
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 6, Ver. II (Nov – Dec. 2015), PP 01-23

www.iosrjournals.org

DOI: 10.9790/0661-17620123 www.iosrjournals.org 1 | Page

Design & Development of a Trustworthy and Secure Billing

System for Cloud Computing Architecture

Prof.Dr.G.Manoj Someswar
1
, Firdous Rehana

2
, Mohd.Abdul Kareem

3

1. B.Tech., M.S.(USA), M.C.A., Ph.D., Professor & Dean (Research), Department Of CSE, Nawab Shah Alam

Khan College of Engineering & Technology, Affiliated to JNTUH, Malakpet, Hyderabad, Telangana, India.

2. M.Tech. (CSE), Assistant Professor, Department Of CSE, Nawab Shah Alam Khan College of Engineering &

Technology, Affiliated to JNTUH, Malakpet, Hyderabad, Telangana, India.

3. M.Tech. (CSE), Nawab Shah Alam Khan College of Engineering & Technology, Affiliated to JNTUH,

Malakpet, Hyderabad, Telangana, India.

Abstract: Cloud computing is an important transition that makes change in service oriented computing

technology. Cloud service provider follows pay-as-you-go pricing approach which means consumer uses as

many resources as he need and billed by the provider based on the resource consumed. CSP give a quality of

service in the form of a service level agreement. For transparent billing, each billing transaction should be

protected against forgery and false modifications. Although CSPs provide service billing records, they cannot

provide trustworthiness. It is due to user or CSP can modify the billing records. In this case even a third party

cannot confirm that the user’s record is correct or CSPs record is correct. To overcome these limitations we

introduced a secure billing system called THEMIS. For secure billing system THEMIS introduces a concept of

cloud notary authority (CNA). CNA generates mutually verifiable binding information that can be used to
resolve future disputes between user and CSP. This project will produce the secure billing through monitoring

the service level agreement (SLA) by using the SMon module. CNA can get a service logs from SMon and stored

it in a local repository for further reference. Even administrator of a cloud system cannot modify or falsify the

data.

Keywords: Cloud Service Provider, Cloud Notary Authority, Service Level Agreement, Accounting Processor

for Event Logs, Secure Virtual Machine Execution, GRASP, TISA, VIPM.

I. Introduction
Cloud computing, or the cloud, is a colloquial expression used to describe a variety of different types

of computing concepts that involve a large number of computers connected through a real-time

communication network shows such as Internet.[1] Cloud computing is a term without a commonly accepted

unequivocal scientific or technical definition. In science, cloud computing is a synonym for distributed

computing over a network and means the ability to run a program on many connected computers at the same

time. The phrase is also, more commonly used to refer to network-based services which appear to be provided

by real server hardware, which in fact are served up by virtual hardware, simulated by software running on one

or more real machines. Such virtual servers do not physically exist and can therefore be moved around and

scaled up (or down) on the fly without affecting the end user - arguably, rather like a cloud. The popularity of

the term can be attributed to its use in marketing to sell hosted services in the sense of application service

provisioning that run client server software on a remote location.

Architecture Of Cloud Computing

It all starts with the front-end interface seen by individual users. The user’s request then gets passed to

the system management, which finds correct resources and then calls the system’s appropriate provisioning

services. These services slice out the necessary resources in the cloud, cast the appropriate web application and

either creates or opens the requested document. The below figure shows the concept of cloud.

Figure 1: Architecture Of Cloud Computing

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Cloud_computing#cite_note-Mariana_Carroll_2012-1
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Application_service_provider
http://en.wikipedia.org/wiki/Application_service_provider
http://en.wikipedia.org/wiki/Application_service_provider
http://en.wikipedia.org/wiki/Client_server

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 2 | Page

Service Models

Infrastructure-As-A-Service (IaaS)
THIS is the basic cloud service model and cloud providers offer computers, and as a physical or more

often as virtual machines, and other resources. Other resources in IaaS clouds include images in a virtual

machine image library, raw (block) and file-based storage, load balancers, IP addresses, virtual local area

networks (VLANs), firewalls, and software bundles. Users use an IaaS may wish to figure 1.4 out the billed

charges for the total service time and guaranteed service level. [1]

Figure 2: Service Model

PLATFORM AS A SERVICE (PAAS)
 This is a category of cloud computing services that provide a computing platform and a solution stack

as a service. Along with SaaS and IaaS, it’s a service model of cloud computing. In this model, the consumer

produces the software using tools and libraries from the provider. The consumer also charge software

deployment and configuration settings. The provider contributes the networks, servers and archive.[2]

 Software As A Service (SaaS)

Sometimes referred to as "on-demand software”, it’s a software delivery model in which software and

associated data are centrally hosted on the cloud. SaaS is typically an acquired by users using a thin client via a

web browser. SaaS is a common delivery model for many business applications, including auditing,

collaboration, customer relationship management (CRM), management information systems (MIS), enterprise

resource planning (ERP), invoicing, human resource management (HRM), content management (CM) and

service desk management. If a company uses a PaaS or SaaS the accounting department of the company may

require the service usage logs so as to verify the billed charges by clicking company’s total number of running

software program or platforms.[3]

