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 Abstract: Software aging bugs are related with the life-span of the software. Rebooting is one of the solutions 

of this problem, however, it is time consuming and causes resources loss. It is difficult to detect these bugs 

during the time-limited software testing process. Data mining techniques can be useful to predict whether a 

piece of software has aging related bugs or not. The available datasets of software aging bugs present a 

challenge as they are imbalanced datasets. In these datasets, the number of data points with bugs is very small 

as compared to the number of data points with no bugs. It is important to predict the rare class (Bugs). In this 

paper we carried out experiment with a dataset containing data points related to aging-related bugs found in an 

open-source project MySQL DBMS. Data mining techniques developed for imbalanced datasets were compared 

with general data mining techniques. Various performance measures were used for the comparative study. The 

results suggest that data mining techniques developed for imbalanced datasets are more useful for correct 

prediction of data points related to aging related bugs. Data mining techniques developed for imbalanced 

datasets performed better than general data mining techniques on G-mean measure which is an important 

performance measure for imbalanced datasets. 
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I. Introduction 
Software engineering deals with design, development and maintenance of software [1, 2]. Software 

bugs are defects which occur due to error in software design or software development process [3]. Due to these 

bugs, software produces incorrect results or does not produce expected results. As software plays a very 

important part now a days, software bugs can lead to financial losses and effort losses.   For example, in 1996, 

the $1.0 billion rocket called Ariane 5 was destroyed because of a software bug [4]. Software bugs prevention is 

the first step to quality assurance of software.  Tasks like training, requirements and code reviews, and other 

activities that promote quality software come under this step. Software testing is an important part of software 

development process [1, 2]. It finds out software bugs in a given piece of software [1, 2]. In software testing 

processes, software is tested by using given test cases. A large number of software bugs are generally detected 

during software testing. The software design and software code are corrected to remove the bugs. However, 

software testing is a time consuming process and all the possible test cases cannot be tested. In other words, 

some bugs still may go undetected. Some bugs are detected by customers; the cost of removing these bugs is 

higher.  It is commonly believed that the earlier a defect is found, the cheaper it is to fix it. Efforts are being 

made to make software testing faster, cheaper, and more reliable. Test automation is an important step in which 

instead of human tester dedicated software is used for testing [5]. 

Software aging is related with the life-span of the software. As the software gets older it shows 

degraded performance, an increased failure occurrence rate and system hanging or crashing [6, 7]. As the 

runtime period of the software increases, its failure rate also increases. Aging effects in a system can only be 

detected while the system is running. It occurs because of software faults, called Aging-Related Bugs (ARBs) 

[6, 7]. However, due to the nature of this error (errors occur over time), it is difficult to correct the software 

faults for good during the time-limited testing process. Rebooting is a short term solution of this problem. The 

aging effect cannot be reversed without external intervention. ARBs can produce resource leakage, unterminated 

threads and processes, unreleased files and locks, numerical errors, and disk fragmentation [6, 7]. 

Data mining techniques analyse huge datasets [8, 9]. Supervised learning and unsupervised learning are 

two important data mining problems. In supervised learning, the output is given. The task is to create a model 

from a given training data (data points with output) such that when a new data point without output comes, the 

model predicts the output of the data point. When the output is class, the problem is called classification 

problem. If the output is a real number, the problem is called a regression problem. Decision trees, Naïve Bayes 

classifiers, neural networks etc. are popular classifiers [8, 9]. In clustering, the output of data points are not 

provided, the task is to group data points in different clusters such that the data points in a cluster are more 

similar than the data points in different clusters. K-means clustering, Hierarchical clustering etc. are popular 

clustering methods [8, 9]. 



Predicting Software Aging Related Bugs From Imbalanced Datasets By Using Data Mini... 

DOI: 10.9790/0661-18132735                                          www.iosrjournals.org                                        28 | Page 

The problem discussed in the paper is a classification problem as we want to predict whether given 

software has bugs or not.  

