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 Abstract : This paper is a collection of q analogue of various classical methods for finding solutions of 

algebraic and transcendental equations. It also deals with comparing classical methods with q methods 

proposed by us. We have discussed few problems where these methods are equivalent and also cases where q 

method is better. We also provide a short explanation about the need of iterative methods in scientific and 

engineering problems. We have introduced q analogues of some classical methods and discussed their merits 

and demerits. We have presented the basic definitions and classification of iterative methods and discussed 

some elementary concepts and definitions regarding roots and systems of nonlinear equations. The fundamental 

concepts and classification of iterative methods and their significant features are also stated in this paper. We 

have also used various techniques, which are being used by researchers to produce higher order iterative 

methods such as functional approximation, sampling, composition, geometric approaches. 
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I. Introduction and Literature Survey 
C.F.Gauss[1,11] started the theory of q hypergeometric series in 1812 and worked on it for more than 

five decades.E.Heine[1,11] extended this theory and worked on it for more than three decades. Later on 

F.H.Jackson[1,11,17,18,19] in the beginning of twentieth century started working on q function and proposed q-

differentiation and q-integration and worked on transformation of q-series and generalized function of Legendre 

and Bessel. G.E.Andrews[11,51,52]contributed a lot on q theory and worked on q-mock theta function,problems 

and prospects on basic hypergeometric series,q-analogue of Kummer’s Theorem and on Lost Notebook of 

Ramanujan. G.E.Andrew[11,51,52] with R.Askey[1] worked on q extension of Beta Function. J.Dougall[1] 

worked on Vondermonde’s Theorem. H.Exton[1] worked a lot on basic hypergeometric function and its 

applications.T.M.MocRobert worked on integrals involving E Functions, Confluent Hypergeometric 

Function,Gamma E Function,Fourier Series for E Function and basic multiplication formula. M.Rahman with 

Nassarallah worked on q-Appells Function,q-Wilson polynomial,q-Projection Formulas.He also worked on 

reproducing Kample and bilinear sums for q-Racatanad and q-Wilson polynomial. I Gessel with D.Stanton 

[14,15]worked on family of q-Lagrange inversion formulas.T.M.MacRobert worked on integrals involving E 

Functions and confluent hypergeometric series.D.Stanton[14,15]worked on partition of q series.Studies in the 

nineteenth century included those of  Ernst Kummer, and the basic characterization by Bernhard Riemann of the 

F-function by means of the differential equation it satisfies. Riemann showed that the second-order differential 

equation  for F, examined in the complex plane, could be characterised by its three regular singularities: that 

effectively the entire algorithmic side of the theory was a upshot of basic facts and the use of Möbius 

transformations as a symmetry group. 

 A generalization, the q-series analogues, called the basic hypergeometric series, were given by Eduard 

Heine[1,11] in the late nineteenth century. During the twentieth century this was a prolific area of combinatorial 

mathematics, with many connections to other fields. There are plethora of new definitions of hypergeometric 

series, by Aomoto, Israel Gelfand and others; and applications for example to the combinatorics of arranging a 

number of hyperplanes in complex N-space (see arrangement of hyperplanes). 

 

q series can be developed on[11]  Riemannian symmetric spaces and semi-simple Lie groups. Their impact and 

role can be understood through a special case: the hypergeometric series 2F1 is directly related to the Legendre 

Polynomial and when used in the form of  spherical harmonics, it expresses, in a certain sense, the symmetry 

properties of the two-sphere or equivalently the rotations given by the Lie group SO(3) Concrete representations 

are analogous to the Clebsch-Gordan. A number of hyper-geometric function[1,11] identities were exposed in 

the nineteenth and twentieth centuries, One conventional[11] list of such identities is Bailey's list. It is at present 

understood that there is a vast number of such identities, and several algorithms are now known to generate and 

prove these identities. In a certain sense, the situation can be likened to using a computer to do addition and 

multiplication; the actual value of the resulting number is in a sense less significant than the various patterns that 

come out; and so it is with hypergeometric identities as well. 