Deployment Models

Private Cloud: It is entirely dedicated to the needs of a single organization. Private cloud can be on or off

premises. An on-premise resides in the owner’s computer room or data center and managed by the organizations

own IT staff. An off-premise takes advantage of existing facilities and expertise of an outsourcing company

such as co-location hosting facility. Advantage of private cloud is that an organization can design it, change it

over time, control the quality of service provided. Disadvantages are it requires investment of expertise, money

and duration.[4]

 Figure 3: Deployment Diagram

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 3 | Page

Public Cloud

 It is a multitenant cloud that is owned by a company that typically sells the services it provides to the

general public. Advantage of public cloud is that it is always ready to use without delays, no need to invest in

internal IT infrastructure.[5]

Hybrid Cloud

 It is also known as cross-premises cloud uses a private and public cloud at the same time, with services

spanning both deployments. Advantage of hybrid cloud are it control of security and compliance from private

cloud, cost effective flexibility and scalability from public cloud and a single service spanning both.[6]

Community Cloud

 It is owned, managed, shared and operated by many organizations. This open cloud can use many

technologies. Community clouds are extremely complex and are a shared risk.[7]

Concept Of Cloud

Cloud Computing is the result of evolution and adoption of existing technologies and paradigms. The

goal of cloud computing is to allow users to take benefit from all of these technologies, without the need for

deep knowledge about or expertise with each one of them. The cloud aims to cut costs, and help the users focus

on their core business instead of being impeded by IT obstacles.[8]

The main enabling technology for cloud computing is virtualization. Virtualization abstracts the

physical infrastructure, which is the most rigid component, and makes it available as a soft component that is

easy to use and manage. By doing so, virtualization provides the agility required to speed up IT operations, and

reduces cost by increasing infrastructure utilization. On the other hand, autonomic computing automates the

process through which the user can provision resources on-demand. By minimizing user involvement,

automation speeds up the process and reduces the possibility of human errors.[26] Users face difficult business

problems every day. Cloud computing adopts concepts from Service-oriented Architecture (SOA) that can help

the user break these problems into services that can be integrated to provide a solution. Cloud computing

provides all of its resources as services, and makes use of the well-established standards and best practices

gained in the domain of SOA to allow global and easy access to cloud services in a standardized way. Cloud

computing also leverages concepts from utility computing in order to provide metrics for the services used. [9]

Such metrics are at the core of the public cloud pay-per-use models. In addition, measured services are an

essential part of the feedback loops in autonomic computing, allowing services to scale on-demand and to

perform automatic failure recovery.

Cloud computing is a kind of grid computing; it has evolved by addressing the QoS (quality of service)

and reliability problems. Cloud computing provides the tools and technologies to build data/compute intensive

parallel applications with much more affordable prices compared to traditional parallel computing techniques.[26]

Scope Of Research

Scope of the project is to provide a high securable and non obstructive billing system. Central Nodal

Authority (CNA) generates the bill with binding information. The process, which involves a generation of

mutually verifiable binding information among all the involved entities on the basis of a one-way hash chain, is

computationally efficient for a thin client and the CSP. So even administrator of a cloud system cannot modify

or falsify the data.

Vision

 In this Technology for secure billing system THEMIS introduces a concept of cloud notary authority

(CNA). CNA generates mutually verifiable binding information that can be used to resolve future disputes

between user and CSP. This project will produce the secure billing through monitoring the service level

agreement (SLA) by using the SMon module. CNA can get a service logs from SMon and stored it in a local

repository for further reference.

Towards Trusted Cloud Computing

Cloud computing infrastructures enable companies to cut costs by outsourcing computations on-

demand. However, clients of cloud computing services currently have no means of verifying the confidentiality

and integrity of their data and computation. To address this problem we propose the design of a trusted cloud

computing platform (TCCP). TCCP enables Infrastructure as a Service (IaaS) providers such as Amazon EC2 to

provide a closed box execution environment that guarantees confidential execution of guest virtual machines.

Moreover, it allows users to attest to the IaaS provider and determine whether or not the service is secure before

they launch their virtual machine. A trusted cloud computing platform (TCCP) for ensuring the confidentiality

http://en.wikipedia.org/wiki/Virtualization
http://en.wikipedia.org/wiki/Utilization
http://en.wikipedia.org/wiki/Code_on_demand
http://en.wikipedia.org/wiki/Cloud_computing#cite_note-HAM2012-26
http://en.wikipedia.org/wiki/Service-oriented_Architecture
http://en.wikipedia.org/wiki/Service_(systems_architecture)
http://en.wikipedia.org/wiki/Utility_computing
http://en.wikipedia.org/wiki/Performance_metric
http://en.wikipedia.org/wiki/Grid_computing
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Reliability_(computer_networking)
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Cloud_computing#cite_note-HAM2012-26

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 4 | Page

and integrity of computations that are outsourced to IaaS services. The TCCP provides the abstraction of a

closed box execution environment for a customer’s VM, guaranteeing that no cloud provider’s privileged

administrator can inspect or tamper with its content.