Classifier ensembles are methods to improve the accuracy of classification algorithms. Classifier 

ensembles are combination of accurate and diverse classifiers. The final result of an ensemble depends on output 

of individual classifiers. Classifier ensembles generally perform better than single classifiers [10].  Bagging [11] 

and Boosting [12] are two popular classifier ensembles. 

Some datasets have class-imbalanced problem [13]. In two-class setting, most of the data points belong 

to one class. This problem is also called imbalanced dataset problem. The aim of this problem is to detect a rare 

but important case. The classifier algorithms may not perform well on these datasets. To overcome this problem, 

different approaches have been suggested. Undersampling of majority class and oversampling of minority class 

are two popular preprocessing approaches to overcome class-imbalanced problem [13]. A classifier algorithm 

with a cost matrix is another approach to overcome this problem. The cost matrix gives more weightage to 

classification error of minority class point. The decision threshold is shifted towards minority class. In other 

words, the trained model is biased towards minority class [13]. 

Software repositories contain datasets about software projects. Mining these datasets can be used to 

uncover interesting and actionable information about software projects [14, 15]. This information can be used by 

software practitioners to improve the quality of software projects. Mining software engineering data has 

emerged as a research direction in test automation. Application of data Mining software metrics have been 

widely used in the past for predictive and explanatory purposes. These techniques try to find out relationship 

between software metrics and the bugs in a program. Therefore, these techniques can predict which software 

program is more likely to have bugs without doing any manual testing [14, 15]. 

Czibula et al. [16] apply association rules to predict software defects. Moeyersomsa et al. [17] use 

decision tree ensembles with rule extraction algorithm for comprehensible software fault and effort prediction. 

El-Sebakhy [18] applies functional networks forecasting framework to forecast software development efforts.  

Dejaeger et al. [19] present a comparative study of various data mining techniques for software efforts. The 

study suggests that Least Squares Regression in combination with a logarithmic transformation performs best.  

Cotroneo et al. [20] use various data mining techniques to predict which source code files are more 

prone to Aging-Related Bugs. Despite the fact that the datasets are imbalanced they use the normal data mining 

techniques. In this paper, a detailed study of general classification algorithms and algorithms for imbalanced 

data is carried out on an Aging-Related Bugs dataset.   

This paper is organized in the following way. In Section 2, we discussed the data mining techniques 

and the dataset used in the study. The results are discussed in Section 3. Conclusion and future work is presented 

in Section 4. 

 

II. Material & Methods 
We used various general data mining techniques and data mining techniques for imbalanced datasets in 

our study. In this section, we will discuss these techniques. We will also discuss about the dataset used in the 

study. 

2.1 General Data Mining Techniques 

i. Decision Trees - Decision trees are very popular classifiers [8, 9]. They create rules which human can 

understand easily. These trees are created by recursive partitioning.  Started with root node, at each node 

of the tree the data points available at the node are split in different braches depending upon the chosen 

split criterion eg. Information Gain ratio, Gini index etc. Splitting process terminates after a particular 

stopping criterion is reached. C4.5 [21] tree is a very popular decision tree, it uses Information Gain Ratio 

criterion. 

ii. Multilayers Perceptron (MLP) - Neural networks classifiers are inspired by biological neural networks 

[8, 9]. They are interconnected nodes. These networks have weights which represent connection strengths 

between neurons. These neural networks can approximate all kinds of decision boundaries [8, 9]. They are 

very popular because of their high accuracy. However, they are slow. The selection of parameters is an 

important step, improper parameters can reduce the accuracy of neural networks. 

iii. Bagging - Bagging is a method to create classifier ensembles [11]. This is a general method and can be 

used with any classifier. As discussed in Section 1, for classifier ensembles we need accurate and diverse 

classifiers. Bagging creates diverse classifiers by resampling. In each round, the training datasets is created 

by sampling the data from training data uniformly and with replacement. Hence, in each round some data 

points are not selected whereas some data points are selected more than one time. This process create 

diverse datasets, classifiers trained on these datasets are diverse and hence create accurate ensembles. 

iv. AdaBoost.M1 - AdaBoost.M1 is a popular classifier ensembles method [12]. In each round of training, 

weights are assigned to each data points such that the hard to classify data points will get more weights. In 

other words, in subsequent rounds, classifiers try to concentrate more on difficult to predict data points. It 
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is a general method and work with all kinds of classifiers. However, it is more successful with decision 

trees and neural networks. AdaBoost.M1 has problem with datasets with class noise.  

