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Abstract : An operating system kernel is the prime of system software, responsible for the integrity and 

conventional computer system’s operations. Traditional malware detection approaches have based on the code- 

centric aspects of malicious programs, e.g. injection of unauthorized code or the control flow patterns of 

malware programs. 

In response to these malware detection strategies, modern malware focus on advanced techniques such 

as reusing existing code or complicated malware code to circumvent detection. A new perspective is introduced 

to detect malware which is different from code-centric approaches. The data centric malware defense 

architecture (DMDA) is introduced which models and detects malware behavior. This architecture is based on 

properties of the kernel data objects that are targeted during malware attacks. This architecture requires 

external monitoring. External monitor resides outside the monitored kernel and ensures temper-resistance. This 

architecture consists of three core system components that enable inspection of the kernel data properties and 

depending upon these properties from malware cluster. The system clusters malware depending upon the kernel 

data objects. 
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I. Introduction 
An operating system kernel is the core of system software which is responsible for the integrity and 

operations of a conventional computer system. Developers of malicious software (malware) have been 

continuously exploring various attack vectors to tamper with the kernel. Traditional malware detection 

approaches have focused on the code centric aspects of malicious programs, such as the injection of 

unauthorized code or the control flow patterns of malware programs. However, in response to these malware 

detection strategies, modern malware is employing advanced techniques such as reusing existing code or 

complicated malware code to circumvent detection.  

Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so 

there is an urgent need for its detection. The most popular detection approach is misuse-based detection. 

However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and 

obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not 

rely on the specific features of malware.   

Modern malware use a variety of techniques to cause divergence in the attacked program’s behaviour 

and achieve the attacker’s goal. Traditional malicious programs such as computer viruses, worms, and exploits 

have been using code injection attacks which inject malicious code into a program to perform a nefarious 

function. Intrusion detection approaches based on such code properties effectively detect or prevent this class of 

malware attacks [10], [11], [12]. 

Data-centric approaches require neither the detection of code injection nor malicious code patterns. 

Therefore they are not directly subvertible using code reuse or obfuscation techniques. However, detecting 

malware based on data modifications has a unique challenge that makes it distinct from code based approaches. 

Unlike code, which is typically expected to be invariant, data status can be dynamic. Correspondingly, 

conventional integrity checking cannot be applied to data properties. In addition, monitoring data objects of an 

operating system (OS) kernel has additional challenges because an OS may be the lowest software layer in 

conventional computing environments, meaning that there is no monitoring layer below it. 

 Traditional malware detection and analysis approaches have been focusing on code-centric aspects of 

malicious programs, such as detection of the injection of malicious code or matching malicious code sequences. 

However, modern malware has been employing advanced strategies, such as reusing legitimate code or 

complicated malware code to circumvent the detection. As a new perspective to complement code-centric 

approaches, we propose a data-centric OS kernel malware characterization architecture that detects and 

characterizes malware attacks based on the properties of data objects manipulated during the attacks [1]. 
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 To address the challenges of relying on only code in malware defence, we propose new approaches 

based on the properties of data objects that are targeted in malware attacks. These approaches do not require the 

detection of the injected code or the specific sequence of malicious code. Therefore, they are not directly subject 

to attacks targeting the approaches based on code properties. 

 

II. Literature Survey 
Data invariants are one important class of integrity properties that concerns the expected values of 

program variables (other integrity properties include control flow integrity and information flow integrity). 

Since the behaviour of a program can largely depend on its variables, manipulation of data has been an 

important malware attack technique. 

Malicious code or malware has long been recognized as the major threat to the computing world [7]. 

According to Mohamad Fadli and Aman Jantan, all malware have their specific objective and target, but the 

main purpose is to create threats to the data network and computer operation [8]. In general, incoming files are 

considered as malware if they perform suspicious attack and might harm computer systems. These files can 

break into vulnerable systems from many ways such as via internet (HTTP), email, removable media, Peer-2-

Peer (P2P) and Instant Messaging (IM). Anti-malware products in host machine will perform scanning process 

to detect and identify the attack. If unknown kinds of attack are found, the samples will be sent to anti-malware 

vendors to be analyzed. Once analysis process is completed, vendors will update the virus signature database 

server and the latest update can be downloaded from host machine side. Classification part will classify the 

attack sample into the correct malware classes and prediction as well as removal part will remove, clean or 

quarantine the attacks. 