Figure 4: Simplified Architecture of Eucalyptus

Moreover, before requesting the service to launch a VM, (fig 2.2) above shows the TCCP allows a

customer to reliably and remotely determine whether the service backend is running a trusted TCCP

implementation. This capability extends the notion of attestation to the entire service, and thus allows a

customer to verify if its computation will run securely.

In this research paper we show how to leverage the advances of trusted computing technologies to

design the TCCP. Section 2 introduces these technologies and describes the architecture of an IaaS service.

Section 3 presents our design of TCCP. Although we do not yet have a working prototype of TCCP, the design

is sufficiently detailed that we are confident that a solution to the problem under discussion is possible. The

Trusted Computing Group (TCG) [10] proposed a set of hardware and software technologies to enable the

construction of trusted platforms. In particular, the TCG proposed a standard for the design of the trusted

platform module (TPM) chip that is now bundled with commodity hardware. The TPM contains an endorsement

private key (EK) that uniquely identifies the TPM (thus, the physical host), and some cryptographic functions

that cannot be modified. The respective manufacturers sign the corresponding public key to guarantee the

correctness of the chip and validity of the key.

Trusted platforms [1, 4, 5, and 9] leverage the features of TPM chips to enable remote attestation. This

mechanism works as follows. At boot time, the host computes a measurement list ML consisting of a sequence

of hashes of the software involved in the boot sequence, namely the BIOS, the boot loader, and the software

implementing the platform. The ML is securely stored inside the host’s TPM. To attest to the platform, a remote

party challenges the platform running at the host with a nonce. The platform asks the local TPM to create a

message containing both the ML and the, encrypted with the TPM’s private EK. The host sends the message

back to the remote party who can decrypt it using the EK’s corresponding public key, thereby authenticating the

host. By checking that the nonce’s match and the ML correspond to a configuration it deems trusted, a remote

party can reliably identify the platform on a UN rusted host. A trusted platform like Terra [4] implements a thin

VMM that enforces a closed box execution environment, meaning that a guest VM running on top cannot be

inspected or modified by a user with full privileges over the host. The VMM guarantees its own integrity until

the machine reboots. Thus, a remote party can attest to the platform running at the host to verify that a trusted

VMM implementation is running, and thus make sure that her computation running in a guest VM is secure.

Given that a traditional trusted platform can secure the computation on a single host, a natural approach to

secure an IaaS service would be to deploy the platform at each node of the service’s backend. However, this

approach is insufficient: a sys admin can divert a customer’s VM to a node not running the platform, either

when the VM is launched (by manipulating the CM), or during the VM execution (using migration).

 In this research paper, we argue that concerns about the confidentiality and integrity of their data and

computation are a major deterrent for enterprises looking to embrace cloud computing. We present the design of

a trusted cloud computing platform (TCCP) that enables IaaS services such as Amazon EC2 to provide a closed

box execution environment. TCCP guarantees confidential execution of guest VMs, and allows users to attest to

the IaaS provider and determine if the service is secure before they launch their VMs. We plan to implement a

fully functional prototype based on our design and evaluate its performance in the near future.

Tamper Detection In Audit Logs

Audit logs are considered good practice for business systems, and are required by federal regulations

for secure systems, drug approval data, medical information disclosure, financial records, and electronic voting.

Given the central role of audit logs, it is critical that they are correct and inalterable. It is not sufficient to say,

\our data is correct, because we store all interactions in a separate audit log." The integrity of the audit log itself

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 5 | Page

must also be guaranteed. This paper proposes mechanisms within a database management system (DBMS),

based on cryptographically strong one-way hash functions, that prevent an intruder, including an auditor or an

employee or even an unknown bug within the DBMS itself, from silently corrupting the audit log. We propose

that the DBMS store additional information in the database to enable a separate audit log validate to examine the

database along with this extra information and state conclusively whether the audit log has been compromised.

We show with an implementation on a high-performance storage engine that the overhead for auditing is low

and that the validator can efficiently and correctly determine.

Operating systems and databases. We address each in turn. Mercury raises the need to audit the audit

log [14]. Peha [17] uses, as we do, one-way hash functions and a \trusted" notary to hash and store every

transaction. Our approach tiers in that we make no assumptions about the DBMS, or even the hardware it

executes on, remaining in the trusted computing base following an intrusion; Peha on the other hand advocates a

“notary on a chip". Unlike Peha, we integrate hashing with stamping of tuples in the table, and we consider

system issues such as the need to hash tuples and using partial result authentication codes to link transactions.

Peha simply batches transactions together by hashing all the data in all the transactions, which will undoubtedly

result in very poor performance, as we discussed in detail in Section 6.1. Peha goes into more detail on how

customers, notarizes, validated, and auditors can use public key encryption to coordinate. Note that since we

send the notarization service only hash values, no private data that is revealed to that external service. It may

still be useful to encrypt the tuples that own from the database to the validate, if that process communicates with

the DBMS over no secure channels.