Among Indian researchers R.P.Agrawal[53,54,55,56,57] gave a lot to q function . He worked on 

fractional q-derivative, q-integral, mock theta function, combitorial analysis, extension of Meijer’s G 
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Function,Pade approximants,continued fractions and generalized basic hypergeometric function with 

unconnected bases.W.A.Al-Salam [2,3] and A.Verma[2,3] worked on quadratic transformations of basic 

series.N.A.Bhagirathi [38,39]worked on generalized q hypergeometric function and continued 

fractions.V.K.Jain and M.Verma[58] worked on transformations of non termating basic hypergeometric 

series,their contour integrals and applications to Rogers ramanujan’s identities.S.N. Singh worked on 

transformation of abnormal basic hypergeometric functions, partial theorems, continued fraction and certain 

summation formulae. K.N.srivastava and B.R.Bhonsle worked on orthogonal polynomials. H.M.Srivastava with 

Karlsson worked on multiple Gaussians Hypergeometric series, polynomial expansion for functions of several 

variables. S Ramanujan in his last working days worked on basic hypergeometric series.G.E.Andrews[11,51,52] 

published an article on “The Lost Note Book of Ramanujan”. H.S.Shukla worked on certain transformation in 

the field of basic hypergeometric function.A.Verma and V.K.Jain worked on summation formulas of q-

hypergeometric series, summation formulae for non terminating basic hypergeometric series,q analogue of a 

transformation of Whipple and transformations between basic hypergeometric series on different bases and 

identities of Rogers-Ramanujan Type.B.D.Sears worked on transformation theory of basic hypergeometric 

functions.P.Rastogi worked on identities of Rogers Ramanujan type. A.Verma and M.Upadhyay worked on 

transformations of product of basic bilateral series and its transformations. Generally speaking[1,11] in 

particular in the areas of combitorics and special functions, a q-analog of a theorem, identity or expression is a 

simplification involving a new parameter q that returns the novel theorem, identity or expression in the limit as q 

→ 1 (this limit is often formal, as q is often discrete-valued). Typically, mathematicians are interested in q-

analogues that occur naturally, rather than in randomly contriving q-analogues of recognized results. The 

primary q-analogue studied in detail is the q hypergeometric series, which was introduced in the nineteenth 

century. q-analogs find applications in a number of areas, including the study of fractals and multi-fractal 

measures, and expressions for the entropy of chaotic dynamical systems. The relationship to fractals and 

dynamical systems[1,11] results from the fact that many fractal patterns have the symmetries of Fuchsian groups 

in general and the modular group in particular. The connection passes through hyperbolic geometry and ergodic 

theory, where the elliptic integrals and modular forms play a prominent role; the q-series themselves are closely 

related to elliptic integrals. q-analogs also come into sight in the study of quantum groups and in q-deformed 

super algebras. The connection here is alike, in that much of string theory is set in the language of Riemann 

surfaces, ensuing in connections to elliptic curves, which in turn relate to q-series. 

 

II. Failure of Classical Methods and our proposed q methods 
Let us capture an example of Newton’s Method [60] for solving algebraic and transcendental problem 

and the state where it fails. Newton’s method is assured to converge under certain circumstances. One well-liked 

set of such conditions is this: if a function has a root and has a non-zero derivative at that root, and it is 

continuously differentiable in some interval around that root, then there exist some neighborhood of the root so 

that if we choose our preliminary point in that region, the iterations will converge to the given root. Conditions 

where a classical method fails are when the derivative is zero at the root i.e.the function fails to be continuously 

differentiable; and also when we have selected a starting point which is not apt, i.e. one that lies outside the 

range of guaranteed convergence.  Degenerate roots [61](those where the derivative is 0) are "uncommon" in 

general. On the other hand, most functions are not continuous or differentiable at all. The choice of starting 

point may be understandable if you have an idea about the rough location of the root, or it could be totally hit-

and-miss. There are other condition sets which may be more or less helpful; there is no all-encompassing way 

that captures correctly when the method fails. Generally speaking, if our function is reasonably smooth 

(differentiable) and we begin at a arbitrary location, function will most likely converge to some root. Some 

times we may unfortunately select initial point that is stationary or lies in some short cycle. 

