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Abstract: Software Quality is a significant non-functional requirement that is not fulfilled by many software 

products. Faulty modules tend to degrade the software quality which may cause customer’s dissatisfaction. 

Fault prone module prediction is an emerging area to improve the quality of the software and increase 

reliability of the system. Fault prone modules are predicted using various software metrics. In this paper, 

various metrics are investigated that have been used for fault prediction and the existing metrics are classified 

into three broad categories. Since no type of metric could accurately identify the fault prone modules, an 

integrated metric has been proposed to predict the fault prone modules. 
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I. Introduction 
Software maintenance in software engineering is the process of modification of the system after its 

delivery to correct the faults and improve performance of the system. It involves error correction, enhancements 

of capabilities, deletion of obsolete capabilities, and optimization. Thus, it may be corrective, adaptive, 

preventive or perfective. The key to maintenance is in development only. It can be encouraged by developing a 

high quality software and anticipating changes. But maintenance imposes some problems. It utilizes a lot of time 

and resources. For reducing the cost involved in software maintenance and improving the reliability of the 

system, it is essential to track the defects as early as possible in the software development life cycle. Due to the 

complexity and conditions under which a software is developed, it is becoming difficult to develop fault-free 

software. A faulty software module is the one containing faults that can cause software failure in an executable 

product. According to Pareto’s principle, almost 20% of the software is responsible for 80% of the faults. The 

identification of the 20% of the software can help the developers and testers to focus on more critical modules. 

Thus, there is a need to detect the fault-prone areas of the software.  

A fault prone module is a module which has the probability of fault being present. The accurate 

prediction of the fault prone modules can help direct cost, test effort and improve the software testing process, 

and thus quality of the system by focusing on fault-prone modules[1]. Thus, unnecessary testing of simple and 

non-faulty modules can be eliminated. It has been proved in the past studies that prediction of faulty modules 

provides a way to support software quality engineering through improved scheduling and project control[2]. 

The fault prone module prediction has been studied extensively in the past decades. Various techniques 

have been introduced to predict the fault prone modules[3-5]. Some of them use the code attributes like lines of 

code, Halstead software measures, cyclomatic complexity for the development of mathematical models[5-6]. 

There are various software metrics that have been used for the defect prediction. Software metric is a 

quantitative measure of degree to which a system possesses a particular attribute. Metrics from various phases of 

the life cycle have been used in previous studies for prediction of fault prone modules. There are studies which 

use the requirement metrics in combination with the code metrics to predict the fault prone modules[7-8]. 

Though requirement metrics alone has no significance in predicting fault prone modules, the combination of 

requirement metrics and code metrics achieved high prediction results. The UML diagrams are created at the 

design phase of the software development life cycle and the metrics extracted from these UML diagrams are 

used for the prediction of fault prone modules[9-11]. Metrics from source code have proved to be a good source 

for prediction of fault prone modules. Various studies involve the use of CK metrics for prediction of fault prone 

modules[12-13]. CK metrics are the object oriented metrics proposed by Chidamber and Kemerer[14][15]. 

These metrics were designed to measure unique aspects of the OO approach and measure the complexity of the 

design. But no metric can predict the fault prone modules accurately. Thus, there is a need to introduce a new 

metric for the fault prone module prediction. 

The aim of this study is to study different metrics and techniques that have been used for identification 

of fault prone modules. All the metrics for prediction of fault prone modules have been classified into three 

broad categories. A new compound metric is introduced to improve the fault-prone modules identification 

process. The proposed metric uses the metric from various phases of the software development life cycle. 

The rest of the paper is organized as follows: Chapter II describes the types of metrics for fault prone 

module identification. In chapter III, related work is presented. Chapter IV presents the proposed approach of 

this study, while chapter V describes the conclusion of the study. 
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II. Types Of Metrics For Fault Prone Module Identification 
Software metrics are used as the characteristics of a module for the fault prediction. There are broadly three 

types of metrics to identify the fault prone modules which are shown in Table I. 

 

Table I. Types of Metrics 
Type SDLC Phase 

Requirement Metrics Requirement  

Design Metrics Design 

Code Metrics Implementation 

 

1.1 Requirement Metrics 

The requirement metrics are those metrics that have been extracted from the textual characteristic 

requirements specification of the system. Since majority of the defects are introduced in the system in the 

requirement phase, due to misinterpretation of requirements or missing requirements etc, requirement metrics 

are an important source for the prediction of fault prone modules. 

The requirement metrics used in the past studies[7-8] are shown in Table II. 

 

Table II. Requirement Metrics 
ACTION The total number of actions that the requirement will address. 

CONDITIONAL It determines whether the requirement will address more than one condition. 

CONTINUANCE It determines the connections between statements. 

IMPERATIVE It determines the important requirements that must be addressed. 

INCOMPLETE It represents the requirements that are yet to be determined. 

OPTION It represents the requirements which give the developers latitude in implementing them. 

RISK_LEVEL It represents the risk level of requirements. 

