
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 6, Ver. III (Nov – Dec. 2015), PP 39-43
www.iosrjournals.org

DOI: 10.9790/0661-17633943 www.iosrjournals.org 39 | Page

A Hybrid Algorithm Using Apriori Growth and Fp-Split Tree For

Web Usage Mining

Dr. Parvinder Singh
1
, Vijay Dahiya

2

1(Department of Computer Science, DCRUST, MURTHAL, India)

2(Department of Computer Science, DCRUST, MURTHAL, India)

Abstract : Internet is the most active and happening part of everyone’s life today. Almost every business or

service or organization has its website and performance of the site is an important issue. Web usage mining

based on web logs is an important methodology for optimizing website’s performance over the internet.

Different mining techniques like Apriori method, FP Tree methodology, K-Means method etc. have been

proposed by different researchers in order to make the data mining more effective and efficient. Many people

have modeled Apriori or FP Tree in their own way to increase data mining productiveness. Wu proposed

Apriori Growth as a hybrid of Apriori and FP Tree algorithm and improved FP Tree by mining using Apriori

and removed the complexity involved in FP Growth mining. Lee proposed FP Split Tree as a variant of FP Tree

and reduced the complexity by scanning the database only once against twice in FP Tree method. This research

proposes a new hybrid algorithm of FP Split and Apriori growth which combines the positives of both the

algorithms to create a new technique which provides with a better performance over the traditional methods.
The new proposed algorithm was implemented in java language on web logs obtained from IIS server and the

computational results of the proposed method performs better than traditional FP Tree method, Apriori

Method.

Keywords: Apriori Growth, FP Split, Frequent Patterns

I. Introduction
Now days, the most dynamic place in world on the earth before land and sea is internet. Internet is

having a huge, volatile, varied, heterogeneous, semi-structured, and ever progressing data. The whole

businesses, government schemes, services which are provided over the internet are mainly dependent on

efficiency of the data mining techniques. The applied data mining techniques can provide for an increased
profit, competitiveness among the I.T firms which is a prerequisite in this 21st century of science and

technology.

II. Related work
Data mining which is still in the arena of discovery is being the hot topic of researchers in the past.

Various algorithms have been proposed with numerous modifications in the field of data mining. Some of the

notable works are as follows:-

A. APRIORI Algorithm: Apriori algorithm which is one of the widely and the oldest used algorithm in data
mining is based on the algorithm of breadth first search algorithm where it makes use of a data tree structure in

order to count candidate item sets in an efficient manner based on the user desired support count. The algorithm

generates the candidate item sets of length x from item sets of length x-1. Once, after the generation of candidate

item sets it prunes those candidates which do not satisfy minimum support count and which have an

inappropriate sub pattern.

Limitations:

Though Apriori algorithm is one of the simplest algorithm, still it suffers with certain limitations.

1. It is very expensive to grasp a huge number of candidate sets. The amount of candidates to be

generated increases exponentially with increasing n-item set.

2. It is very difficult and a tiresome task for scanning the database repeatedly and looking for a greater

number of candidates by matching their pattern, which is very necessary for mining large patterns.

B. FP Growth Algorithm: In order to get the mostly used item sets without any generation of candidate sets,

FP-Growth Algorithm provides with the best option in order to search for the suitable candidates based on the

support count, which also enhances the performance and efficiency . The FP Growth Algorithm core is based on

the storing of the frequent data items into a special type of data structure i.e. Frequent Pattern Tree(FP-tree).

Here along with frequent items, a mapping of the items is also stored for faster access and better results.

Limitations

A Hybrid Algorithm Using Apriori Growth and Fp-Split Tree For Web Usage Mining

DOI: 10.9790/0661-17633943 www.iosrjournals.org 40 | Page

Despite of being one of the time efficient algorithm, this algorithm suffers from following limitations.

a) The database is scanned twice for two times for the construction of FP Tree.

b) The making of FP Tree using this algorithm takes a lot of time.

III. Proposed Methodology
 The proposed algorithm is a hybrid of a modified FP Tree creation algorithm i.e FP Split and Apriori

Growth mining algorithm. This proposed algorithm can be explained using two phases.

 The first phase constructs the FP Split Tree which is more efficient way to create candidate sets than

FP Tree since the latter involves two complete scans of the database while the former does it once. This impacts

the efficiency almost 2 times better. More over the FP Split Tree created by proposed hybrid algorithm involves

lesser use of pointers as here each node is not linked in the Tree to its predecessor and successor. Rather here a

header list is maintained separately which maintains a list separately for each of the pages which points to the
occurrence of these items in the final tree created.