 

2.2  Data mining techniques for imbalanced datasets 

i. C4.5 for imbalanced datasets – Cost-sensitive classifiers are developed for imbalanced datasets [13]. 

For normal datasets, while calculating accuracy, all data points have same weights, whereas, in classifiers 

with cost-sensitive matrix, the error of data points of minority class is given more weight. In other word, 

it is better to have classification error for majority class data points than for minority class data points. 

The classifier tries to minimize the error function with cost matrix. Ting [22] proposes cost-sensitive trees 

in which the weights are assigned to each data point and the initial data point weights determine the type 

of tree. The selection of cost-matrix is an important step in the algorithm. 

ii. Multilayer Perceptron with Back Propagation Training Cost-Sensitive (NNCN) -  Cost-sensitive 

learning technique is also useful for neural networks. Zhou et al. [23] show that the threshold-moving 

approach can be useful for neural networks for imbalanced datasets. For normal datasets the threshold for 

classification is in the middle of the output range. Threshold-moving moves the output threshold toward 

inexpensive classes such that data points with higher costs (minor class data points) become harder to be 

misclassified. 

iii. SMOTEbagging –  Undersampling of majority class and over-sampling of minority class are used to 

reduce the class imbalance. Chawla et al [24] propose an over-sampling approach (Synthetic Minority 

Over-sampling Technique (SMOTE)) in which the minority class is over-sampled by creating “synthetic” 

examples rather than by over-sampling with replacement. The minority class is over-sampled by taking 

each minority class sample and introducing synthetic examples along the line segments joining any/all of 

the k minority class nearest neighbours. They show that combining the proposed under-sampling 

technique with general over-sampling method produce good results. In SMOTEbagging [25], in each 

round a training dataset is created by bagging process and then the data imbalanced is removed by 

SMOTE process. A classifier is trained on this dataset. Classifiers trained in different rounds are 

combined to get an ensemble. 

iv. SMOTEBoost –  SMOTEboost combines SMOTE sampling technique with boosting [26]. Unlike 

standard boosting, where all misclassified examples are given equal weights, in SMOTEBoost technique 

the weights are updated such that the data points from the minority class are oversampled by creating 

synthetic minority class examples.  

v. MSMOTEbagging – Modified synthetic minority oversampling technique (MSMOTE) [27] is a 

modified version of SMOTE. In this algorithm, the minority class data points are divided into three 

subclasses, safe, border and latent noise instances by the calculation of the distances among all data 

points. For safe data points, the algorithm randomly selects a data point from the k nearest neighbours; for 

border data points, it only selects the nearest neighbour; for latent noise instances, it does nothing. 

MSMOTE combines with bagging (as SMOTE combine with bagging to create SMOTEbagging) to 

create MSMOTEbagging. 

vi. MSMOTEboosting – MSMOTEboosting [28] combines the MSMOTE sampling method with 

AdaBoost. This way the minority class is better represented in each round of AdaBoost. For many 

datasets, MSMOTEboost has shown better results than SMOTEBoost. 

vii. Underbagging –  Undersampling technique is used to reduce the number of majority class data points so 

that the data imbalanced can be reduced.  In Underbagging, a training dataset is created by under-

sampling majority class randomly to build a classifier. Various diverse classifiers created by this method 

are combined to create an Underbagging ensemble [29]. 

viii. Overbagging – To reduce data imbalance, oversampling is used to increase the number of minority class 

data points. In Overbagging, a training dataset is created by oversampling minority class randomly to 

build a classifier. These diverse classifiers are combined to get an ensemble. This method is called 

Overbagging [25]. 