As mentioned, Schneider and Kelsey address audit logs that are used for later forensic investigations

into detected intrusions [10]. Their requirements tier considerably from ours. In particular, they render the log

entries impossible for the attacker to read. They use a hash linking in a similar way to our algorithm. They do

not consider efficiency issues, which are critical in our situation where an online transactional database is being

logged. Markel proposed a digital signature system based on a secure conventional encryption function over a

tree of document from utilized within a notarization service, but is not directly applicable to our problem of

hashing the data of individual transactions. Divan et al. applied the Merle Tree authentication mechanism to

both relational [6] and XML [5] data. Here the model is deferent queries over static data which has been

previous digested are evaluated by an insecure server The query results are sent to clients, which can

independently verify, using the digest, that the result contains all the requested records and no superiors records.

Existing Audit Log Techniques
The traditional way to protect logging data from tampering is to write it to an append-only device, such

as a Write Once Read Multiple (WORM) optical drive or a continuous-feed printer. The security of such

schemes assumes, however, that the computing site will not be compromised. If this is a possible attack scenario

the logging data can be sent to a remote site over the network, so called remote logging. Log replication can be

used to send the data to several hosts to require the attacker to physically compromise several sites. Schneider

and Kelsey [11] describe a secure audit log system. The idea is roughly as follows.

Figure 5: Normal Execution

 An untrusted machine U (on which the log is kept) initially shares a secret authentication key A0 with

a trusted machine T . To add the j:th log entry Dj , U computes K = hash(Aj) (an encryption key), C = EK(Dj)

(the encrypted log entry), Yj = hash(Yj�1;C) (the j:th entry in a chain of hashes, where Y�1 = 0), and Zj

=MACAj (Yj) (a keyed hash (Message Authentication Code) of Yj). Then the j:th entry hC; Yj ;Zj i is written

to the log, a new authentication key Aj+1 = hash(Aj) is constructed, and Aj is destroyed. An attacker who

compromises U at time t can delete (but not read nor modify) any of the first log entries, since he will only have

access to At+1 but not to any of the previous A0 : : :At.

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 6 | Page

Figure 6: Later, Audit Log Validation

In the figure shown above, while there is no way to prevent the attacker from deleting some or all of

the log entries (or appending his own entries), any such attempted tampering will be detected by T on its next

interaction with U. Furthermore, since each log entry is encrypted with a key derived from A0 (which is only

stored permanently on T) the attacker cannot read past log entries to and out if his attack was noticed or not. As

applications require access to the database (and often read access to the audit log), these existing techniques are

not applicable to tamper detection of transactional database audit logs.

APEL: An Implementation Of Grid Accounting Using R-GMA

 APEL (Accounting Processor for Event Logs) parses batch, system and gatekeeper logs generated by a

site and builds accounting records, which provide a summary of the resources consumed based on attributes

such as CPU time, Wall Clock Time, Memory and grid user DN. [12] The accounting data is published into the

R-GMA information and monitoring system, and archived for processing by a graphical front-end utilized by

the accounting web tool. Apel is a log processing application which is use to interpret gatekeeper and batch

system logs to produce accounting records. It currently supports PBS and LSF batch systems but can easily be

extended to support other variants. This is possible because of a newly developed plug-in architecture which

separates the core functionality from the actual log parsing. Apel provides a plug-in which parses PBS and LSF

batch systems logs.

Figure 7: APEL

A plug-in exists to publish accounting records into RGMA. Each plug-in connects to the underlying

DB via the Apel core. A complete accounting record is composed of (among others) the grid user, the job id of

the submitted job and the resources used when executing the job. This information is typically dispersed

between several different log file types such as those produced by the gate keeper or batch system. For resource

usage, a query is issued to the site’s GIIS to lookup the CPU performance for the computing nodes where the

job was executed. Apel attempts to collect all this piecemeal information together and manages it within a

database. A further process carried out by Apel then attempts to join the data together to produce a list of final

accounting records with all necessary details filled-in. Apel is then used to publish the generated accounting

records into R-GMA whereby they are collated at the GOC using an R-GMA secondary producer, as shown in

the above figure. Apel provides support for republishing the complete local copy of accounting records to

RGMA (in cases when the GOC was offline). It also provides a mechanism for reliable delivery using a basic

integrity check to compute the number of records that were last published compared with the actual count stored

on the GOC.

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 7 | Page

Figure 8: Accounting flow diagram providing a global overview of the data collection process (APEL),

and the web reporting service.

Each accounting record is unique and there is only one record per grid job. The records may

be consolidated in different ways to provide high-level views of accounting data, such as the total CPU time

consumed for each LHC VO at the tier-1 computing centers. [13]

Condor-G

 In recent years, there has been a dramatic increase in the amount of available computing and storage

resources, yet few have been able to exploit these resources in an aggregated form. We present the Condor-G

system, which leverages software from Globes and Condor to allow users to harness multi-domain resources as

if they all belong to one personal domain. We describe the structure of Condor-G and how it handles job

management, resource selection, and security and fault tolerance. The Condor-G system leverages the

significant advances that have been achieved in recent years in two distinct areas: security, resource discovery,

and resources access in multi-domain environments, as supported within the Globus Toolkit [14], and

management of computation and harnessing of resources within a single administrative domain, specifically

within the Condor system [15,16]. In brief, we combine the inter-domain resource management protocols of the

Globus Toolkit and the intra-domain resource management methods of Condor to allow the user to harness

multi-domain resources as if they all belong to one personal domain. The user defines the tasks to be executed;

Condor-G handles all aspects of discovering and acquiring appropriate resources, regardless of their location;

initiating, monitoring, and managing execution on those resources; detecting and responding to failure; and

Notifying the user of termination. The result is a powerful tool for managing a variety of parallel computations

in Grid environments.