 The second phase involves mining the FP Split tree created using the Apriori growth algorithm. This

algorithm is more efficient than FP Growth as it does not involve recreating the FP Split trees repeatedly every

time in recursion as in FP Growth algorithm thereby reducing the time involved.

Phase 1: Tree construction using FP-Split Tree Algorithm.

Step-1. The database is scanned to create an equivalence class of items. Let the equivalence class of item be

ECi= {Tid | Tid are the identifier of transaction ti; i is an item of ti).

Step-2. In step 2, support is calculated in order to filter out the non-frequent items. The support of each item I-

refers to the number of records contained in the equivalence class ECi. Let |ECLi| denote the support of the

equivalence class ECi. After support calculation, items having supports below the predefined minimum support
are deleted from the set.

Step-3. In step 3, firstly frequent items are generated; secondly, the equivalence class of item is converted into

nodes for the construction of FP-split tree. Moreover, in order to facilitate tree traversal, a header table is built in

advanced so that each item can point to its first occurrence in the FP-split tree.

The node structure of FP Split tree is as follows:-
Content Count Link_Sibling

List

Link_Child

Table 1: Node Structure for FP Split Tree

 In Table 1, Count represents the support count, Link_Sibling represents pointer linkage to the sibling

nodes, Link_Child represents the pointer linkage to the child nodes and content represents the frequent item set.

Step-4. This step starts the beginning of the FP Split tree construction; firstly a dummy root is created.

Step-5. The nodes are added into the FP Split tree on the basis of the four rules. These four rules are , where x

stands for a specific node in the FP Split tree.

Rule I:
If (x is root and x.Link-child= null) Then

x.link-child<= n

Else

Call Compare (x.Link_childList, n.list)

End if

Rule 2:

If (n.list c x.list and x.Link-child == null) Then

x.Link-child<= n

else

Call Compare (x.link-child.List, n.List)

End if;

Rule 3:

If (n.List n x.List== 0 and x.Link-siblings== null) Then

x.Link-sibling <=n

else

Call Compare (x.Link-child.List, n.List)

End if;

A Hybrid Algorithm Using Apriori Growth and Fp-Split Tree For Web Usage Mining

DOI: 10.9790/0661-17633943 www.iosrjournals.org 41 | Page

Rule 4:

If (x.List n n.List # 0 and x.List - n.List<#0) Then

Call split (n) and return two nodes nl and n2
End if

 On the basis of above four rules the new node is compared different nodes like root node, child node

and sibling node and is added accordingly into the FP Split tree.

Finally the Tree so created is ready for mining using Apriori Growth Algorithm.

Phase 2:- Tree Mining using Apriori Growth Algorithm.

In order to perform the mining by Apriori Growth aglgorithm firstly the candidates are generated using a

candidate set algorithm.

Candidate set Algorithm
Step 1. List1=k-1 frequent item dataset from Data

Step 2. N=size(list1)

 Initialize mylist as a blank list to contain generated frequent item dataset

Step 3. Repeat for I=1 to n-1

Step 4. Repeat for j=I+1 to n

Step 5 l1=list1[I]

Step 6 l2=list1[j]

Step 7 Remove the last elements from l1 and l2

Step 8 if l2 is a subset of l1 then

 Flist=append last element of l2 at end of l1

[end of while]

Step 9. If count(flist)>=supp then
Add flist to mylist

Else

return null

Step 10 end

New Apriori Growth Algorithm
Input: pagelist2: list of pages with equivalence class satisfying support count

Tree: Nodes of tree as a list.

Sup: minimum support

Output: frequent item sets „data‟

The algorithm is implemented with the following steps:-
Step 1. Repeat following step while scanning pagelist2 till end

▪ Create list containing single item from pagelist2

▪ Add this list to mylist1

[End of repeat]

Step 2. Add mylist1 to data

Step 3 Repeat for k=2,3,4,….

Step 4. Ck=getCandidate(k)

Step 5. If [Ck]=0 then

 Goto step 6

 Else

 Add Ck to data

Step 6. End
Finally, we have the mined item sets in the pagelist2 data structure.

IV. Implementation Results
Output Generated is as follows:

The Frequent sets generated for threshold value 3 are as follows:

The itemsets generated for the support count 1 for the are:-

 [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],

[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],

[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61],
[62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73]]

A Hybrid Algorithm Using Apriori Growth and Fp-Split Tree For Web Usage Mining

DOI: 10.9790/0661-17633943 www.iosrjournals.org 42 | Page

The itemsets generated for the support count 2 are:-

 [[0, 39], [0, 49], [1, 39], [1, 49], [2, 39], [7, 39], [9, 39], [12, 39], [12, 49], [13, 39], [14, 39], [23, 39], [29, 39],

[29, 49], [30, 39], [39, 41], [39, 48], [39, 49], [39, 55], [39, 65], [39, 70], [39, 72], [41, 49], [48, 49], [49, 65],
[49, 72]]

The itemsets generated for the support count 3 are:-

 [[0, 39, 49], [1, 39, 49], [12, 39, 49], [29, 39, 49], [39, 41, 49], [39, 48, 49], [39, 49, 65], [39, 49, 72]]

The algorithm cannot move further for support count 4, as no more frequent items are observed.