 

2.3 Dataset Used In The Study 

Cotroneo et al. [20] present a data set for ARB found in MySQL_DBMS (dataset_mysql_innodb- 

http://wpage.unina.it/roberto.natella/datasets/aging_related_bugs_metrics/dataset_mysql_innodb.arff). The data 

set has 402 files. 370 files has no bugs (0), whereas 32 files has age related bugs (1). It can be considered as a 

two class problem. It is an imbalanced data as the ratio of minority class to majority class is 1 to 11.6. Each file 

is represented by 83 attributes. The first attribute is the name of the file. 49 attributes come from "Program size" 

metrics for the file. These metrics are related to amount of lines of code, declarations, statements, and files.  18 

attributes came from “McCabe's cyclomatic complexity" metrics for the file.  These metrics represent the 

control flow graph of functions and methods. "Halstead" metrics for the file are represented by 9 attributes. 
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These metrics represent operands and operators in the program. "Aging-related" metrics for the file are 

represented by 6 attributes. These attributes are related with memory usage. For detail information about the 

attributes readers may refer to [20]. 

 

III. Experiments 
Experiments were carried out by using the KEEL software [30]. Table 1 presents the implementation of 

different data mining algorithms. Defaults parameters were used in the experiments. 

 

Table 1-  Implementation of different data mining algorithms in KEEL software. 
           Name of the algorithm  KEEL implementation 

C4.5 [21] Decision trees 

MLP-normal [8, 9] Multilayer Perceptron with Back propagation Training 

Bagging [11] Bootstrap Aggregating with C4.5 Decision Tree as Base Classifier 

Adaboost.M1 [12] Adaptive Boosting First Multi-Class Extension with C4.5 Decision Tree as Base 
Classifier  

C4.5-Imbalanced [22] C4.5 Cost-Sensitive  

NNCS [23] Multilayer Perceptron with Back propagation Training Cost-Sensitive  

SMOTEbagging [25] Synthetic Minority Over-sampling Technique Bagging with C4.5 Decision Tree as Base 
Classifier 

SMOTEadaboost [26] Synthetic Minority Over-sampling Technique Boosting with C4.5 Decision Tree as 

Base Classifier 

MSOMTEbagging [27] Modified Synthetic Minority Over-sampling Technique Bagging with C4.5 Decision 
Tree as Base Classifier  

MSMOTEboosting [28] Modified Synthetic Minority Over-sampling Technique Boost with C4.5 Decision Tree 

as Base Classifier 

Overbagging [25] Over-sampling Minority Classes Bagging with C4.5 Decision Tree as Base Classifier [] 

Underbagging [29] Under-sampling Minority Classes Bagging with C4.5 Decision Tree as Base Classifier  

 

3.1 Performance Measures 

There are many performance measures for classifiers. However, all performances measures are not 

good for imbalanced datasets. First, we discuss various performance measures. Then, we will explain which 

performance measures are good for imbalanced datasets [13]. The present problem is a two-class problem. The 

minority class (Bug class) is taken as positive class whereas the majority class (Non-Bug class) is taken as 

negative class. Table 2 presents the confusion matrix for this problem. 

 

Table 2 -  Confusion Matrix 
                                                                 True Class 

 
 

Predicted 

Class 

 Positive Negative 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

3.1.1  Definitions of various performance measures 

1. Accuracy – Accuracy performance measure calculates the number of data points correctly predicted. It is 

calculated by the following formula; 

       Accuracy =  (TP + TN)/(TP + FN + FP  + TN);  

2.  Recall (True positive rate (TPR)) – It calculates the fraction of positive class data points predicted as 

positive. The following formula is used to calculate it; 

       Recall (TPR) =  TP/(TP + FN); 

3. True negative rate (TNR) = It calculates the fraction of negative class data points predicted as negative. 

It is calculated by using the following formula; 

        TNR = TN/(TN + FP) 

4.  Average of TNR and TPR – The average of TNR and TPR is a performance measure which depends 

on both TNR and TPR. It is calculated by using following formula; 

