
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 6, Ver. IV (Nov – Dec. 2015), PP 20-26
www.iosrjournals.org

DOI: 10.9790/0661-17642026 www.iosrjournals.org 20 | Page

Generation of Search Based Test Data on Acceptability Testing

Principle

Dr.I.Surya Prabha, Dr.Chinthagunta Mukundha
Professor Institute of Aeronautical Engineering, Dundugal,Hyd-500043,India.

AssociateProfessor Sreenidhi Institute of Science and Technology Ghatakesar,Hyd-501301,India

Abstract: The main objective of this paper is to acquire the basic concepts related to automated search based
test data generation. The use of Metaheuristic searching techniques for the automatic and generation of search

based test data has been a burgeoning interest for many researchers in recent years. Metaheuristic searching

techniques are much guaranted in regard to these problems. Metaheuristic searching techniques are high-level

tools, which utilize heuristics to seek solutions for combinatorial problems at a considarable computational

cost. Metaheuristic search techniques have been applied to automate search based test data generation for

structural and functional testing. Evolutionary testing designates the use of metaheuristic search methods for

test case generation.
 The search space is the input domain of the test object, with each individual or potential solution,

being an encoded set of inputs to that test object. The fitness function is tailored to find search based test data

for the type of testing that is being considered. Evolutionary Testing (ET) uses optimizing search techniques

such as evolutionary algorithms to generate search based test data. The efficiency of GA-based testing system is

compared with a Random testing system. For easy programs both testing systems work fine, but as the

complexity of the program or the complexity of input domain grows, GA-based testing systems. The results

suggest that our acceptability based algorithm is better than the reliability based path testing and condition

testing techniques in both of these categories. Thus this algorithm may significantly reduce the time of search

based test data generation significantly outperforms Random testing.

Keywords: Automated, Metaheuristic, Framework, Potential, Random.

I. Introduction
The use of metaheuristic search techniques for the automatic generation of search based test data has

been a burgeoning interest for many researchers in recent years. In industry, search based test data selection is

generally a manual process - the responsibility for which usually falls on the tester.

 The bugs in software can cause major loss in IT organization if they are not removed before delivery.

Software testing is important parameter developing software that is free from bugs and defects. Software testing

is performed to support quality assurance. A good quality software can be made by using an efficient test

method. Statistics say that 50% of the total cost of software development is devoted to software testing even it is

more in case of critical software. Depending on time, scale and performing methods we can classify testing as
unit testing, integration testing, system testing, alpha testing, beta testing, acceptance testing, regression testing,

mutation testing, performance testing, stress testing etc.

 Finding a set of search based test data to achieve identified coverage criteria is typically a labour-

intensive activity consuming a good part of the resources of the software development process. Automation of

this process can greatly reduce the cost of testing and hence the overall cost of the system. Many automated

search based test data generation techniques have been proposed by researchers. We can broadly classify these

techniques into three categories: random, static and dynamic .Random approaches generate test input vectors

with elements randomly chosen from appropriate domains. Input vectors are generated until some identified

criterion has been satisfied. Random testing may be an effective means of gaining an adequate test set but may

simply fail to generate appropriate data in any reasonable time-frame for more complex software.

Recently Search Based Software Engineering has evolved as a major research field in the software

engineering community. Search Based Software Engineering has been applied successfully to many software
engineering activities ranging from requirements engineering to software maintenance and quality assessment.

One major area where Search Based Software Engineering has seen intense activity is software testing. Active

research is underway to improve the existing search based test data generation techniques and propose novel

approaches to solve the test generation problem. However, despite much research, there are still limitations that

have hampered the wide acceptance of these techniques. Also many areas are under-explored, and there are

distinct possibilities for the successful use of search based approaches.

A search based test data generation algorithm that generates search based test data using adequacy

based testing criteria and genetic algorithms. In this paper, we mainly focus on providing the algorithm in a

Generation of Search Based Test Data on Acceptability Testing Principle

DOI: 10.9790/0661-17642026 www.iosrjournals.org 21 | Page

formalized manner and on evaluating the algorithm by comparing it with other search based test data generation

techniques. The main aim is to prove the effectiveness of our proposed algorithm based on adequacy based

testing criteria. Our algorithm applies mutation analysis to generate an adequate search based test data set.
Search Based Software Engineering research has attracted much attention in recent years as part of a

general interest in search based software engineering approaches. The growing interest in search based software

testing can be attributed to the fact that there is a need for automatic generation of test data, since it is well

known that exhaustive testing is infeasible and the fact that software test data

Generation is considered NP-hard problem.

