
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 2, Ver. II (Mar-Apr. 2016), PP 69-76

www.iosrjournals.org

DOI: 10.9790/0661-1802026976 www.iosrjournals.org 69 | Page

A Reference Framework For A Classification Of Software Quality

Models

Adil Khammal
1
, Youness Boukouchi

1
, Abdelaziz Marzak

1
, Hicham

Moutachaouik
2
, Mustapha Hain

2

1
(Mathematics AndComputer Science Department, Ben M‘Sik Faculty Of Sciences, University Hassan II,

Casablanca, Morocco)
2
 (National School Of Arts And Trades, University Hassan II,Casablanca, Morocco)

Abstract:Computersystems,moreparticularlythesoftware,havegainedgreatimportanceinhumanlifebothintheprof

essionalandpersonalactivities.Thisgrowingimportancemadecrossthenotionofthe softwarequalityfrom a

needforcomforttowardsa critical need. Accordingly, manystudieshavebeenconducted

andseveralmodelshavebeenproposed.Wedistinguishthreemodelingareas, each area has its

ownqualitymodel:products(software),processesandresources.Today,therearemanyqualityanalysismodels,each

one hasitsownareaofexpertiseandprovidesaninterestingpoint of view.Inthispaper,weproposeaframeworkin order

to characterize and compare different models of software quality on one hand. On other hand, we aim to

highlight the key elements that must be considered to provide a Metamodel of software quality.

Keywords:Reference Framework, Software Quality, Quality model

I. Introduction
Thesoftwarequalityismoreandmoreseen as an

influentialcriticalparameterinbusiness,it’sanimportantmotiveforcustomersatisfaction.Anyabsence of software

qualitycan cause heavyfinanciallosses,a

dissatisfactionoftheusers,andthedamagetotheenvironmentwhichcanevenresult

indeathsasultimateandgraveconsequence.Forexample[1]:

• Summer2009:Asmallbuginthemanagementofround number for thecalculationofthenumberofquarters

contribution in the retirementpension has been

identified.Thisbug,introducedintothesystemin1984ledtoassignanotherquartertoonearly8millionemploy

ees.25yearslater,thetotalcosttotheSocialInsurancereached2.5billionEuros.

• May1996:when TheFirstNationalBankofChicagoupdateditstransactionmanagement,

somecodesaremisinterpreted, andeach of813customersofthebankwere creditedeachofover900million.

The totalamountoftheerrorismorethan750billion Euros.

ThesefewexamplesfromtheIThistory,illustratethepotentialconsequencesofalackofreliability.Whereas,fe

w adequate test would have helped identify and correct these errors. A reliability test for the first example anda

non-regression test for thesecond one.

Qualitydefinesthesuitable productorservice.ItisdefinedintheISO9001standardas"theabilityofasetofintrinsic

characteristicsto meet the requirements".

Yet,itisdifficulttodefinethequalityofsoftware,becausetherearemanypossiblecriteriaforthisassessment.Forexample,

thecustomerwillappreciatethefunctional characteristics,butthedeveloperwillfocusmoreonthe technical

ones.Inhisarticleaffectthequalityoftheproductindifferentdomain,Garvinconcludedthatqualityis[2]acomplexmultif

acetedconcept.

Todaytherearemanyqualityanalysismodels,eachwithitsownareaof

expertiseandprovidinganinterestingpoint of

view.Thesemodelswerecreatedtoclassifyallthecharacteristicsofthissoftware,selectthemetricmeasurement,andimpl

ementameasurementprocess.Withmoreorlesssuccess,eachmodelhaslimitationsbecauseitwillnotbesuitableforallsit

uationsnoralltherequirementsofqualityofdifferentstakeholders.Inmostcasesthe development

tofanewqualitymodelisfromthelimitationsofexistingmodels.

Thequalityofthesoftwareproductisamultifacetedconcept,itconsists of a set of

characteristicsandassociatedmeasurements,anditisanalyzedfromdifferentapproaches.Inthispaperweproposeafram

eworkforanalyzingandcomparingthedifferentexistingsoftwarequalitymodels,usinganapproachbyworldsandfacets.