         Average =   (TNR + TPR)/2 

5.  G-mean – The geometric mean of TNR and TPR is another performance measure which depends on 

both TNR and TPR. This is a very popular performance measure for imbalanced datasets. It is calculated by 

following formula; 

                          G-mean = (TPRxTNR)
1/2

 

6. Precision- Precision is the fraction of predicted positive class that is actually positive class. It is 

calculated by following formula; 

                    Precision = TP/(TP + FP) 
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7. F-measure – F-measure depends on recall and precision. It is another important performance measure. It 

is calculated by following formula 

            F-measure  = 2*Precision*Recall/(Precision + Recall) 

 

Not all performance measures are good for imbalanced datasets. Accuracy is not a good measure for 

these datasets as any classifier which will classify all the points to majority class will be very accurate. 

However, this is not desirable. The most important thing is that the classifier should be able to predict minority 

class data points well (High TPR). At the same time it should have high TNR. The G-mean is a good measure 

for imbalanced datasets. F-measure which depends on recall and precision is also a good measure [13]. The user 

should select the performance measure depending upon his application.  

 

IV.   Results And Discussion 
The experiments were carried out by using the 5 fold cross validation.  The results are presented in 

Table 3 and Fig 1 – Fig. 5. Results suggest that the accuracy of general machine learning algorithms is high (> 

0.9). TNR is also quite high. However, TPR is generally low. This is due to the fact that these algorithms are 

predicting most of the testing data points as Non-Bug. As the number of Bug data points is very small (32 data 

points out of 402 data points). The classification accuracy is quite high. However, these algorithms are not able 

to capture Bug data points correctly. This is the reason of low TPR. The G-mean which is the most important 

performance measure for imbalanced datasets is low for these algorithms [13]. Generally, the important point of 

these kinds of datasets is that we should be able to predict minority class correctly (High TPR) without affecting 

the predicting accuracy of majority class much (High TNR).  The G-mean captures this fact. Low G-mean 

means that they are not able to do it. Generally, these algorithms also have low F-measure.   

 

Table 3- A comparative study of various data mining techniques with different performance   measures. The 

bold result shows the best performance for a given performance measure. 

 

 

 

 

 

              Criterion 

 

 

     Method 

Accuracy 
TPR 

(Recall) 
TNR 

Mean = TPR 

+TNR/2 

G-mean = 

(TPRxTNR)1/2 
Precision F-measure 

General 

Machine 

Learning 

Methods 

C4.5 0.9080 0.1250 0.9757 0.5503 0.3492 0.3077 0.1778 

MLP-normal 0.6045 0.5938 0.6054 0.5996 0.5995 0.1152 0.1929 

Bagging 0.9080 0.0625 0.9811 0.5218 0.2476 0.2222 0.0976 

Adaboost.M1 0.9154 0.2813 0.9703 0.6258 0.5224 0.4500 0.3462 

Machine 

Learning 

methods for 

imbalanced 

datasets 

C4.5-Imbalanced 0.6841 0.9375 0.6622 0.7998 0.7879 0.1935 0.3209 

NNCN 0.5821 0.6875 0.5730 0.6302 0.6276 0.1222 0.2075 

SMOTEbagging 0.6741 0.8750 0.6568 0.7659 0.7581 0.1806 0.2995 

SMOTEadaboost 0.7488 0.6875 0.7541 0.7208 0.7200 0.1947 0.3034 

MSOMTEbagging 0.7164 0.7813 0.7108 0.7460 0.7452 0.1894 0.3049 

MSMOTEboosting 0.7463 0.6250 0.7568 0.6909 0.6877 0.1818 0.2817 

Overbagging 0.8234 0.3750 0.8622 0.6186 0.5686 0.1905 0.2526 

Underbagging 0.6990 0.8750 0.6838 0.7794 0.7735 0.1931 0.3164 

Accuracy  of  different algorithms 
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Figure 1-  Accuracy of different data mining algorithms. General data mining algorithms, represented by white 

columns, show better accuracy as compared to data mining techniques for imbalanced datasets, represented by 

black columns. 