II. Literature Review
Software has become an intrinsic part of human life and it is important that it should perform its

intended function. Otherwise it can cause frustration, loss of resources and even loss of life. The main activity
that attempts to prevent this and verify software quality and reliability is software testing. Testing is a dynamic

activity, as it requires execution of program on some finite set of input data. Nevertheless there are other

methods such as static analysis and formal proof of correctness. However, only testing can be used to gain

confidence in the correct functioning of the software in its intended environment. We cannot perform exhaustive

testing because the

 Domain of program inputs is usually too large and there are too many possible input paths. Therefore,

the software is tested against suitably selected test cases.

Evolutionary testing makes use of meta-heuristic search techniques for test case generation

.Evolutionary Testing is a sub-field of Search Based Testing in which Evolutionary Algorithms are used to

guide the search. The test aim is transformed into an optimization problem. The input domain of the test object

forms the search space. The test object searches for search based test data that fulfils the respective test aim in
the search space. A numeric representation of the test aim is necessary for this search. This numeric

representation is used to define objective functions suitable for the evaluation of the generated search based test

data. Depending on the test aim pursued, different heuristic functions emerge for test data evaluation. Due to the

non-linearity of software the conversion of test aim to optimization problems mostly leads to complex,

discontinuous and non-linear search spaces. Therefore neighborhood search methods are not recommended.

Instead, meta-heuristic search methods are employed, e.g. evolutionary algorithms, simulated annealing or tabu

search. Evolutionary Algorithms have proved a powerful optimization algorithm for the successful solution of

software testing.

The main activities in software testing are test case generation, executing program using these

generated test cases and evaluating the results. A test case is a set of test input data and the expected results. The

test data is a set of input values to the program, which may be generated from the code or usually derived from

program specifications. Program specifications also help in determining the expected results.
Meta-heuristic techniques have also been applied to testing problems in a field known as Search Based

Software Testing a sub-area of Search Based Software Engineering .Evolutionary algorithms are one of the most

popular meta-heuristic search algorithms and are widely used to solve a variety of problems.

The local Search techniques generally used are

i. Hill Climbing

ii. Simulated Annealing

iii. Tabu Search

Hill Climbing

In hill climbing, the search proceeds from randomly chosen point by considering the neighbors of the

point. Once a neighbor is found to be fitter then this becomes the current point in the search space and the
process is repeated. If there is no fitter neighbor, then the search terminates and a maximum has been found.

However, HC is a simple technique which is easy to implement and robust in the software engineering

applications of modularization and cost estimation.

Simulated Annealing

Simulated annealing is a local search method. It samples the whole domain and improves the solution

by recombination in some form. In simulated annealing a value x1, is chosen for the solution, x, and the solution

which has the minimal cost function, E, is chosen. Cost functions define the relative and desirability of

particular solutions. Minimizing the objective function is usually referred to as a cost function; whereas,

maximizing is usually referred to as fitness function.

Generation of Search Based Test Data on Acceptability Testing Principle

DOI: 10.9790/0661-17642026 www.iosrjournals.org 22 | Page

Tabu Search

Tabu search is a metaheuristic algorithm that can be used for solving combinatorial optimization

problems, such as the travelling salesman problem. Tabu search uses a local or neighbourhood search procedure
to iteratively move from a solution x to a solution x' in the neighbourhood of x, until some stopping criterion has

been satisfied. To explore regions of the search space that would be left unexplored by the local search

procedure, tabu search modifies the neighbourhood structure of each solution as the search progresses.

Evolutionary Search Using Genetic Algorithms
Genetic Algorithms forms a method of adaptive search in the sense that they modify the data in order

to optimize a fitness function. A search space is defined, and the Genetic Algorithm search probe for the global

optimum. A Genetic Algorithms starts with guesses and attempts to improve the guesses by evolution. A

Genetic Algorithms will typically have five parts: (1) a representation of a guess called a chromosome, (2) an

initial pool of chromosomes, (3) a fitness function, (4) a selection function and (5) a crossover operator and a

mutation operator. A chromosome can be a binary string or a more elaborate data structure. The initial pool of
chromosomes can be randomly produced or manually created. The fitness function measures the suitability of a

chromosome to meet a specified objective: for coverage based ATG, a chromosome is fitter if it corresponds to

greater coverage. The selection function decides which chromosomes will participate in the evolution stage of

the genetic algorithm made up by the crossover and mutation operators. The crossover operator exchanges genes

from two chromosomes and creates two new chromosomes. The mutation operator changes a gene in a

chromosome and creates one new chromosome.

III. Generation Of Search Based
Test Data

Genetic programming results in a program, which gives the solution of a particular problem. The

fitness function is defined in terms of how close the program comes to solving the problem. The operators for

mutation and mating are defined in terms of the program‟s abstract syntax tree. Because these operators are

applied to trees rather than sequences, their definition is typically less straight forward than those applied to

Genetic Algorithms GP can be used to find fits to software engineering data, such as project estimation data.

