 
  m =MAX(anc); //Calculate the freq that is max because we need max freq ancestor 

   tv2 = tv2 + m;  

 end for 
tfv2[i]=tv2; 

end for 
for i=1 to popl do 

  TFV[i]=tfv1[i]+tfv2[i]; 

 end for 

end 

 

F. Selection 

Selection is a process of choosing individuals from a population for performing crossover. The fitter 

individuals are more likely to produce fitter offsprings in the subsequent generations. Selection of only fitter 

individuals might hinder exploration of the search space thereby leading to early convergence. Therefore, there 

is a need to randomly select individuals where individuals, having higher fitness value, have greater likelihood 

of being selected for crossover. The approach uses binary tournament selection method where two individuals 

are randomly selected from the population and a tournament is conducted among them. A value r is randomly 

generated between 0 and 1. If r is less than the pre-defined value of k (say k=0.75), taken between 0 and 1, the 

individual having higher TFV is selected else the individual with lower TFV is selected.  

 
Chromosomes (top-T Views) Fitness value(TFV) 

[ 3 6 7 8 2 ] 303 

[ 2 5 4 1 8 ] 629 

[ 2 3 1 8 6 ] 541 

[ 7 4 8 5 1 ] 595 

[ 7 3 8 1 6 ] 513 

[ 6 2 1 7 4 ] 568 

Fig.4. TFV of top-T views in VTopT 

 

Selection Algorithm: 

1. randomly two individuals from the population. 

2. Given: parameter k = 0.75. 

3. Choose Choose:  a Random number r between 0 and 1. 

4. If r < k, Select the fitter individual among the two individuals. 
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5. Else, Select the less fitter individual among the two individuals.   

 
Randomly 

generated 
Indexes[i] [j] 

Tournament between 

individuals [P(i)] 
[P(j)] 

Fitness 

[TFV(P(i))]  
[TFV(P(j))] 

Random Number 

(r) 

Individual 

selected 

[2] [3] [2 3 1 8 6] 

[7 4 8 5 1] 

541 

585 

0.9765590312995504 [2 3 1 8 6] 

[5] [0] [6 2 1 7 4] 
[3 6 7 8 2] 

303 
568 

0.7209919519618984 [3 6 7 8 2] 

Fig.5. Selection of top-T views using Binary Tournament Selection 

 

G. Crossover 

In Crossover, two individuals are randomly selected and are recombined using single point crossover 

method with crossover probability, pc= 0.5. A uniform random number, r, is generated and if r ≤ pc , the two 

randomly selected individuals undergo crossover. Otherwise, the two offspring are simply copies of their 

parents [12]. 

 

 
Fig.6. Single Point Crossover 

 

Crossover Algorithm: 

1. Select two parents randomly for crossover from the population 

2. Generate random number r 

3. If r < = pc then do 

a. Randomly generate a point for crossover 

b. Perform single point crossover between the parents corresponding to the randomly generated point 

c. If there are duplicate genes within either of the children after crossover, then repeat Step 1-3 

d. Else If any of the children have already been generated before to be placed in the new population then repeat 

steps 1-3 

Else Do not perform crossover. Simply copy the parents to their corresponding children. 

 

H. Mutation 

Mutation is performed using random resetting method with predefined mutation rate, pm. A random 

number rand is generated & if it is less than the mutation rate only then we perform mutation. Otherwise, we do 

not perform mutation. So, the actual number of genes to be mutated is not fixed. For a chromosome of length L, 

on average L*pm genes will be mutated [13]. The method ensures that there are no duplicate genes in the 

chromosome after mutation. 

 

 
Fig.7. Mutation 
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Mutation Algorithm: 

1. for i=1 to L do 

 a. Generate rand 

 b. if rand < pm then 

  i. Generate a random gene value 

  ii. Mutate gene[i] of the selected chromosome with the random gene value generated in the previous 

step 

  iii. if the newly added gene is a duplicate then repeat steps i and ii 

2. Repeat Step 1 for all the chromosomes until the end of the population. 

 

I. Replacement 

After the generation of the new population we replace the old population with the new population. Then 

we perform the entire cycle of fitness value calculation, selection, crossover, mutation, and replacement for a 

pre specified number of generations. 