II. ModelsOfSoftwareQuality
Themodelshaveproveneffectiveasameansofunderstanding,interpretationandanalysisofproblematicorgani

zationalsituations,aswellastheconceptualizationandimplementationofappropriatesolutions.Toobtainacompleteima

A Reference Framework For A Classification Of Software Quality Models

DOI: 10.9790/0661-1821129153 www.iosrjournals.org 70 | Page

geofthequalityofasoftwarewecallonthemodelsofqualitywhichcontainrulesdescribingwhatmustbeasoftwareofquali

ty,theyareawellacceptedwaytodefine,assessandpredictsoftwarequality..Duringthe

lastyears,multipleofqualitymodelswereproposedandusedinthelifecycleofsoftware,most of these models are

hierarchicalmodelsstructuredaround

factors,criteriaandmetric(FCM),theycountthetotalrequirementsandthemostgeneralneedsofqualityto

identifythemetrics thatmeasurethese needs and requirements.

III. Presentationoftheframework
Theframeworkofreferenceproposedusestheapproachofclassificationbyworldsandfacets

(Fig.1).Thisframeworkwasproposedforthefirsttimein[3]fortheclassificationofreusablecomponentsandsincewasus

edforthedevelopmentofstatesoftheartinvariouswork.The framework is structured around four areas or "worlds".

The framework (says "Four worlds") has been used in various engineering disciplines: information system

engineering [4], requirements engineering [5], process engineering [6] and change engineering [7].The reference

framework which we use is an authority of Meta model of the figure 1. This framework suggests considering the

software quality following four worlds. Every world allows analyzing a particular aspect of the software quality

by asking a fundamental question. Every view is characterized and measured by means of a set of attributes.All

the attributes possess values defined in a domain which can be a predefined type (int, boolean), an enumerated

type (Enum{x,y}) or a structured type (Set ()). [8]

Figure 1 : Metamodel of Framework Reference

This framework allows to provide answers to four questions ("what", "why", "how" and "by which

means"). These questions trigger interest in :

• World subject: It presents software quality as an object of analysis and it contains the knowledge for

which quality models must provide information regardless of ambitions, wishes and needs of users.

• World Usage: it is "why" of the software quality models. This world identifies intentions, wishes and

goals of the users of the models.

• System World: it holds the information provided on the subject by the world or by which means the

subject will be represented. It is the world system specifications in which the needs arising from the

two other worlds, subject and usage, must be formulated and documented. It contains the elements for

measuring objects besides all documents and models useful to sharing software quality knowledge.

• World Development: This world contains processes and tools to achieve the objectives of software

quality. It is based on the manipulation of informational elements described in the system world.

The worlds are in contact with one another [9]: the world of the "subject" defines a framework for the

identification of the goals of the world usage and justifies its existence. The world of "system" is the

representation support of the reality of the "subject." Finally, the world of "system" is a tool for the fulfillment

of the objectives set in the world of "usage".

In the next part of this article we present a proposal which adapt this framework to the field of software quality.

IV. Framework For Software QualityModels
IV.1. The subject world

This world contains domain knowledge for which the software quality models must provide the

information. It helps answer the question "What is software quality? ― This world is characterized by a single

facet object.The concept of quality has an abstract nature, and is open to many different and potentially

contradictory interpretations. A good understanding of quality issues can only be formed under a particular

definition of the concept of quality.According to the IEEE [21]: Software quality is: (1) the degree to which a

system, component, or process meets specified requirements. (2)The degree to which a system, component, or

process meets customer or user needs or expectations.According to Pressman [22]: Software quality is: The

compliance with functional requirements and explicit performance to explicitly documented development

standards, and implicit characteristics that are expected of all professionally developed software.