 Condor-G’s utility has been demonstrated via record setting computations. For example, in one recent

computation a Condor-G agent managed a mix of desktop workstations, commodity clusters, and supercomputer

processors at ten sites to solve a previously open problem in numerical optimization. In this computation, over

95,000 CPU hours were delivered over a period of less than seven days, with an average of 653 processors being

active at any one time. In another case, resources at three sites were used to simulate and reconstruct 50,000

high-energy physics events, consuming 1200 CPU hours in less than a day and a half. In the rest of this article,

we describe the specific problem we seek to solve with Condor-G, the Condor-G architecture, and the results

obtained to date.

GRASP: A Grid Resource Allocation System Based On OGSA
In this research paper, we describe GRASP, a grid resource allocation system based on OGSA. In order

to submit job to the grid resources in more efficient and convenient manner, we support some features for user-

friendly resource allocation such as resource brokering, scheduling, monitoring, and so forth. GRASP supports

any scientific applications with the high performance computing features such as MPI and applications with

high throughput computing features such as parameter studies.

Secure Virtual Machine Execution Under An Untrusted Management OS

 Virtualization is a rapidly evolving technology that can be used to provide a range of benefits to

computing systems, including improved resource utilization, software portability, and reliability. For security-

critical applications, it is highly desirable to have a small trusted computing base (TCB), since it minimizes the

surface of attacks that could jeopardize the security of the entire system. In traditional virtualization

architectures, the TCB for an application includes not only the hardware and the virtual machine monitor

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 8 | Page

(VMM), but also the whole management operating system (OS) that contains the device drivers and virtual

machine (VM) management functionality. For many applications, it is not acceptable to trust this management

OS, due to its large code base and abundance of vulnerabilities. [17]

In this research paper, we address the problem of providing a secure execution environment on a

virtualized computing platform under the assumption of an untrusted management OS. We propose a secure

virtualization architecture that provides a secure run-time environment, network interface, and secondary

storage for a guest VM. The proposed architecture significantly reduces the TCB of security-critical guest VMs,

leading to improved security in an untrusted management environment. We have implemented a prototype of

the proposed approach using the Xen virtualization system, and demonstrated how it can be used to facilitate

secure remote computing services. We evaluate the performance penalties incurred by the proposed architecture,

and demonstrate that the penalties are minimal.

VTPM: Virtualizing The Trusted Platform Module

 We present the design and implementation of a system that enables trusted computing for an

unlimited number of virtual machines on a single hardware platform. To this end, we virtualized the Trusted

Platform Module (TPM). As a result, the TPM’s secure storage and cryptographic functions are available to

operating systems and applications running in virtual machines. Our new facility supports higher-level services

for establishing trust in virtualized environments, for example remote attestation of software integrity. We

implemented the full TPM specification in software and added functions to create and destroy virtual TPM

instances. We integrated our software TPM into a hypervisor environment to make TPM functions available to

virtual machines. Our virtual TPM supports suspend and resume operations, as well as migration of a virtual

TPM instance with its respective virtual machine across platforms. We present four designs for certificate chains

to link the virtual TPM to hardware TPM, with security vs. efficiency trade-offs based on threat models. Finally,

we demonstrate a working system by layering an existing integrity measurement application on top of our

virtual TPM facility.

TISA: Toward Trustworthy Services In A Service-Oriented Architecture

Verifying whether a service implementation is conforming to its service-level agreements is important

to inspire confidence in services in a service-oriented architecture (SoA). Functional agreements can be checked

by observing the published interface of the service, but other agreements that are more non-functional in nature,

are often verified by deploying a monitor that observes the execution of the service implementation. A problem

is that such a monitor must execute in an untrusted environment. Thus, integrity of the results reported by such a

monitor crucially depends on its integrity. [18]

We contribute an extension of the traditional SOA, based on hardware-based root of trust that allows

clients, brokers and providers to negotiate and validate the integrity of requirements monitor executing in an

untrusted environment. We make two basic claims: first, that it is feasible to realize our approach using existing

hardware and software solutions, and second, that integrity verification can be done at a relatively small

overhead. To evaluate feasibility, we have realized our approach using current software and hardware solutions.

To measure overhead, we have conducted a case study using a collection of Web service implementations

available with Apache Axis implementation.

Inspector Gadget
 Inspector Gadget focuses on a specific, but important, class of applications: distributed data

processing. In that context, IG aims to enable a wide variety of behaviors (most of the ones in Table 1) with

simple coding, and to avoid intrusive modifications to the underlying dataflow system and the data it manages.

