
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 1, Ver. III (Jan – Feb. 2016), PP 97-100
www.iosrjournals.org

DOI: 10.9790/0661-181397100 www.iosrjournals.org 97 | Page

Fault Discovery Probability Analysis for Software Reliability

Estimation

K.Venkata SubbaReddy
1
, Prof.I.Ramesh Babu

2

1
Assistant professor, Department of Computer Science and Engineering,

Muffakham Jah College of Engineering and Technology, Hyderabad, Telangana, India
2
Professor and Head, Department of Computer Science and Engineering,

Acharya Nagarjuna University, Guntur, Andhra Pradesh, India

Abstract: Software reliability approximation and testing gauge how efficiently software works and meet up the

end-user necessities. Software reliability assurance that users can enter the correct information on a day-to-day

basis, errors can be correctly reprocessed and appropriate action will be taken on software reports. Herein this

publication an effectual beta distribution dependent probability study is anticipated to test the consistency of

software .This paper also examines the testing efficiency for the proposed model and accomplishes a preceding

distribution assessment.

Keywords: Effectiveness, Beta distribution, Flaw Identification, Reliability.

I. Introduction
Reliability of software has been analyzed using mathematical models often termed as software reliab ility

models. All through the previous decades stochastic models also known as software reliability models (SRMs)

that examine the software fault exposure probability have been lengthily discussed in research literature [1]

[2].The reliability of software is based on fault discovery and rectification procedure. The key purpose of

enhancing reliability is to get rid of faults with a large amount of grave penalty. The second purpose is to

eliminate faults that are encountered frequently by users .

Software reliab ility consists of three actions [3]

a) Error deterrence

b) Fault discovery and elimination

c) Measurements to progress reliability

The error deterrence methodologies used in the software production environment are premeditated by

coding standards, monitoring systems, agreed bug tracking systems, perfect programming and traditions of

growth. As the number of error avoidance methodologies executed in the project augments; it denotes that the

project is closer to achieve monitoring systems, coding standards, coherent and comprehensive error avoidance

program. Testing phase is carried out for fault discovery and elimination. Testing is carried out in various phases

starting from integration inclusive of testing individual components in module testing phase. System testing is

implemented keeping in mind the objectives with which software was built. It facilitates in validating whether or

not the end objectives are being met. At the last step acceptance testing is executed to make sure that end

objectives promised to the customer are met. Numerous methodologies are used in various phases of testing

starting from selection, design and acceptance testing that lead to fault discovery and elimination.

Software fault forbearance is an essential parameter that needs to be met with better consistency as an

end objective. It is means of reducing anonymous and erratic hardware and software faults, by facilitating a group

of functionally comparable software components developed by diverse teams. The supposition is the design

multiplicity of software, which itself is complex to attain. Software testing is a means to gauge and enhance

software reliability. It plays a noteworthy position in the design, execution, justification and discharge stages. It is

not an established field. Any advancement in this domain will have huge influence on the software industry.

Software defects are drastically dissimilar than the ones occurring in other components of the system:

they are typically design defects, and majority is associated with tribu lations in pattern. Whatever testing

methodologies one uses developing bug free software is not pos sible and if one has set an objective to develop

bug free software then it is ext remely infeasible. And the software bugs that are unidentified cause a lot of

societal and lawfu l concerns. And the very approach to develop bug free software is not the right approach.

Fault Discovery Probability Analysis for Software Reliability Estimation

DOI: 10.9790/0661-181397100 www.iosrjournals.org 98 | Page

Figure 1: Block diagram of Software Reliability Assessment

Figure.1. denotes the Software Reliability Assessment procedure. The first step in the procedure is to test

the necessary Software. The second step is to gather the result subsequent to testing; In the third step depending

upon the composed results the reliability model is built. In the fourth step, the validity of the model is checked. If

the model accomplishes validity then the Model is deployed in the procedure and the test model is deployed. If

the model is unacceptable then depending upon the results a new model is built.

II. Related Work
Research in testing domain started in 1970’s [4]. It was accepted as quality prototype in 1990’s. A lot

of software testing definitions exist in the real world. IEEE describes it as “the degree to which a system or

component facilitates the organization of test criterion and performance of tests to decide whether those criterion

have been met”. ISO [4] defines it as “features of software that bear on the pains needed to authenticate the

software product.”

Numerous researchers projected their own definit ions such as “to proceed with examinat ion, such as,

controllability, forecast of the tendency for failures to be observed during random black box test ing when faults

are presented”. These definitions mirror the character of testability from diverse points of view, but also begin

chaos of understanding on testability. One of the key areas in which research can be carried out in software

domain is compositionality [6]. It is also the same for testability scrutiny. There is no complete or proper way to

obtain system's testability metric from its component's. According to a few on hand testability investigation

model, e.g. DRR metric, the system might be extra testable than its parts, which means we might merge two un-

testable subprograms into a testable one.

Researchers commence to init iate more strongly interpretative methodologies to examine software

testability [5]. Following the IEEE defin ition, we recommend to use distribution to point to software testability

.Numerous considerations are linked with Software Reliability Growth Models; Table : 1 mentions few of these

assumptions.

Fault Discovery Probability Analysis for Software Reliability Estimation

DOI: 10.9790/0661-181397100 www.iosrjournals.org 99 | Page

Table 1: Considerations for Software Reliab ility Growth Models

III. Proposed Framework

Let us suppose be the likelihood of malfunction and signify the prior d istribution of as  (a , b) .