WEAK_PHRASE It represents the requirements that leave multiple interpretations. 

SOURCE It represents the number of sources that the requirement will interface with. 

 

The requirement metric set alone is not sufficient for the identification of fault prone modules as it is 

too early to predict the fault prone modules. The faults can be introduced in any phase of the life cycle of the 

system, so the faults introduced after the requirement phase will not be taken into account in the prediction 

model. 

  

1.2 Design Metrics 

The design metrics are extracted from the various UML diagrams of the system that have been 

prepared in the design phase of the life cycle. These metrics can be extracted from the software design document 

of the system. The design document depicts the architectural design and modeling artifacts of the system. 

Various UML diagrams like statechart diagram, component diagram, sequence diagram etc are used to identify 

the fault prone modules by analyzing the architecture of the system. 

Some of the design metrics used in the past studies[9-11] are shown in Table III. 

 

Table III. Design Metrics 
Decision count The number of decision points in a module. 

FanIn The number of receive signal objects. 

FanOut The number of send signal objects. 

Signal The number of signals used to communicate with other modules. 

Arcs The number of arcs used to connect to other nodes. 

Paths The number of paths in a module. 

Branches The number of branch count in a module. 

Node Count The number of nodes in a module. 

 

But the architectural analysis of the system is not enough to identify the fault prone modules. The 

architecture of an application can be simple but can have a very complicated internal logic of procedures. This 

complicated internal logic will be ignored while identifying fault prone modules. 

 

1.3 Code Metrics 

The code metrics are extracted from the source code of various modules of the system. These metrics 

process the source code of a component and estimate the metrics based on code specifications such as number of 

methods in a class, branch statements etc. 

Some of the code metrics used for the identification of fault prone modules are shown in Table IV: 
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Table IV. Code Metrics 
LINES OF CODE(LOC) The total number of source lines of code 

NUMBER OF CHILDREN(NOC) The number of immediate subclasses of a class. 

WEIGHTED METHODS PER CLASS(WMC) The summation of the complexities of methods defined in each class. 

DEPTH OF INHERITANCE(DIT) The maximum depth of class in the inheritance tree. 

COUPLING BETWEEN OBJECTS(CBO) The number of classes to which a particular class is coupled. 

RESPONSE FOR A CLASS(RFC) The number of methods which can be invoked in response to a message to the 
object. 

LACK OF COHESION OF METHODS(LCOM) The dissimilarity of methods in a class. 

CYCLOMATIC COMPLEXITY The independent paths in a module. 

NUMBER OF COMMENTS The total number of lines of comment in the code. 

NUMBER OF OVERRIDDEN METHODS The total number of methods a module overriddes. 

NUMBER OF OPERANDS The total number of operands used in a module. 

NUMBER OF OPERATORS The total number of operators used in a module. 

LINES OF COMMENTS The number of lines of comments written in a module. 

 

Code metrics are essential for identifying the fault prone modules as the source code of the system 

includes almost all of the faults introduced in the system. But just using code-based metrics will not generate a 

high prediction model as the relation between the components of the system can be complicated which cannot 

be taken into account using the code metrics. 

 

III. Related Work 
There have been a lot of studies to predict the fault prone modules. The design metrics have been used 

for the fault prediction using various UML diagrams. Ohlsson et al[11] used the design metrics for the 

prediction of fault prone modules. It presents a case study of Ericsson Telecom AB to predict fault prone 

modules at the design phase. In this paper, a method for predicting the most fault prone modules is proposed 

which is done by ranking using Spearman’s test to determine the correlation between various design metrics and 

observed costs of handling trouble reports. The results concluded that it followed the Pareto’s principle 

identifying 20% of the source code responsible for 50-60 percent of the faults.  

Singh and Verma[16] used the metrics computed at design phase to predict the fault prone modules. 

The design metrics are used for predicting modules of target project using other projects as training projects. 

The machine learning technique used for evaluation is Naïve Bayes. In total, 7 projects from NASA MDP 

repository have been used for the fault prediction. Almost all the cross projects achieved AUC results of more 

than 0.7.  

Sandhu et al[8] used the combination of requirement metrics and code metrics for the prediction of 

fault prone modules. The reason for the integrated approach is that though requirement metrics alone are not 

good predictors for predicting the fault prone modules, they can be combined with the code metrics to improve 

the prediction results. The data set of CM1 project has been used for the experiment, collected from NASA 

Metrics Data Program (MDP) data repository. In total, 31 metrics have been used in this approach. For 

classification of modules, decision tree based model is combined with k-means clustering. After clustering, 

decision Tree C4.5 algorithm along with 10-fold cross validation method is used to measure the performance of 

the model. The experiments predicted with 100% precision and 100% recall. But the modules used for the 

experiment are very less due to the lack of availability of data. 

Shanthini and Chandrasekaran[17] used the code metrics for the prediction of fault prone modules. 