We believe those goals largely set it apart from other work. That said, there are several prior projects that do

overlap in some ways with ours. Many of them focus on a narrower set of behaviors (e.g. just forward tracing,

latency profiling and overhead profiling) and embed in the underlying systems at a much lower level, thereby

potentially achieving better performance (for those behaviors) at the expense of more intrusiveness. One class of

mechanisms for achieving a few (4/14) of the behaviors is tainting with tracing [19, 20]. These approaches

annotate data with special markers that enable it to be tracked as it moves through complex system(s). Perhaps

the most relevant of these is X-trace [21], which can track data in and between nodes of distributed systems,

including dataflow systems such as Hadoop. Aguilera et al. [22] focuses on network traces, and seeks to identify

causal relationships and measure latency for chains of RPC calls. It makes a simplifying assumption that latency

is mostly due to the network. Inspector Gadget is also interested in latency and causality, but because our

dataflow programs can be computation and I/O intensive, we cannot rely on such an assumption. Instead, IG

benefits from a different kind of simplifying assumption: the set of possible dataflow operators and control flow

situations is small and known a priori.

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 9 | Page

SYSTEM ANALYSIS

Existing System

 The billing system with limited security concerns and the micropayment-based billing system require a

relatively low level of computational complexity. The average billing latency for billing system with limited

security is 4.06ms, for micro payment-based billing system is 4.07ms. Nevertheless, these systems are

inadequate in terms of transaction integrity, non-repudiation and trusted SLA monitoring.

 In spite of the consensus that PKI-based billing system offers a high level of security through two

security functions excluding trustworthy SLA monitoring, the security comes at the price of extremely complex

PKI operations with the average billing latency of 82.51ms. The micropayment-based schemes such as Pay

Word, MiniPay, e-coupons, and Net Pay. Consequently, when a PKI-based billing system is used in cloud

computing environment the high computational complexity causes high deployment cost and high operational

overload because the PKI operations must be performed by the user and the CSP.

Proposed System: In this research paper, we propose a secure and no obstructive billing system called THEMIS as

a remedy for these limitations. The system uses a novel concept of a cloud notary authority for the supervision of

billing. The cloud notary authority generates mutually verifiable binding information that can be used to resolve

future disputes between a user and a cloud service provider in a computationally efficient way. This project will

produce the secure billing through monitoring the service level agreement (SLA) by using the SMon module. CNA

can get a service logs from SMon and stored it in a local repository for further reference. Even administrator of a

cloud system cannot modify or falsify the data.

Adavantages In Proposed System

 Billing transactions are non obstructive.

 Minimal Computation Cost.

 Trusted Service level agreement (SLA) monitoring by SMon.

 Minimum transaction latency.

Problem Definition

For the billing transaction existing system used public key infrastructure (PKI)-based digital signature

into each billing transaction to prevent corruption. Several studies have addressed this issue by deploying a PKI-

based digital signature mechanism in an underlying security layer; however, they were handicapped by

computational overhead due to the extreme complexity of the PKI operations. Consequently, when a PKI-based

billing system is used in a cloud computing environment, the high computational complexity causes high

deployment costs and a high operational overhead because the PKI operations must be performed by the user

and the CSP.

Modules

 User Interface Design

 Cloud Service Provider

 User

 Cloud Notary Authority (CNA)

 Monitor

 Action against SLA violation

Module Description

User Interface Design: User Interface Design have a purpose that a user to move from login page to user page

of the website. In this we want to enter our user name and password provided by Service provider as in the

below figure shown.

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 10 | Page

Figure 9: User Interface Design

If we enter the valid password and user name then only the user can move login page to user window

while entering user name and password it will check username and password is match or not. If we enter any

wrong username or wrong password it generates some error message. So we are preventing from unauthorized

user entering into the service provider website. It will provide a good security for our project. So Service

provider contain user name and password server also check the authentication of the user. It will improve the

security and preventing from unauthorized user enters into the website. In our project we are using java swings

for creating design. Here we are validating the users who are going to access the Service providers.

Cloud Service Provider
Service provider has a job of providing a service like software to the cloud users. In our proposed

method, CSP doesn’t provide billing transaction to the user. It is due to the reason if billing transaction

performed in the CSP then complexity in security to be provided for billing transaction increases the overhead.

If the user logged in for service, CSP validate the user whether he\she is an authenticated user or not as shown in

the figure below.

Figure 10: Cloud Service Provider

 Once if user is found authenticated user then it waits for service check in message else it found any

unauthenticated user it will send the error message. If it received the service check in message then it responds

the user by transmitting the agreement and hash chain (one time key). After getting the service request from the

user, CSP provide the requested service to the user. It is also have a contact with the Cloud notary authority. It

will provide the service until it receive the service checkout message. The CSP enables users to scale their

capacity upwards or downwards regarding their computing requirements and to pay only for the capacity that

they actually use.[23]

USER: User can access a service from the Cloud Service Provider by authenticated login process. We assume

that users are thin clients who use services in the cloud computing environment. To start a service session in

such an environment, each user makes a service check-in request to the CSP with a billing transaction. To end

the service session, the user can make a service check-out request to the CSP with a billing transaction. Once if

the users send the service check-in message it can get the contract from the CSP.

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 11 | Page

Figure 11: USER

In the above figure after receiving the one time keywords in the contract it can be able to access the

service from the CSP. Now user log details are stored in Monitor for future disputes. After accessing the service,

user want billing transaction. If he\she wants the bill means it should send the contract of the CSP with contract

of the user to the CNA. The details checked by the CNA are identical then user can receive the bill binding

information along with confirmation message. If any error occurred or forgery activity found from the user side

then the user will receive the penalty for that.