A Reference Framework For A Classification Of Software Quality Models

DOI: 10.9790/0661-1821129153 www.iosrjournals.org 71 | Page

These definitions put into perspective two aspects that can be found in existing quality models: firstly, software

quality involves multiple software entities and secondly it is based on relationships defined between these

entities.According to [10] the software entities may be divided into units: products, processes and resources. We

propose to associate with the object for the following three attributes: (i) the software product, (ii) processes and

(iii) resources. The rest of the section details each of the attributes.

 Process: The first major contribution of research in the field of software engineering has been the

growing awareness that software development is a complex process. Researchers and practitioners

have understood that software development is not only the creation of languages and efficient

programming tools but it is a complex, creative and collective effort. As such, the quality of a product

primarily depends on the software development process [11]. According to [10], the software process

holds the software entities that represent steps in the software engineering process.

 Resources: Contains the software entities that are used or required by the latter in the field of

processes (such as personnel, software and hardware) [10]. In this regard, staff are required to

complete a development process. The interest attributes in this entity are for example the number of

engineers involved, their skills and performance. [12] Refers to this area as a special area called area

of measuring people. Attributes’ quantification and prediction in this field (such as time and effort) of

particular interest to managers and team leaders. The COCOMO Boehm [13] method doesthis work.

 Product: holds software entities that result from the business processes (i.e. a domain process entity).

ISO9000: 2005 defines a software product "as the result of a set of interrelated or interacting

activities which transforms output elements into Input elements" (ISO9000, 2005) the evaluation of

the quality of a softwareproduct reflects these three major points: features’ completion, interface

ergonomics and simplicity of code.

As far as training is concerned, the developer should first determine the real purpose of a software

taking into account customer requirements. The latter include both quality and functional requirements. Quality

requirements may not be explicit from the outset. Some quality models of the software product include: Mcall

[23] ISO 9126 [24]....

We suggest to characterize the object facet by three attributes:

Facet Subject: SET {Product, ProcessResources}

IV.2. The use world

This world answers the following question: "why software quality?‖ It identifies intentions, wishes and

goals of the models’ users. These characteristics are captured by three facets; Objective, Views and Phase.

IV.2.1. The objective facet

Software quality models are nowadays a decent way to control the quality of software systems. Over

the last three decades, several quality models have been brought to light, which at first sight seem not to be

directly relatedtoone another, even though each of them deals with software quality as an objective (define ,

evaluate or predict software quality) [14], for example, models such as ISO 9126 are primarily used to define

software quality. Models based on objectives such as GQM are used to assess software quality while reliability

measuring models like RGMS (reliability growth models) are used to predict software quality.

 Definition model: Quality definition models are used in various phases of a software development

process. They define the factors and quality requirements for upcoming software. They are a method

of agreement with the customer as far as thequality of software is concerned. They may offer coding

guidelines or recommendations for the implementation of a system. The quality definition models are

used to communicate the quality of software during the training of the developers [27].

 Evaluation Model: An extension of the definition models dedicated to estimate the current state of

the software to monitorquality. They can be used to specify and objectively check the previously

defined quality requirements. During the implementation, evaluation models are the base to all

internal measures that could have an impact on the external properties of product quality, activities

and environment. Therefore, they are the average of the certification of product quality. [27]

 Prediction Model: Predictive models are used to predict the quality of a system (predict the number

of defects, repair time, maintenance efforts, etc.). They are generally based on source code metrics or

past defects data detection. Predictive models help plan the future development of certain aspects of

quality [27].

The Objective facet is thereforecharacterized by threeattributes:

Facet Objective: SET {Define, Evaluate, and Predict}

IV.2.2. The Viewpoint facet

A Reference Framework For A Classification Of Software Quality Models

DOI: 10.9790/0661-1821129153 www.iosrjournals.org 72 | Page

In our view, the concept of quality can take various forms: an end-user is most interested in the

reliability and usability by evaluating the quality of a software product, further, the user is interested in the more

ergonomics, productivity and performance to accomplish certain tasks. A developer will assess among other

things the speed of development, the relevance of design, maintainability, and testability. An operator will focus

more on ease of installation and update, ease of diagnosis and supervision. There are many other possible

criteria for evaluating software quality ranging from the concrete to the subjective. There are at highest three

point of view: Customer views, user viewsand developer views.