Comparison of proposed algorithm with fp tree.

Figure 2: Number of records(number) vs timespan(milliseconds)

 The graph in figure 2 shows the comparison between FP Tree and FP Split tree methods for support

count 3. We can see that the time taken by proposed algorithm is always better than the traditional method. The

difference would be more clearly visible if we get logs of few days time for some website where the incoming

traffic is also more frequent. The proposed algorithm has been tested on logs received from Kurukshetra

University website for only 29 minutes. The more is the number of records, the better visible is the difference

between the efficiency of the two algorithms.

 The data from two algorithms when averaged, it demonstrated the effectiveness of our proposed

methodology. The efficiency of this technique as against traditional method is found to more efficient according

to time consumed for execution.

Figure 3: Support count(number) vs timespan (milliseconds)

 The graph in figure 3 shows the comparison between FP Tree and FP Split tree methods for different

support counts for a fixed no. of records. This comparison can also be seen with the table 2 as follows:-

Support FP tree time Proposed Algorithm

Time

2 52 38

3 46 29

4 61 32

5 54 27

Table 2: Comparing the FP tree and Hybrid algorithm in time(milliseconds).

V. Conclusion
 Web usage mining refers to the use the access logs from a web server to study the usage pattern of

clients. This research discusses different techniques for content mining on website logs. The two main methods

in this context- Apriori and FP Tree method are the traditional methods. The most commonly used Apriori

A Hybrid Algorithm Using Apriori Growth and Fp-Split Tree For Web Usage Mining

DOI: 10.9790/0661-17633943 www.iosrjournals.org 43 | Page

algorithm had a major disadvantage of performing multiple database scans for candidate set generation. The FP

Tree structure solved this problem by restricting the database scans to two times. But the FP growth algorithm

was very complicated and time consuming since it recursively created trees at every step during frequent item-
set generation. The FP-Split algorithm further improved candidate set generation by doing a single scan of the

date for candidate generation. The Apriori growth algorithm when used for mining the FP Tree performed better

in frequent item-set generation. So we proposed here a hybrid technique for web usage mining using FP Split

Tree and Apriori Growth algorithm. The hybrid algorithm was programmed using Java language and logs from

kurukshetra university website were used to demonstrate the validity and effectiveness of proposed technique.

The results showed that the proposed algorithm performed more efficiently than the traditional method.

This method can be used in association mining at many other applications like WSN, Social Network

behavioral mining etc. In future, we plan to further improve the efficiency by reducing the complexity involved

in creating FP Split tree which is certainly better than FP Tree but still can be worked upon for further

improvement.

References
[1] Chin Fewng Lee and Tsung-HsienShen, “An FP-split method for fast association rules mining”, IEEE 2005. Pp. 459-464.

[2] Bo Wu, Defu Zhang, QihuaLan, JieminZheng, “An Efficient Frequent Patterns Mining Algorithm based on Apriori Algorithm and

the FP-tree Structure”, Third 2008 International Conference on Convergence and Hybrid Information Technology, IEEE 2008.

[3] Anupam Joshi, Tim Finin, Akshay Java, Anubhav Kale, and PranamKolari, “Web (2.0) Mining: Analyzing Social Media”, IEEE

2008.

[4] K. R. Suneetha, Dr. R. Krishnamoorthi, “Identifying User Behavior by Analyzing Web Server Access Log File”, IJCSNS

International Journal of Computer Science and Network Security. VOL.9 No.4, April 2009

[5] Mehdi Heydari, Raed Ali Helal, Khairil Imran Ghauth, “A Graph-Based Web Usage Mining Method Considering Client Side

Data”, 2009 International Conference on Electrical Engineering and Informatics, 2009.

[6] HuipingPeng, “Discovery of Interesting Association Rules Based on Web Usage Mining”, 2010 - International Conference on

Multimedia Communications.

[7] MajaDimitrijevic, TanjaKrunic, “Association rules for improving website effectiveness: case analysis”, Online Journal of Applied

Knowledge Management Volume 1, Issue 2, 2013

[8] Kirti S. Patil, Sandip S. Patil, “Sequential Pattern Mining Using Apriori Algorithm & Frequent Pattern Tree Algorithm”, IOSR

Journal of Engineering (IOSRJEN) Vol. 3, Issue 1 (Jan. 2013), Pp. 26-30