Cloud Notary Authority (CNA)

 Cloud Notary Authority acts as a THEMIS in our cloud billing transaction. He is an authority to
generate the billing transaction for the cloud service. [24] The CNA provides a mutually verifiable integrity

mechanism that combats the malicious behavior of users or the CSP. The process, which involves a generation

of mutually verifiable binding information among all the involved entities on the basis of a one-way hash chain

(One time key), is computationally efficient for a user and the CSP.

Figure 12: Cloud Notary Authority

If user wants billing for the service then it sends the contract of the user and contract of CSP to the

CNA. In CNA it checks both the contract; if it is found as identical then it generates the bill as binding

information and sends the confirmation message to the user and the CSP. If it is not identical then it receives the

log details from the monitor. If forgery found at user side it sends the penalty to the user. If it found at CSP side

it cancels the payment to the CSP. CNA provide the billing transaction which can be verifiable and also forgery

resistive in cloud environment.

Monitor

 Monitor is a module which continuously monitors all the log activities of the CSP and the user. For

monitoring it uses a technique called S-Mon. The S-Mon has a forgery-resistive SLA measuring and logging

mechanism, which enables it to monitor SLA violations and take corrective actions in a trusted manner. After

the service session is finished, the data logged by S-Mon are delivered to the CNA. In figure 3.5.5 shows

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 12 | Page

Figure `13: Monitor

We devised S-Mon in such a way that it can be deployed as an SLA monitoring module in the

computing resources of the user. Once SLA has been violated S-Mon sends all the log details to the CNA. After

verifying the log details CNA perform further action. Monitor has a local repository for storing all the log

details of the user to monitor the SLA for the future disputes. So it can be verifiable in future too. Here monitor

plays important role against billing transaction forgery which leads to forgery resistive billing transaction.[25]

Action Against SLA Violation

Once the CNA found forgery from cloud services it can’t directly take any action against them without

knowing the reason. At that time it sends the message to Monitor to send the all log details about the transaction.

Once it receives the log message from the monitor it compares the contract and the log details. In the fig 3.5.6

once the forgery found from CSP side it cancels the payment to the CSP and sends the message to the CSP. If it

found from the user side it assign penalty to the user according to the severity of the forgery from the user side

and sends the message to the user. CNA also maintains the local repository after the action taken against the

SLA violation.

Figure 14: Action against SLA violation

MONITOR

CSP

Det

ails

USE

R

Det

ails

LOG

Det

ails

CS

P

U

SE

R

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 13 | Page

Given Input Expected Output

User Interface Design

Input:

 Registration

 Username

 Password

Output:

 Registered in Database

 Login successfully

 Open client home page

Cloud Service Provider
 Input:

 Check-in message

 User response with one time key

 Output:

 Contract including SLA and Hash chain

 Software Service

 USER

 Input:

 Contract and Hash chain from CSP

 Access software from CSP

 Output:

 Response to csp with Hash chain

 Send contract of user and CSP to CAN

Cloud Notary Authority (Cna)

 Input:

 contract of user and CSP from user

 Output:

 Generation of billing transaction

 Send confirmation message to CSP and user

 MONITOR

 Input:

 Logging details of CSP

 Logging details of user

 Output:

 Stored in repository

 Send logging details to the CNA when error occurred in contract

Action Against Sla Violation

 Input:

 Logging details of user and CSP from monitor

 Output:

 Cancel payment for CSP

 Provide penalty for user

 Maintain local repository for future dispute

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 14 | Page

 SYSTEM DESIGN & IMPLEMENTATION
Usecase Diagram For Modules

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral diagram defined

by and created from a Use-case analysis. Its purpose is to present a graphical overview of the functionality

provided by a system in terms of actors, their goals (represented as use cases), and any dependencies between

those use cases. The main purpose of a use case diagram is to show what system functions are performed for

which actor. Roles of the actors in the system can be depicted.

Usecase

A defined purposeful, interaction between a system & a human or non human actor that is playing a

specify role outside the system. In the below fig 4.2 shows the detail description.

User

CNA

CSP

Login

Contract

Monitor

Log detail

Contract User+CSP

Billing transaction Log checking

Figure 15: Use case for User and CAN

 From the above use case diagram we can know that every actor have some action with other actor in the

network. User have log in relation with CSP. For that CSP response with contract contains one time key. For

billing transaction USER send the contract of both user and CSP to the CNA. Then CNA produce Billing

transaction and also send the confirmation message to both user and CSP. All the logging details are stored by

monitor which will be send to the CNA for disputes.

Activity Diagram
Activity diagram are a loosely defined diagram to show workflows of stepwise activities and actions,

with support for choice, iteration and concurrency.

USER

CSP

Contract

CNA

MONITOR

CHECKING

Bill Generation true Checking logsfalse

Cancel payment

Penalty

check in

Contract of user and CSP

logs to monitor

Figure 16: Active Diagrams for User and CNA

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 15 | Page

In the above figure, it shows a description UML, activity diagrams can be used to describe the business

and operational step-by-step workflows of components in a system. UML activity diagrams could potentially

model the internal logic of a complex operation. In many ways UML activity diagrams are the object-oriented

equivalent of flow charts and data flow diagrams (DFDs) from structural development.