 

III. q analogues of some iterative methods using single and double parameters 

 

3.1 q-analogue of Newton Raphson Method  

          (1) 

3.2 q-analogue of Newton Raphson Method having multiplicity 

–     , where m is multiplicity.                                        (2) 

 

3.3 q-analogue of Newton Raphson Method for multiple root 

xk+1=xk ( )
2          

(3) 
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3.4 q analogue of Euler[1,11,44] Method 

It is cubically convergent method with efficiency index 3
1/3.

It requires three evaluations  It is 

obtained by considering the parabola x
2
+ax+by+c=0 and imposing tangency conditions.

 

       (4) 

3.5 q analogue of Euler [1,11,44]Method using two parameters 

    (5) 

3.6 q analogue of Halley[44] Method 

       (6) 

Its efficiency index is also 3
1/3.

It requires three evaluations  It is obtained by considering the 

hyperbola axy+bx+c=0 and imposing tangency conditions and calculating next iterate. 

3.7 q analogue of Halley[44] Method using two parameters 

       (7) 

3.8 q analogue of Traub Steffensen Method 

If the derivative of f(xk) is approximated by .Then we get 

                                                                     (8) 

.This method has order of convergence 2 and efficiency index is 2
1/2    .

 

3.9 q analogue of method proposed by Homeir[40] 

                       (9) 

           

This method is of order 3. 

3.10 q analogue of method proposed by Homeir[40] using two  q parameters 

                     (10) 

                     (11) 

This method is of order 3. 

3.11 q analogue of method proposed by Kou[41,62,63] 

                     (12) 

                      (13) 

This method is of order 3. 

3.12 q analogue of method proposed by Kou[41,62,63] using two q parameters. 

                                  (14) 
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        (15) 

This method is of order 3 

3.13 q analogue of method proposed by Ozban[42] 

                      (16) 

   (17) 

This method is of order 3. 

3.14 q analogue of method proposed by Ozban[42] using two parameters 

                    (18) 

                                                 (19) 

This method is of order 3. 

3.15 q analogue of method by Weerakoon[43] and Fernando[43] 

                    (20) 

                                                              (21) 

This method is of order 3. 

3.16 q analogue of method by Weerakoon[43] and Fernando[43] 

                                                                                        (22) 

                                            (23) 

This method is of order 3. 

3.17 q analogue of method proposed by Bi Wu Ren [66] (Order 8) 

                                                                                                  (24) 

                                                                  (25) 

                                                      (26) 

3.18 q analogue of method proposed by Bi Wu Ren  [66] using double parameter 

                         (27) 

                  (28) 

        (29) 

3.19 q analogue of method proposed by Cordero-Torregrosa-Vassileva [67] 

             (30) 

=               (31) 

              (32) 
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and                       (33) 

3.20 q analogue of method proposed by Cordero-Torregrosa-Vassileva[67] using two parameters 

            (34) 

=          (35) 

   (36) 

and                 (37) 

3.21 q analogue of  Thukral’s[65] Method 

                (38) 

            (39) 

 

where               (40) 

3.22 q analogue of  Thukral’s[65] Method using two parameters 

              (41) 

           (42) 

 

where                        (43) 

3.23 q analogue of method proposed by Liu-Wang[41,62,63,64] 

              (44) 

=            (45) 

 
where                         (46) 

3.24 q analogue of method proposed by Liu-Wang[41,62,63,64] using two parameters 
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              (47) 

=           (48) 

 
where                        (49) 

 

3.25 q analogue of method by Kou-Wang-Li[62,63] 

                        (50) 

=                       (51) 

 

where,  

 

 

                  (52) 

3.26 q analogue of method by Kou-Wang-Li[62,63] with two parameters 

                          (53) 

=                       (54) 

 

where ,  

 

 

                     (55) 

 

IV.  Problems 
Problem 1 

  =0 

This function is not differentiable at x=2 and if we choose x0=2 Classical Newton Raphson Method  

can not  be applied on this problem but q analogue of Newton Raphson Iterative Method is applicable. 
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x0 q f(x0) f(qx0) x1 q f(x1) f(qx1) x2 