When the prior and posterior distribution belongs to the identical parametric family distributions then it denotes

the homogeneity, beta distribution is a excellent applicant conjugate distribution family.

The Software reliability can be articulated as a failure rate (0) and equivalent confidence level and the

reliability goal should suit the subsequent criterion

This quality of testing is determined by parameters a, b assessed based on the accomplished reliab ility when

testing denotes zero fault [7].When implementing lively test and inert informat ion into the software model can

generate a more precise result. To authenticate the suitable beta distribution for a precise testing criterion the

subsequent steps need to be followed.

 Defining appropriate testing for measuring efficiency.

 To pioneer criterion efficiency information into the model.

 To establish that while implementing the efficiency information, the allocation can provide an inference of

quality

Testing criterion effectiveness measure Fault detection probability :

This is a software criterion that can give a more steady and comprehensive view of testing. In theory,

there are endless numbers of suites fulfilling few testing criterion. In reality, when the suite number is adequate,

we can get first-class faulty detection probability estimation for diverse faults incorporated in the plan. The

quality of testing is decided by parameters a, b. The Table 2 shows three parameter estimation analysis methods

Table 2: Parameter Inference Result Analysis
 RANDOM TESTING

  2 s2

MLE
(Maximum Likelihood Estimation)

Program a b a b a b
Schedule-1 0.4550 1.85 0.465 1.54 0.6712 2.5

Schedule-2 2.1 23.1 1.98 21.9 1.09 11.5

Print Token-1 0.87 3.2 0.76 2.7 1.04 3.82

Print Token-2 2.55 3.15 2.21 2.78 2.34 3.05

Replace 1.07 2.92 1.02 2.75 1.08 2.78

Tcas 0.95 6.5 0.909 16.37 0.96 6.8

S.NO ASSUMPTIO NS REALITY

1. Discovered defects are repaired

Test time may be falsely collated if a uncorrected
fault prevents further defects from being detected.

These are not corrected instantly but sensibly
adjusted.

2. Defect correction is ideal
Correction of defects creates more novel defects

and these are less likely to be revealed.

3.
No novel code is introduced all through

QA testing

Novel code is introduced all through the complete

test period. There are methodologies to explain for
preamble of novel code.

4.
The Testing group will report the
defects

Numerous groups of people will represent the

testing; this can be adjusted by stopping defects
those revealed by QA.

5. Every unit of time is alike

This is untrue for calendar time. For
implementation time. “Corner” tests at t imes are
extra probable defects .Nevertheless as long as the
test sequences are rationally reliable from release

to release; this can be accounted as learning’s from
previous releases.

6. Operational profile depiction
Customers run numerous applications under
diverse configurations which is tricky to describe a
suitable profile.

7. Autonomy of failure

This is practically satisfactory when there is a part
of code that has not been tested. Test run alongside
this piece of code might discover embezzle divide
of defects.

Fault Discovery Probability Analysis for Software Reliability Estimation

DOI: 10.9790/0661-181397100 www.iosrjournals.org 100 | Page

Table 2 shows three parameter estimation analysis methods like 2
, s

2
 and MLE. The programs

schedule-1, schedule-2 print Token-1, print token-2, Replace and Tcas are considered for testing.

Figure 2 denotes the performance of parameter assessment. The result shows that the disparity started

from three belief methodology is small. According to the arithmetical property of beta distribution, `1' is the

threshold. Any parameters vary from less than to larger than `1 'will alter the outline of the distribution. For

haphazard testing of program printtoken1 and branch coverage testing of schedule-2, 
2
 and S

2
 methodologies

have the values less than 1 and MLE bigger. So when program, standard is more testable, it needs less test

endeavor to accomplish reliability goal. When program, condition is less testable, it asks for extra test endeavor.

Figure 2: Performance of Parameter Estimation

Traditional statistical software reliability appraisal methodology is a 'blind' method to an assured degree.

Occasionally it overestimates the test outcome.

IV. Conclusion
From theoretical investigation and experimental substantiation, a deterred testability signal of software

and condition pair is reached. From another point of view, software failure results from a dissimilar fault that

gets integrated in the software. This paper has accomplished several init ial results; diverse faults have diverse

test problems. If the failure rate caused by diverse faults under diverse testing measure is forecasted initially, the

prior evaluation of the model's parameters is attained, i.e. a prio r indicat ion of software testabilit y, and forecast

essential testing effort for specific software quality is accomplished.

References
[1]. M. Lyu, “Handbook of Software Reliability Engineering”, McGraw Hill, New York, 1996.
[2]. J. D. Musa, A. Iannino, and K. Okumoto. “Software Reliability Measurement, Prediction, Applications”,McGraw-Hill, New York,

1987.

[3]. Rosenberg Linda, Hammer Ted & Shaw Jack, “Software Matrices and Reliability”, ISSRE, 1998.
[4]. N.P.Edwards,”The effect of certain modular design principles on software testability”, ACN SIGPLAN NOTICES, 10(6):401-410,

April 1975.
[5]. ISO/IEC. ISO/IEC 9126,”Software Engineering Product quality”, ISO Press, Geneva, Switzerland, 1991.

[6]. A. Finkelstein and J. Kramer,”Software engineering: A roadmap”, In Proc. of the Future of Software Engineering 2000, pages 3-22.
ACM Press, April 2000.

[7]. Liang Zhao,” A new approach for software testability analysis “ , ICSE, May-2006.