Many malware detection mechanisms rely on the properties of malware code such as the injection of 

unauthorized code [7][14] and the patterns of malicious code sequences [8][9]. While these approaches are 

effective for classic malware, emerging malicious programs are introducing advanced techniques such as 

return/jump oriented programming [4][15][16], code obfuscation [17], and code emulation [18] to elude those 

malware detection mechanisms. In this paper, we have presented a new approach for detecting kernel malware 

based on the properties of kernel data objects. 

 Compared to dynamic kernel objects, static objects have memory addresses that are predetermined at 

the compilation time. The manipulation of static objects is observed as write accesses to their unique addresses. 

If such memory access patterns are observed specifically during malware execution, they are extracted as 

malware signatures. For example, system call hijacking is implemented as the manipulation of the system call 

table that is a static object. The manipulation of this object by other than the legitimate initialization code is rare 

in benign execution. Thus, this attack pattern is automatically extracted as a signature. 

 

III.   Proposed System 
     We present a novel scheme that addresses these challenges and enables OS kernel malware detection 

approaches based on kernel data properties. The monitoring system should be designed in a way that cannot 

directly be altered by potentially malicious code therefore; we use an external monitor to observe the target OS 

kernel. An external monitor has a challenging task in identifying the data object information of the monitored 

kernel, which is known as a semantic gap. Such information should be reconstructed externally in the monitor. 

We propose a classification approach for identification of the malware characterization over kernel data 

structure and clustering using data object properties to detect kernel malware, which consists of two main 

components. 

 The first component is a kernel object mapping system that externally identifies the dynamic kernel 

objects of the monitored OS kernel at runtime, and our aim is to observe memory accesses to kernel data 

objects. This component is essential because it enables an external monitor to recognize the data objects that are 

targeted by the accesses. As well as being an infrastructure to recognize data objects, this system provides 

effective applications such as the detection of data hiding kernel malware attacks and the analysis of malware 

behavior targeting dynamic kernel objects.  

 In addition to the kernel data mapping system, we propose a new approach that detects malware by 

matching memory access patterns that specifically occur during malware attacks. Dynamic kernel analysis can 

produce effective malware signatures that can suppress frequent false positives in typical workloads by 

extracting malware memory reference patterns specific to malware attacks. 

 

IV. System Implementation 
This section describes the system designs in the form system architecture, modules. It is also explain 

the software and hardware requirement to perform the system execution. 
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4.1 System Architecture 

 We first present how we can generate the data information and present our approach to characterize 

malware based on kernel data patterns. In this paper we propose identification of the malware characterization 

over kernel data structure, which models and detects malware behavior using the properties of kernel data 

objects.  

 

 
Fig. 4.1: Architecture Design Identification of the Malware Characterization 

 

4.2 System Modules 

Based on the design architecture in Fig. 4.1 it has two modules: 

1. Malware Signature Generation 

2. Malware Detection 

 

4.2.1 Malware Signature Generation 

 This module works on the collected kernel information data from the kernel behavior on different type 

of system activities.  The collected information is cleaned using a data cleaning mechanism to remove the noise 

information and run a rule-based classification approach to generate an activities based signature patterns known 

as data behavior pattern (DBP). A signature generally is a pattern of instruction sequence or system calls 

sequence performed for executing or completing a job.  The generated activity signature patterns are stored for 

runtime testing. 

To generate a malware signature for a malicious kernel run j with malware M, we apply set operations 

on n malicious kernel runs and m kind runs as follows. 

 

 Let’s assume DM, j, and DB,k  → represents a data behavior profile for a kind of kernel execution k,  and 

SM is called a data behavior signature for a malware M. 

 
 This formula represents that SM is the set of data behavior that consistently appears in n malware runs, 

but never appears in m kind runs. The underlying observation from this formula is that kernel malware 

will consistently perform malicious operations during attacks. 