Viewpoint facet is characterized by three attributes:

Facet Viewpoint: SET {customer view, user view, view developer}

IV.2.3. The Phase facet

Several quality models focus on specific phases of the software life cycle where they can be used. This

may coincide with a quality attribute.

 Definition models are used in various stages in a software development process. During the

expression of need, they define the attributes and quality requirements for planned software systems

[15, 23] and thus constitute an agreement component with the client. [15] During the implementation,

these quality models are of baseto coding standards. [6] They provide direct recommendations

regardingthe implementation of a system.

 Evaluation models may also be used in the expression of needs to specify and objectively monitor the

already established quality standards [15]. They are also used to plan and control the quality of the

software during the development and evaluation of the final product quality, and also to describe the

detailed development model of the organization or the business, and thus to monitor, control and

improve the development process.

 Prediction models are used during the life cycle of a software development project. They allow

development project manager to plan an effective use of the available resources.

According to the development cycle, we propose to characterize the facet phase with three attributes:

Facet Phase: SET {before, during, after}

IV.3. The System world

Being third, the world of the system is defined as the system specifications and where the needs from

both other worlds must be documented and systematically expressed. These characteristics are captured by three

facets: Metric, Model, and Document.

IV.3.1. The metricsFacet

A metric is an indicator that quantifies a characteristic of the world of software [26] which can provide

meaningful information to assess quality. The metric may be explicit or implicit, simple or complex, [25] yet the

importance of these metrics is quite significant. Certain quality models have not provided a comprehensive

model in order to define suitable metrics to measure quality. Therefore, we define this facet of the following

values:

 Defined metric: This is to denote the metrics that are defined by the model, these models provide all the

necessary information on metrics (name, structure, type and measuring function), such as the cyclomatic

complexity metrics of McCabe. Cyclomatic complexity of a structured program is defined as: v (G) = E-N

+ 2P, where: E = the number of edges of the graph, N = the number of nodes of the graph and P = the

number of components Related to the graph.

 Non-defined Metrics: the model does not provide information viewing the quality metrics to measure, such

as the McCall model.

 Metrics partially defined: the modeling issues information about the structure of these functions without

providing metric calculations, such as ISO9126 model which defines the metric of resolution failure

"Failureresolution" as follows (Table I)

TABLE IFAILURE RESOLUTION METRIC

A Reference Framework For A Classification Of Software Quality Models

DOI: 10.9790/0661-1821129153 www.iosrjournals.org 73 | Page

Metric name Purpose of

the metrics

 Method of application Measurement,

formula and

data element

computations

Interpretati

on of

measured

value

Metrics

cale

type

Measure

type

Target

audienc

e

Failure

resolution

How many

failure
conditions

are

resolved?

Count the number of

failures that did not
reoccur during defined

trial period under the

similar conditions.
Maintain a problem

resolution report

describing status of all the
failures.

 X= A1 / A2

A1 = number of
resolved failures

A2 = total number

of actually detected
failures

0<=X<=1

The closer to
1.0 is better

as more

failures are
resolved.

a)

Absolut
e

A1=Count

A2= Count
A3=Count

X=Count/

Count

User

SQA

Maintain
er

We suggest to characterize the facet Metric by three attributes:

Facet Metric: ENUM {Defined, Not defined, Partially Defined}

IV.3.2. The Model Facet

In order to get a complete picture of the software’s quality, we use a quality model (McCall,

ISO9126...). They include rules that describe what must be a quality software and lists into different groups.

According to [13], there are two types of approaches to model software quality:

The fixed model approach has a specific model for measuring the quality of a software, and we accept the

decomposition offered bythis model so as the wayto combine the basic metric for the criteria and factors’

calculation process. The Examples of such models are shown in [15], [16] and [17].