These code metrics have been collected from the NASA MDP datasets. For the classification, support vector 

machine has been used in combination with an ensemble method, bagging. Support Vector Machine(SVM) 

constructs an N-dimensional hyper plane which optimally separates data into fault prone and non-fault prone 

classes. Bagging method has been used to improve the prediction results. It was concluded that bagged SVM 

classifier model performs better than the baseline classifier model across different level of software metrics.  

Gaur and Kaur[18] analysed the relationship between faulty classes and the code metrics using six 

machine classifiers. Machine learning algorithms are the classifiers that predict the fault prone classes using 

training data. The classifiers used in this study include logistic regression, naïve bayes, instance based, bagging, 

decision tree and random forest. The results concluded that random forests provided best ROC for most of the 

projects. 

Bishnu and Bhattacherjee[19] applied a quad tree based k-means algorithm for predicting fault prone 

modules. In this paper, quad trees are applied for finding initial cluster centers for K-Means algorithm. Then the 

quad tree based algorithm is applied for predicting fault prone modules in the software. A Quad Tree in two 

dimensional space is a 4-way branching tree which represents recursive decomposition of space. At each level, 

each square is divided into four equal size squares. It solved the disadvantages of k-means clustering algorithm 

which are selection of the initial cluster centers and sensitivity to noise. The technique is implemented on six 

projects. The results concluded that the QDK algorithm works as an effective initialization algorithm. The 

number of iterations of k-Means algorithm is less in the case of QDK algorithm in most of the cases. 
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Aman[20] used the lines of comments to predict the fault proneness of small size modules. Comment 

lines include description of code, usage of functions or modules. Code lines are written in a specific 

programming language, but comment lines are written in a free form. Comments have been considered a size 

independent metric in the prediction.  The idea behind using comments is that comments written in a small size 

module is a sign of complex module. Two types of comments are used in the paper: block comments and end of 

line comments. The approach is implemented on a Java project and the result shows that a module in which 

some comments are written is more likely to be faulty than non-commented ones. 

 

IV. Proposed Approach 
It has been observed from the study that the requirement metrics, design metrics or the code metrics 

cannot be alone used for the fault prediction. Thus in the proposed approach, a new compound metric is 

introduced which can be used for the fault prediction process including the metrics from all the three phases 

discussed to cover the drawbacks found in each type of metric. We will build models to characterize the 

documents obtained from each development phase and use them in fault prediction process. 

The methodology followed in the proposed approach is given in Fig.1. 

 

 
Figure 1. Methodology of proposed approach 

 

Extract the requirement metrics: The requirement specification document is used to extract the various 

requirement metrics. Many of the severe faults are introduced into the system at the requirement phase. So, 

requirement metrics can be used to improve the fault prediction process. The requirement metrics used in the 

proposed approach are: Action, Conditional, Continuance, Imperative, Incomplete, Option, Risk Level, Weak 

phrase and Source. 

Extract the design metrics: UML diagrams depicts the architecture of the system. The metrics 

computed from the design document helps capture the faults introduced at the architecture level of the system. 

The design metrics used in the proposed approach are: Decision count, Branch count, arcs, node count, fan-in, 

fan-out and cyclomatic complexity. 

Extract the code metrics: The metrics from source code captures the internal complexity of each 

module. The metrics from source code used in the proposed approach are: lines of code, weighted methods per 

class, response for a class, number of children, coupling between objects, depth of inheritance and lack of 

cohesion of methods. 

So, in total 23 metrics from various phases are used in the proposed approach. 

Combine metrics using inner join: After extracting the metrics from the requirement specification, 

design document and source code of the system, inner join method is applied. This step is necessary to link the 

metrics from all phases for each module. Also, each module does not have the metrics from all the phases, the 

modules having metrics from all the three phases are used in this study. 

Decision tree algorithm for classification: The machine learning algorithm is applied for learning from 

the training data sets. The training data is required from the past history, having details about the fault data along 

with the document from requirement phase, design phase and source code of the system. Decision tree algorithm 

is used for the classification. Decision tree represents rules. By following the tree, the rules can be used to 
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understand why a record is classified in a certain way. The question at the root must be the one that best 

differentiates among the target classes. The leaf node determines the classification of the record. 

The proposed approach is a supervised learning technique. Thus it requires training data including the 

project and the fault data indicating faulty and non-faulty classes. Using the data from training project, decision 

tree can be optimally used to predict the fault prone classes of the target project.  

 

V. Conclusion 
The fault prone module prediction is an emerging area of research. The correctly classified fault prone 

software modules can be used to optimize available resources and time. In this paper, we have studied various 

metrics and techniques for the identification of fault prone modules. The metrics are classified into three 

categories: requirement metrics, design metrics and code metrics. Since only one type of metric cannot provide 

high accuracy in prediction, a compound metric involving metrics from all the phases of life cycle is introduced 

in this paper. The classification is achieved by a machine learning approach, decision tree algorithm. The 

proposed metric aims to provide high prediction results than existing techniques. In future, the applicability and 

reliability of the approach will be evaluated with the help of open source projects. 
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