 

4.2.2 Malware Detection 

 This module detects the malware activities performed at runtime in a kernel execution in support with 

the malware signature pattern generated. It characterized the malicious data behavior by measuring the behavior 

instruction difference in relates to the generated signature pattern for an activity. In order to reliably characterize 

the data behavior of kernel malware in dynamic execution, we test multiple kernel runs over the signature 

generated for matching a malware signature. 

 The likelihood that a malware program M is present in a tested run r is determined by deriving a set of 

data behavior elements in SM which belong to the data behavior profile, Dr.  

 This set I corresponds to the intersection of SM and Dr  i.e., 
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 SM is a data behavior signature of a data behavior profile that is a set of data behavior elements derived by 

the intersection and union of data behavior profiles. If I has a variation from a define threshold limit then it 

can considered as malware detection. The detected malware are clustered using k-mean algorithm for 

further analysis. 

 

4.3 Mathematical Model for Classification and Clustering 

4.3.1 Classification Using Rule-Based Classification 

 Rules are a good way of representing information or bits of knowledge. A rule-based classifier uses a 

set of IF-THEN rules for classification. IF-THEN rules can be extracted directly from the training data using a 

sequential covering algorithm. The name comes from the notion that the rules are learned sequentially (one at a 

time), where each rule for a given class will ideally cover many of the tuples of that class.  

 Sequential covering algorithms are the most widely used approach to mining disjunctive sets of 

classification rules, and form the topic of this subsection. Note that in a newer alternative approach, 

classification rules can be generated using associative classification algorithms, which search for attribute-value 

pairs that occur frequently in the data. These pairs may form association rules, which can be analyzed and used 

in classification.  

Algorithm: Sequential covering. Learn a set of IF-THEN rules for classification. 

Input:  

 1. D, a data set class-labeled tuples; 

 2. Att-vals, the set of all attributes and their possible values. 

Output: A set of IF_THEN rules. 

Method: 

1. Rule_Set = {}; //Initial set of rules learned is empty 

2. For each class c do 

3. Repeat 

4. Rule = Learn_One_Rule(D, Att_vals, c); 

5. Remove tuples covered by Rule from D; 

6. Until terminating condition; 

7. Rule_Set = Rule_Set + Rule; // add new rule to rule set 

8. End for 

9. Return Rule_Set 

 

A basic sequential covering algorithm is shown in Algorithm. Here, rules are learned for one class at a 

time. Ideally, when learning a rule for a class, Ci, we would like the rule to cover all (or many) of the training 

tuples of class C and none (or few) of the tuples from other classes. In this way, the rules learned should be of 

high accuracy. The rules need not necessarily be of high coverage. This is because we can have more than one 

rule for a class, so that different rules may cover different tuples within the same class. The process continues 

until the terminating condition is met, such as when there are no more training tuples or the quality of a rule 

returned is below a user-specified threshold. The Learn One Rule procedure finds the “best” rule for the current 

class, given the current set of training tuples. 

 

4.3.2 Clustering Using K-Mean Approach 

 The k-means algorithm takes the input parameter, k, and partitions a set of n objects into k clusters so 

that the resulting intracluster similarity is high but the intercluster similarity is low. Cluster similarity is 

measured in regard to the mean value of the objects in a cluster, which can be viewed as the cluster’s centroid or 

center of gravity. 

We define k main clusters and under each cluster we have sub-cluster as shown in Table 4.1, 
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Table- 4.1: k main clusters and sub clusters. 
k Main Cluster Sub-Clusters 

1_DATA_ATTACKS 
 

Ipsweep                 Mscan 

Nmap                     portsweep  
Saint                      Satan 

spy 

2_APPLICATION_ATTACKS 
 

guess_passwd       ftp_write 
Imap                      multihop 

Named                  Phf 

Sendmail              snmp 
Getattack              snmpguess 

Warezmaster        warezclient 

Worm                   Xlock 
xsnoop 

3_SYSTEM_ATTACKS 

 

buffer_overflow 

httptunnel           Loadmodule 
perl                     rootkit 

ps                       sqlattack 

xterm 

4_DOS_ATTACKS 

 

Apache2            Back 
Land                  mailbomb 

Neptune             pod 

Processtable      SYNFlood 
Smurf                Teardrop 

Udpstrom 

 

We run,  K parameters of data → KERNEL_TRAIN_DATA which already classified with class label, 

to create n Objects for each sub-clusters with it features data for the further classification → Files in 

Trained_Classification_Output  Folder. 