The dynamic model approach consists in defining the quality characteristics in cooperation with the user. These

characteristics are set into sub measurable quality characteristics and related measures (guided by an existing

quality model). The user can then define relationships between the features and sub-features related to the

project stakeholders. Examples of such models are displayed in [18], [19] and [20].

To characterize the model facet, we suggestthe two following attributes:

Facet Model: ENUM{Fixed, Dynamic}

IV.3.3. Document Facet

The quality of software is not only reflected in the development process but also in its constituting

elements: documentation, tests, and definition of functional requirements or designs. The rules and objectives

which will ensure the software quality measuring must cover all of the above mentioned elements.

Documentation enables design communication and action coherence. The use of documentationcontributes to

the compliance to customer requirements and quality improvement, to offer appropriate training and ensure the

repeatability and traceability, to provide tangible evidence In order to assess the effectiveness and continued

relevance of the quality management system. It is convenient for the preparation of documents to be an added

value itself. (ISO9000, 2005)

The following types of documents are used in quality management systems:

 documents that provide consistent information, both internally and externally, about the quality

management system, called "quality manuals";

 formulating requirements document, called "specifications";

 documents that provide information on how to perform activities and processes consistently; these

documents may include document procedures, work instructions, plans;

 Documents that provide objective evidence of performed activities or achieved results, named

"recordings".

Among the documents that can be used for software quality are: specifications, functional

specification, the SLA (Service Level Agreement)...

We propose to characterize the Document facet with a single attribute:

Facet Document: {DocumentName}

IV.4. The WorldDevelopment

The development world deals with two issues: instantiation method and measurement tools.

IV.4.1. Facetinstantiationmethod

Each entity of the three classes of the Subject facet (product, process and resource) possesses internal

attributes (measurable attributes of the entity independent of its environment), and external attributes

(measurable attributes with respect to the links to its environment). For example:

A Reference Framework For A Classification Of Software Quality Models

DOI: 10.9790/0661-1821129153 www.iosrjournals.org 74 | Page

• Internal process attributes: duration of the process or activity, effort made in the process or one of its

activities, etc.

• External product attributes: efficiency, portability, ease of understanding, etc.

• Internal product attributes: size, complexity, coupling, cohesion, etc.

• Internal attributes of resources: staff, equipment, methods, etc.

To evaluate or predict the quality of these attributes means instantiate a quality model. If we consider

the software product, the instantiation of a model is to collect data, to aggregate, validate the choice of variables

and study their relationship following a given model.

According to [28], the instantiation of a quality model refers to two connected activities. The first one

is related to the application of the model for a given system which quality we want to study. The second activity

relates to the refinement of dependency relationships residing between the different model’s constituents to give

them a clear and precise meaning, and especially to define a computational framework for a real model

application. If for example in the model, there is a testability type of relationship that depends on the level of

cohesion of the classes, the instantiation will in particular aim to define this dependency in the most constructive

and calculative way possible. This can be expressed by a formula, a decision tree, etc. Ways that contribute to

the fulfillment of two instantiation activities are the measures collection methods, the aggregation methods of

these measures and analytical methods.

To characterize the Instantiation facet, we suggest the three following attributes:

Facet Instantiation: SET {Collection methods, Aggregation methods, Analytical methods}

IV.4.2. Facet Tools

Another very important aspect of world development is the existence or not of software tools offered by the

different models to evaluate or predict software quality. Some tools are uniquely adapted to one or some other

objective, while others can be used for the achievement of several of them. Indeed, current models emphasize

the need to generate indicators for software quality, to present them as dashboards.

We suggest to characterize the facet tool with a single attribute:

Facet Tool : Software{Boolean}

V. Discussion
Table II shows the characteristics of the seven models most used software quality. They are stated by

each model of the facets’ identification and their specificvalues. The table’s reading is the following: each cell

lists the specific values of facets for the model. For example, we can notice that resources are defined as the

COCOMO model’s object. The corresponding cell mentions the "Resources" value. When a model has all the

values of a facet we mention a (*) in the corresponding cell, while a model has got no value of a facet we state a

(-).This framework has allowed us to characterize and compare a number of software quality models, and also

allowed us to establish several observations.