2 0.999 2.7182818 2.69266553 1.787769 0.999 1.91963 1.914404 1.131105 

2 0.999999 2.7182818 2.71805016 1.976533 0.999999 2.568049 2.56804 1.432849 

2 0.989 2.7182818 2.57503132 1.582534 0.989 1.36483 1.321015 1.040274 

2 0.99 2.7182818 2.58473299 1.592916 0.99 1.391157 1.350822 1.043515 

2 0.98 2.7182818 2.4950233 1.51298 0.98 1.192108 1.118805 1.02088 

2 0.97 2.7182818 2.41543867 1.461448 0.97 1.067887 0.96446 1.008759 

2 1.001 2.7182818 2.69811227 2.269543 1.001 2.527245 2.52767 -11.2261 

2 1.01 2.7182818 2.63957183 2.690708 1.01 2.80673 2.836214 0.129279 

 
f(x2) f(qx2) x3 f(qx3) f(x3) x4 f(x4) f(qx4) x5 

0.330953 0.328578 0.284836 -1.25014 -1.24966 1.028571 0.11914 0.11705 0.969947 

1.000197 1.000194 0.703346 -0.51168 -0.51168 0.979244 0.01963 0.019628 0.969441 

0.14297 0.119668 0.13332 -1.50261 -1.50023 1.05498 0.173038 0.149299 0.970391 

0.149585 0.128311 0.139067 -1.49313 -1.49086 1.053903 0.170832 0.149277 0.970378 

0.103525 0.062251 0.098332 -1.56017 -1.55699 1.061658 0.186739 0.143278 0.970425 

0.078992 0.018132 0.075917 -1.59681 -1.59314 1.066041 0.195745 0.130305 0.970378 

-14.1551 -14.1664 3.580464 4.47567 4.465953 1.934963 2.396389 2.403667 1.297878 

-1.5068 -1.5047 -12.302 -15.3608 -15.2371 2.860043 3.01337 3.053192 0.695774 

Table 1: Calculation of x1,x2,x3,x4,x5 (q analogue of Newton Raphson Method) for different values of q 

 

Problem 2 

Proceeding in this way we will get the solution after five iterations i.e x=0.969426 is the solution. 

Basic Analogue of Newton Raphson Method: 

Let us solve one more problem  f(x)= xe
x
-1 

Let x0=1 

f(1)= (e-1) 

f(q)=qe
q
-1 

If we calculate x1 by Classical Newton Raphson Method we will get x1=0.6839397 and 

f(x1)=0.3553424 
q x1 

0.96 0.6743415 

0.97 0.676762956 

0.98 0.679169779 

0.99 0.681562017 

0.999999999999 0.683945343 

1.01 0.686302938 

1.09 0.704693177 

0.95 0.671905363 

0.9 0.659502787 

0.8 0.633569653 

0.7 0.606095896 

0.6 0.577041065 

0.5 0.546369238 

0.4 0.514049563 

0.3 0.480056757 

0.2 0.444371563 

0.1 0.40698115 

Table 2: Calculation of x1 by iterative method(q-analogue of Numerical Methods for different values of q) 

 

Value of x1 by Newton Raphson Method is 0.6839397. 

f(x1) by Newton Raphson Method is 0.3553424 

f(x1) by q analogue ot Newton Raphson Method at q=0.99 is 0.347423143 

f(x1) by q method at q=0.97 is  0.33153. 

We can observe that value of f(x1) using q method is closer to zero which means it is more accurate and 

converges rapidly towards solution. 

V. Conclusion 
q-analogue of iterative methods for solving algebraic and transcendental equations gives the same 

result as classical methods do but it converges more rapidly towards solution and errors associated with these 

methods are comparatively lesser if value of q is chosen accordingly and this method is very appropriate for  

solving transcendental equations .By using single parameter we have to choose value of q very close to one but 

for double parameter we can get accurate result for  most of the values of q1.Problems have been solved using 

C++ Programming Language .Open methods (Newton, Halley etc.) differ from the bracketing methods 
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(Bisection, Regula-Falsi etc.) in the sense that they use information at single point or multiple points. Although 

it leads to quicker convergence, but it also includes a possibility that the solution may diverge. In general, the 

convergence of open techniques is partially dependent on the quality of the initial guess and the nature of the 

function. The closer an initial guess is to a true root, the more likely it is that the methods will be convergent. 

However, for a given nonlinear equation, it is rather hard to choose an initial approximation near a root. In 

general, any iterative scheme may be divergent if initial approximation is far from the root. 
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