 In order to apply metaheuristics to software engineering problems the following steps should therefore

be considered:

i. Ask: Is this a suitable problem?

That is, “is the search space sufficiently large to make exhaustive search impractical?”

ii. Define a representation for the possible solutions.

iii. Define the fitness function.

iv. Select an appropriate metaheuristic technique for the problem.
v. Start with the simple local search and consider other genetic approaches.

The testing requirements satisfied by the generated test data is the measurement of coverage in terms of

statement, condition, path, branch, decision etc.

Statement coverage

Statement coverage measures the number of executable statements in the code that are executed by a

test suite. 100% statement coverage is achieved when every statement in the code is executed.

Decision coverage

Decision coverage, also known as branch coverage, measures the extent to which all outcomes of
branch statements are covered by test cases. To achieve decision coverage, two test data I1 and I2 need to be

generated corresponding to each decision di in the program such that di evaluates to true when the code is

executed with input I1 and evaluates to false when code is executed with input I2. For example, to cover the

decision at line 70 in Fig.1, we require two test data such that the ‟if‟ condition evaluates to true in one case and

false in the other.

 10: int inp1 ,inp2 ; //inputs given

 20: int test() // function

 30: {

 40: int 1Var=0 ,retVal=0;

 50: if(inp1 > 15)

 60: 1Var=1;
 70: if(1Var && inp2)

Generation of Search Based Test Data on Acceptability Testing Principle

DOI: 10.9790/0661-17642026 www.iosrjournals.org 23 | Page

 80: retVal=1;

 90: return retVal;

 100: }

 Fig 1:Sample C Code

Condition coverage

Condition coverage is similar to decision coverage with the only difference being that for condition

coverage, two test data I1 and I2 are needed for each condition in a decision.

3.1 Automated test data generation (ATDG)
Most of the work on Software Testing has concerned the problem of generating inputs that provide a

test suite that meets a test adequacy criterion. The schematic representation is presented in Fig.2. Often this

problem of generating search based test inputs is called „Automated Test Data Generation (ATDG)‟ though,

strictly speaking, without an oracle, only the input is generated.Fig.2 illustrates the generic form of the most

common approach in the literature, in which search based test inputs are generated according to a test adequacy

criteria. The test adequacy criterion is the human input to the process. It determines the goal of testing.

The adequacy criteria can be almost any form of testing goal that can be defined and assessed

numerically. For instance, it can be structural functional, temporal etc. This generic nature of Search-Based

Testing has been a considerable advantage and has been one of the reasons why many authors have been able to

adapt the Search-Based Testing approach different formulations.

Figure2 : A generic search-based test input generation scheme

3.2 Evolutionary Algorithms

Evolutionary Algorithms use simulated evolution as a search strategy to evolve candidate solutions,

using operators inspired by genetics and natural selection. For Genetic Algorithms, the search is primarily
driven by the use of recombination - a mechanism of exchange of information between solutions to \breed" new

ones - whereas Evolution Strategies principally use mutation - a process of randomly modifying solutions.

Select a starting Solution s ϵ S

Select an Initial Temperature t > 0

Repeat

 It  0

 Repeat

Generation of Search Based Test Data on Acceptability Testing Principle

DOI: 10.9790/0661-17642026 www.iosrjournals.org 24 | Page

 Select sI ϵ N(s) at Random

 ∆e  obj(sI) – obj(s)

 If ∆e < 0
 S  sI

 Else

 Generate random Number r , 0 ≤ r < 1

 If r < 𝑒 − 𝛿/𝑡 then s  S I

 End if

 It  it+1

 Until it=num_solns

 Decrease t according to cooling schedule

Until Stopping Condition Reached

Fig: 3 Evolutionary Algorithm

IV. Pragmatic Data Collection
Evaluating the performance of any technique requires selecting certain subject programs which forms

the basis for evaluation. To evaluate the performance of our proposed algorithm and to compare it with other

techniques, we have selected fifty real time programs written in C language. The subject programs we have

chosen are described in Table 1. The programs range from 35 to 350 lines of source code.

We have selected a large program base that Contains programs ranging from very basic such as

computing the grade of student, finding the biggest of three numbers to very complex such as implementing the

binary search tree and finding the intersection of two linked lists. We have chosen a diversified range of
programs including mathematical problems such as finding roots of quadratic equation, triangle classification

problem, computing the median of the triangle; general

logical problems such as checking for the Armstrong number, magic number, palindrome number; business

problem such as payroll system, commission problem, credit risk analysis; data structures such as linked list,

sorting (insertion sort, selection sort, bubble sort, merge sort, heap sort, quick sort, shell sort), searching (linear

search, binary search) etc. All the programs are written in standard C language that makes it easier to work with

these programs.