TABLE IITHE CHARACTERISTICS OF THE SEVEN MODELS.

Framework Quality Models

World Facet ISO 9126 SQUID
GEQUA

MO
GQM COCOMO CMMi QMOOD

Subject Object Product
Product

Processes
Product * Resources Processes Product

Use

Objective Define
Define

Evaluate

Define

Evaluate

Define

Evaluate

Define
Evaluate

Predict

Define

Evaluate

Define

Evaluate

View
Developer

User
* * * Manager Manager *

Phase Before
Before,

During

Before,

During

Before,

During
Before

Before,

During

Before,

During

System

Metric PD - PD ND PD PD PD

Model Fixed Dynamic Dynamic Dynamic - - Dynamic

Document - Document - - Document Document Document

Develop

ment

Tools - Yes - - - - -

Instantiation

method
-

Aggregati
on

- -

Aggregation

- Aggregation

The software quality models that we studied are not complete as our frame of reference. Indeed, various

facets are not covered by some models. Also, no model covers all frame facets. This means that the models are

A Reference Framework For A Classification Of Software Quality Models

DOI: 10.9790/0661-1821129153 www.iosrjournals.org 75 | Page

not complete but fragmented. Gaps are not obvious to the use worlds and subject. Nevertheless here are some of

the issues faced by the quality models in these two worlds:

• Absence of an explicit model

• Lack of decomposition criterion in hierarchical models

• Quality attributes redundancy: one inside the other such as safety which is strongly influenced by the

availability being a part of reliability.

• Some models do not clearly tell apart the different perspectives of their use.

• These models are usually limited to a fixed number of levels, which limits the definition and

structuring of complex quality attributes into three or four levels, making the decomposition of some

factorsto measurable properties challenging.

• Some models do not cover the entire life cycle of a software.

• As far as the system and development world are concerned, which respectively own disclosures on

the subject world and the tools to achieve objectives of software quality, shortages are particularly

egregious for software quality models. This explains the gap between these models and their

operational application. The problems of quality models in these two worlds are mainly due to the

"Tools" and "Metric" facets, which we sum upas follows:

• Most models studied do not have a clear vision to explain the correlation between metrics and

criteria, such as when a criteria gets a low score, it is difficult to link the score to directly point out the

issue, especially when the criterion is made up of several metrics.

Also most of these models suffer from the absence of guidelines and criteria for decomposition of

complex quality concepts, making it difficult for them to be sophisticated and even located in some large quality

models.Some models are not that simple to be implemented in an environment because of the amount of defined

criteria and metrics.

Due to the lack of clear semantics,the aggregation of measured values remainscomplicated.Models are

not included in all the various tasks related to quality.There is no clear definition of the way in which we use a

model.

VI. Conclusion
Software quality is a fairly complex and multifaceted concept, In this paper, we propose a reference

framework to characterize the software quality models. This framework considers four perspectives, known

worlds of the subject, of the usage, of the system and of the development of software quality. These four

perspectives are explained by facets and their values.

We have applied this framework to quality models. This application has revealed that none of the models covers

all facets of the framework, especially the system and development facets, which explains the gap between these

models and their operational use.This piece of work has allowed us to highlight the need for a Metamodel, the

aim of which is not only operationalizing the existing software quality models but also correcting their general

oversights and limitations.

References
[1]. Legardeur, L. Livre-blanc-qualité-logicielle.

[2]. Garvin, D. A. (1984). What does product quality really mean. Sloan management review, 26(1).

[3]. R. Prieto-Diaz, Implementing Faceted Classification for Software Reuse, Communications of the ACM. Special issue on software

engineering, 34(5):88 – 97, 1991.
[4]. M. Jarke, J. Mylopoulos, J.M. Schmidt, Y. Vassiliou, DAIDA - An Environment for Evolving Information Systems, ACM Trans.,

in Information Systems, vol. 10, n° 1, 1992.