 

V. Result & Analysis 
The GA based view selection algorithm was implemented using jdk 1.7.0_55 in Windows 7(x64) 

environment. The algorithm was successfully tested for a 3 & a 4 dimensional lattice of views. The result for 

selecting top-5 views for materialization from a 3 dimensional lattice is shown in Fig. 4. From the figure it can 

be observed that the matrix for top-T views contains distinct views in each row of the matrix. Duplicate views 

are eliminated since the data warehouse does not require redundant data for recovery.  TFV1 is the first part of 

the fitness function that calculates the total frequency value for only materialized views. TFV2 is the second part 

of the fitness function that calculates the total frequency value for non-materialized views. These two are added 

to give the TFV for each chromosome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8. Result for selecting top-5 Views from a 3 Dimensional Lattice 

 

The size of the adjacency matrix increases exponentially with the increase in lattice dimensions. Hence, 

with the increase in dimensions of the lattice, the complexity increases. When we calculate the attribute 

frequencies for a non-materialized view, we use the frequency of attributes of the maximum materialized 

ancestor of that non-materialized view because the non-materialized view is dependent on the ancestor. This 

means that all the queries for the non-materialized view can be answered using its materialized ancestor, without 

requiring any other views to be materialized. But, if the root view itself was not materialized then we use a 

frequency value of zero in the calculation because there are no other views in the lattice which can give answers 
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to all the queries that can be made to the root view as no other view but the base or root view contains all the 

attributes.  

A frequency value of zero is also used when a non-materialized view has no ancestors. This is because 

only an ancestor view that the child view is dependent on or the child view itself can give answers to all the 

queries that can be made to the child view. 

 
Fig.9. Comparison of FA and PA – Fitness Vs. Dimensions for different Pc’s and Pm’ s 

 

Our proposed GA based view selection algorithm using frequency of attribute (FA) and another GA 

based view selection algorithm using size of attribute (PA) are compared. The comparisons are carried out on 

Fitness value due to views selected by the two algorithms. The experiments were performed for selecting the 

top-T views for materialization for dimensions 2 to 5 over 1000 generations. First, the graphs showing Fitness 

value for different crossover and mutation probabilities for selecting top-6 views, were plotted and compared 

with Fitness value of selecting top-6 views using PA. These graphs, plotted for pair of crossover and mutation 

probabilities (0.5, 0.05), (0.6, 0.05), (0.5, 0.1), (0.6, 0.1), (0.55, 0.1), (0.55, 0.05), (0.65, 0.1), (0.65, 0.05), are 

shown in Fig. 9. The graphs show that FA, in comparison to PA, is able to select views that are Fitter than that 

obtained by PA for different crossover and mutation probabilities. This difference in Fitness value becomes 

significant for higher dimensions. Further, it can be observed from the graph that, for crossover probability 0.6 

and mutation probability 0.05, the best result is obtained by FA in the Fitness value across all dimensions. 

 

VI. Conclusion 
Here we have used Genetic Algorithms & used a fitness function to evaluate the fitness values of the 

possible solutions. The Genetic Algorithms are comparatively easy to understand & does not require too much 

mathematical knowledge.  Analysis of state of the art of view selection has shown that there is a very few work 

on view selection in distributed databases and data warehouses. One of challenging directions of future work 

aims at addressing the view selection problem in a distributed setting. Randomized algorithms can be applied to 

complex problems dealing with large or even unlimited search spaces. Using GA for selecting views enables 

exploration and exploitation of the search space. As a result, the views so selected are likely to have a higher 

TFV. Further experimental results show that the views selected using the proposed GA-based algorithm have a 
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comparatively higher frequency value to those selected using PA for the observed crossover and mutation 

probabilities. That is, the GA based algorithm using frequency is able to select comparatively better quality 

views. This in turn results in reduced query response time enabling efficient decision making. Thus, the use of 

randomized algorithms such as GAs can be considered in solving large combinatorial problems such as the view 

selection problem. 
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