 

V. Evaluation 
To measure the performance of the proposal we compute the Classification Accuracy by measuring 

True Positive, False Negative, False Positive, True Negative values.  Ideally, malware detection systems (MDS) 

should have an attack detection rate (DR) of 100% along with false positive (FP) of 0%. Nevertheless, in 

practice this is really hard to achieve. The most important parameters involved in the performance estimation of 

malware detection systems are shown in Table-5.1. 

 

Table-5.1: Parameters for performance estimation of MDS. 
Parameters Definition 

True Positive (TP) or Detection Rate 

(DR) 
Attack occur and alarm raised 

False Positive (FP) No attack but alarm raised 

True Negative (TN) No attack and no alarm 

False Negative (FN) Attack occur but no alarm 

 

Malware behavior analysis has discovered 20 suspicious malware behaviors. We observed the executed 

malware by focusing it to the specific target and operation behavior in windows environment systems. We also 

classify the malware specific operation into 4 main classes which are Data, Application, System and DoS. 

Malware that are attacked File is group under Data class while malware that attacked Browser is group under 

Application class. Malware that are attacked Kernel, Operating System and Registry is group under System 

class. Lastly, malware that are attacked CPU, Memory and Network is group under DoS class as shown in 

Table-5.2. 

 

Table-5.2: Machine learning classifier in malware classification 
Class 

Target Operation (CTO) 
Rank Attack Example Affected Example 

Data 1 
Malware attack office and adobe 

file 
.doc, .ppt, .xls, .pdf etc 

Application 2 
Malware attack application audio 

and video application 

Microsoft Office, Winamp and 

Windows Media Player 

System 3 
Malware attack the entire Operating 

System 
Windows XP, Windows 7 and 

Windows Server 2008 

DoS 4 
Malware attack the physical 

hardware and entire machine 

CPU usage, memory and network 

access 
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 These four malware classes are related with each other in rank 1 to 4 starting with Data class and end 

with DoS class. These classes are actually inspired from basic fundamental of computer physical architecture. 

According to Ivy, physical architecture of host-based computer consists of application, operating system and 

hardware. 

 For this work we used 37042 trained samples data and 25 malware samples files for the evaluation. The 

control value in this experiment is called as ―”Threshold” Threshold is the total or the value of training data 

that has been trained. This work trained the training sample first and the control value is set from 50 % to 90% 

trained samples. There are 25 sample malware data files for testing purposes and the same samples is used for 

each Threshold values. In order to review the classifier, accuracy are calculated by using formula as follows, 

 
The experiment is conducted by using our new MDS Classifier. 5 sample malware files have been 

tested by adjusting Threshold value from 0.5 to 0.9. Table 5.3 and Fig. 5.1 show the relationship between 

Threshold value and the accuracy.  

 

Table 5.3: Classifier Results Measures with different threshold 
Threshold TP TN FP FN Accuracy 

50 1080 618 288 685 63.57169599 

60 982 519 108 502 71.1037423 

70 886 399 86 387 73.09442548 

80 590 280 55 209 76.71957672 

90 485 382 14 110 87.48738648 

 

 
Fig. 5.1: Classification Accuracy 

 

We observed the values of Parameters for performance estimation of MDS by using different 

Threshold values from 0.5 to 0.9. The Fig. 5.2 shows the graphical representation of different threshold values 

and these parameters.   
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Fig. 5.2: Classification Result Comparison 

 

VI.    Conclusion 
Many malware detection mechanisms rely on the properties of malware code such as the injection of 

unauthorized code and the patterns of malicious code sequences. While these approaches are effective for 

classic malware, emerging malicious programs are introducing advanced techniques such as return/jump 

oriented programming, code obfuscation, and code emulation to elude those malware detection mechanisms. In 

this work, we have presented a new approach for classifying kernel malware based on the properties of kernel 

data objects. This system is composed of two modules asMalware Signature Generation and Malware Detection 

which helps to design a classifier which enables to detect accurate malware on the kernel memory access 

patterns. Experiment result shows higher accuracy with increasing classification threshold.  
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