 

 
Figure 2-  G-mean of different data mining algorithms. Data mining techniques for imbalanced datasets, 

represented by black columns, show better G-mean than that of general data mining algorithms, represented by 

white columns.  

 

                
 

Figure 3-  TPR of different data mining algorithms. Data mining techniques for imbalanced datasets, represented 

by black columns, show better TPR than that of general data mining algorithms, represented by white columns. 

 

TPR  of different 

algorithms 
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Figure 4-  TNR of different data mining algorithms. General data mining algorithms, represented by white 

columns, show better TNR as compared to data mining techniques for imbalanced datasets, represented by black 

columns. 

 

                        
 

Figure 5-  F-measure of different data mining algorithms. Data mining techniques for imbalanced datasets, 

represented by black columns, show better F-measure than that of general data mining algorithms, represented 

by white columns. 

                                        Table 4- Confusion matrix for C4.5 decision tree. 
                                                                         True Class 

 

 

Predicted Class 

 Bug          No-Bug 

Bug 4 9 

No-Bug 28 361 
 

Table 5- Confusion matrix for AdaBoost.M1. 
                                                                         True Class 

 

 
Predicted Class 

 Bug          No-Bug 

Bug 9 11 

No-Bug 23 359 
 

Table 6- Confusion matrix for C4.5-Imbalanced decision tree. 
                                                                                 True Class 

 

Predicted Class 

 Bug No-Bug 

Bug 30 125 

No-Bug 2 245 

TNR of different algorithms 

F-measure of different algorithms 
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To understand this in a better way, the confusion matrix of C4.5 classifier is presented in Table 4.  The 

classifier predicted only 4 out of 32 Bug data points correctly.  Hence, low TPR is achieved. Only 13 data points 

are classified as Bug. In other words, almost all the points are predicted Non-Bug (389 out of 402 data points).  

Adaboost.M1 gives the best F-measure. To understand this in a better way, the confusion matrix of 

AdaBoost.M1 is presented in Table 5.  The algorithm predicted 9 out of 32 Bug data points. However, the 

precision in this case is relatively high (0.4500). The high precision leads to high F-measure. However, the G-

measure is relatively low (0.5224).  

The accuracy of data mining algorithms for imbalanced datasets is relatively low. However, the G-

mean is generally high (most of the cases more than 0.7). The best case is C4.5 for imbalanced dataset (0.7998). 

The TPR for these algorithms is relatively high. C4.5 for imbalanced dataset gave best TPR (0.9375). This 

suggests that these algorithms are able to predict large number of Bug data points without affecting TNR much.  

To analyse the performance, we presented the confusion matrix for C4.5 decision tree for imbalanced dataset in 

Table 6. The matrix suggests that the algorithm was able to predict 30 out of 32 Bug data points correctly. 

However, it also predicted a large number of Non-Bug data points as Bug data points. That leads to lower TNR 

as compare to those of general data mining algorithms.  The F-measure of these algorithms is also relatively 

high.  

It is important to note that the selection of performance measures for a given problem is an important 

step. The G-mean and F-measure are the best performance measure for the imbalanced datasets. The data 

mining algorithms for imbalanced datasets performed well on these two measures. The results suggest that for 

Aging Related Bug problem in which the number of Bug data points is small, data mining algorithms for 

imbalanced datasets should be used. 

 

V. Conclusion 
In this paper, we applied data mining techniques for imbalanced datasets to predict ARBs  in a dataset 

related with an open source software; MYSQL DBMS [20]. Results suggest that these data mining algorithms 

are more useful than general data mining algorithms for predicting ARBs. Data mining algorithms for 

imbalanced datasets have better prediction (TPR) for Bugs data points (minority class). These algorithms also 

have better G-mean measure. More datasets will be used in the future. Feature selection techniques will also be 

applied in future to remove the insignificant features. One class classifier is an approach to analyse dataset when 

we have points of only one class [31]. In future, we will see the application of one class classifiers for predicting 

ARBs.   
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