Generation of Search Based Test Data on Acceptability Testing Principle

DOI: 10.9790/0661-17642026 www.iosrjournals.org 25 | Page

Table 1 : Subject Programs Description

V. Conclusion
This paper has provided an overview of the Search-Based Software Engineering and the Search-Based

Software Testing used in test data generation. The main goal is to make a study of the use of search-based

optimization techniques to automate the evolution of solutions for software engineering problems.

In this paper, we considered the time required for test data generation and the percentage of branch

coverage; other parameters can also be considered for future work. Test data has been generated in numerals;

similarly for character, string, arrays and pointers can also be tried with the genetic algorithm.

The main aim is to compare the adequacy based testing criteria with the reliability based testing criteria
and to show the effectiveness of former over the latter. In order to do this, we evaluate our algorithm using fifty

real time programs written in C language. We compare our algorithm with path testing and condition testing

techniques for these fifty programs, in two categories viz. number of test cases and time taken to generate test

cases.

References
[1] Mark Harman, “The Current State and Future of SBSE”, Future of Software Engineering (FOSE'07), IEEE Computer Society,

2007, pp. 1-16.

[2] Phil McMinn, “Search-Based Software Test Data Generation: A Survey”, Ph.D. Thesis,Software Testing, Verification and

Reliability, 2004.

[3] Maha Alzabidi, Ajay Kumar, and A.D. Shaligram, “Automatic Software Structural Testing by Using Evolutionary Algorithms for

Test Data Generations”, IJCSNS International Journal of Computer Science and Network Security, VOL.9, No.4, April 2009.

[4] Kamran Ghani and John A. Clark, “Automatic Test Data Generation for Multiple Condition and MCDC Coverage”, 2009 Fourth

International Conference on Software Engineering Advances, 2009, pp. 152-157.

[5] Mark Harman, S. Afshin Mansouri and Yuanyuan Zhang, “Search Based Software Engineering: AComprehensive Analysis and

Review of Trends, Techniques and Applications”, April 9, 2009.

[6] J. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones, M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M. Roper,and M.

Shepperd, “Reformulating Software Engineering as a Search Problem,” IEE Proceedings - Software, vol. 150,no. 3, 2003, pp. 161–

175.

[7] André Baresel, Harmen Sthamer and Michael Schmidt, “Fitness Function Design To Improve Evolutionary Structural Testing,”

Proceedings Of The Genetic And Evolutionary Computation Conference, 2002.

[8] Mark Harman, “Automated Test Data Generation using Search Based Software Engineering”, Second International Workshop on

Automation of Software Test (AST‟07), IEEE Computer Society, 2007, pp. 1-2.

Generation of Search Based Test Data on Acceptability Testing Principle

DOI: 10.9790/0661-17642026 www.iosrjournals.org 26 | Page

[9] M. Harman and B.F. Jones, “Search Based Software Engineering”, Information and Software Technology, Dec. 2001, 43(41): pp.

833-839.

[10] Praveen Ranjan Srivastava and Tai-hoon Kim, “Application of Genetic Algorithm in Software Testing”, International Journal of

Software Engineering and Its Applications, Vol.3, No.4, Oct‟2009, pp. 87-95.

[11] Mitchell B.S., “A Heuristic Search Approach to Solving the Software Clustering Problem”, PhD Thesis, Drexel University,

Philadelphia, PA, Jan‟2002.

[12] N.J. Tracey, “A search-Based Automated Test-data Generation Framework for Safety-Critical Systems”, DPhil University of York,

2000.

[13] Y. Zhan, John A. Clark, “A Search-Based Framework for Automatic Testing of MATLAB/Simulink Models”, The Journal of

Systems and Software 81 (2008), pp. 262-285.

[14] P. McMinn, M. Harman, D. Binkley and Paolo Tonella, “The Species per Path Approach to Search-Based Test Data Generation”,

International Symposium on Software Testing and Analysis (ISSTA‟06), July 17-20, USA, 2006, pp. 1-11.

[15] Yuanyuan Zhang, “Multi-Objective Search - based Requirements Selection and Optimisation”, Ph.D Thesis, King‟s College,

University of London, February 2010, pp. 1-276.

Authors Profile

Dr.I.Surya Prabha ,Professor,Department of Information Technology ,Institute of

AeronauticalEngineering,HYD-500043 , AP, India.

E-mail-ipsurya17@gmail.com

Dr.Chinthagunta Mukundha, Associate Professor, Department of Information Technology,
Sreenidhi Institute of Science and Technology, HYD-501301, AP, India.

E-mail-mukundhach@gmail.com.

mailto:E-mail-ipsurya17@gmail.com
mailto:E-mail-mukundhach@gmail.com