[5]. M. Jarke, K. Pohl, Requirements Engineering: An Integrated View of Representation, Process and Domain, Proceedings of the 4th
European Software Conference, Springer Verlag, 1993.

[6]. C. Rolland, A Comprehensive View of Process Engineering, Proceedings of the 10th International Conference CAISE‟98, Lecture

Notes in Computer Science 1413, B. Pernici, C. Thanos (Eds), Springer, 1998.
[7]. S. Nurcan, B. Claudepierre, I. Gmati, Conceptual Dependencies between two connected IT domains: Business/IS alignment and IT

governance, Research Challenges in Information Science (RCIS), Long paper, Marrakech, Morocco, June 2008.

[8]. Claudepierre, B. (2010). Conceptualisation de la Gouvernance des Systèmes d'Information: Structure et Démarche pour la
Construction des Systèmes d'Information de Gouvernance (Doctoral dissertation, Université Panthéon-Sorbonne-Paris I).

[9]. B. Claudepierre, S. Nurcan, A Framework for Analising IT Governance Approaches, International Conference on Enterprise

Information Systems (ICEIS), Funchal, Portugal, June 2007, p. 512 - 516.
[10]. Norman, F. E., &Pfleeger, S. L. (1997). Software metrics: a rigorous and practical approach. PWS Pub

[11]. Fuggetta, A. (2000, May). Software process: a roadmap. In Proceedings of the Conference on the Future of Software

Engineering (pp. 25-34). ACM
[12]. Munson, J. C. (2003). Software engineering measurement. CRC Pres

[13]. Boehm, B. W. (1999, October). COCOMO II Overview. In 14th International COCOMO Forum

[14]. Deissenboeck, F., Juergens, E., Lochmann, K., & Wagner, S. (2009, May). Software quality models: Purposes, usage scenarios and
requirements. InSoftware Quality, 2009. WOSQ'09. ICSE Workshop on (pp. 9-14). IEEE

[15]. M. R. Barbacci, M. H. Klein, T. Longstaff, C. Weinstock, ―Quality Attributes‖, Technical Report CMU/SEI-95-TR-021, SEI CMU,

Pittsburgh, 1995

A Reference Framework For A Classification Of Software Quality Models

DOI: 10.9790/0661-1821129153 www.iosrjournals.org 76 | Page

[16]. B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. MacLeod, M.J. Merritt, ―Characteristics of Software Quality‖, North Holland

Publishing Company, 1978
[17]. L.E. Hyatt, L.H.Rosenberg, ―A Software Quality Model and Metrics for Identifying Project Risks and Assessing Software Quality‖,

European Space Agency Software Assurance Symposium and the 8th Annual Software Technology Conference, 1996

[18]. IEEE Standard for Software Quality Metrics Methodology, 1998
[19]. T.Gilb, ―Principles of Software Engineering Management‖, Addison Wesley, Reading MA, 1988

[20]. V.R. Basili, ―Software modeling and measurement. The GoalQuestion-Metric paradigm‖, Computer Science Technical Report

Series NR: UMIACS-TR-92-96, 1992
[21]. IEEE. (1998). Software Quality Metrics Methodology. American National Standards Institute.

[22]. Pressman, R. S. (2010). Software Engineering A PRACTITIONER’S APPROACH. McGraw-Hill.

[23]. Jim A.McCall, P. K. (November 1977). FACTORS IN SOFTWARE QUALITY.National Technical Information Service (NTIS).
[24]. ISO/IEC JTC. (1991). Information technology—Software product quality— Part 1 : Qualitymodel.ISO/IEC.

[25]. VaucherStéphaneModelling Software Quality: A MultidimensionalApproach [Report]. - [s.l.] : Université de Montréal, 2010

[26]. Sack Pierre Marie Oum Oum Approche à base d’apprentissage automatique et de transformation de modèles [Report]. - [s.l.] :
Université du Littoral Côte d’Opale, 2009

[27]. Stefan Wagner, Software Product Quality Control, Springer, 2013