 In this activity diagram user can access service from the CSP by sending the check in message. After

accessing the service if user wants billing transaction it sends the contract of the user and CSP to authority.

Authority checks both contract if it is identical then it generates the bill and send to both the user and csp. If it

found any mismatch then it checks the log details from the monitor and sends the action against the CSP/user.

Sequence Diagram

A sequence diagram in UML is a kind of interaction diagram that shows how processes operate with

one another and in what order. A sequence diagram in Unified Modeling Language (UML) is a kind

of interaction diagram that shows how processes operate with one another and in what order. It is a construct of

a Message Sequence Chart. A sequence diagram shows object interactions arranged in time sequence. It depicts

the objects and classes involved in the scenario and the sequence of messages exchanged between the objects

needed to carry out the functionality of the scenario. Sequence diagrams typically are associated with use case

realizations in the Logical View of the system under development. Sequence diagrams are sometimes called

event diagrams, event scenarios, and timing diagrams.

 From this sequence diagram it is shown that the sequence from user to can for bill generation. First user

get a contract by check in message and access the service using that contract. After accessing the service it

request the CNA for bill generation. CNA checks the both contract if it is identical then it generates the bill and

send the information to the user and csp. If it is not identical then it checks the log details from monitor and take

action against the SLA violator.In the figure below it is shown in detail about sequence diagram.

User CSP CNA Monitor

Check In message

User Log

Contract

Accesing Service CSP log

Contract of CSP+User

Bill generation

Bill to user
Bill to csp

If any error ask logs

Log details

Payment cancel

Penalty

Figure 17: Sequence diagram for User and CSP

Collaboration Diagram

A collaboration diagram show the objects and relationships involved in an interaction, and the

sequence of messages exchanged among the objects during the interaction. The collaboration diagram can be a

decomposition of a class, class diagram, or part of a class diagram. it can be the decomposition of a use case, use

case diagram, or part of a use case diagram. The collaboration diagram shows messages being sent between

classes and object (instances). A diagram is created for each system operation that relates to the current

development cycle (iteration).

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 16 | Page

User
CSP

CNA
Monitor

1: Check In message

2: User Log

3: Contract

4:

5: Accesing Service

6: CSP log
7: Contract of CSP+User

8: Bill generation

9: Bill to user

10: Bill to csp

11: If any error ask logs

12: Log details

13: Payment cancel

14: Penalty

Figure 18: Collaboration diagram for user

 In the above Collaboration diagram, it shows how the Can takes the dyanamic action like if it founds

the contract are identical then it generates the bill or else it checks the log details from the moniotor and take the

action against the violator. So this type of dynamic flow and astatic flow like user validation and response

activity are represented by using this diagram.

Class Diagram

 A class diagram in the UML is a type of static structure diagram that describes the structure of a system

by showing the system’s classes, their attributes, and the relationships between the classes. Private visibility

hides information from anything outside the class partition. Public visibility allows all other classes to view the

marked information. Protected visibility allows child classes to access information they inherited from a parent

class. In software engineering, a class diagram in the Unified Modeling Language (UML) is a type of static

structure diagram that describes the structure of a system by showing the system's classes, their attributes,

operations (or methods), and the relationships among the classes. A class diagram is an illustration of the

relationships and source code dependencies among classes in the Unified Modeling Language (UML). In a class

diagram, the classes are arranged in groups that share common characteristics. A class diagram resembles

a flowchart in which classes are portrayed as boxes, each box having three rectangles inside. The top rectangle

contains the name of the class; the middle rectangle contains the attributes of the class; the lower rectangle

contains the methods, also called operations, of the class. Lines, which may have arrows at one or both ends,

connect the boxes. In the below figure, it shows detail description these lines define the relationships, also called

associations, between the classes.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Class_(computer_science)

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 17 | Page

Figure 19: Class Diagram

From this class diagram how the classes are interconnected to perform the action is explained. Service

provider class is contact with the user class for validating the user and sends the contract. After that user class

have send the request to the CNA class for bill generation and it calls the both service provider and user class for

confirmation. After finishing it receives message from monitor for checking log details.

Data Folw Diagram

A data flow diagram (DFD) is a graphical representation of the “flow” of data through an information

system. It differs from the flowchart as it shows the data flow instead of the control flow of the program. A data

flow diagram can also be used for the visualization of data processing. The DFD is designed to show how a

system is divided into smaller portions and to highlight the flow of data between those parts.

Data Flow Diagram (DFD) is an important technique for modeling a system’s high-level detail by

showing how input data is transformed to output results through a sequence of functional transformations. DFDs

reveal relationships among and between the various components in a program or system. In the below figure,

DFD diagram consists of four major components: entities, processes, data stores and data flow.

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 18 | Page

Figure 20: Data Flow Diagram

 From DFD 0 the flow from user to csp is shown. User requests the CSP and gets the service from the

CSP after giving confirmation with hash chain. Monitor has the log details of both monitor and the CSP from

DFD 1 we can know that after accessing the service from CSP, user sends the contract of user and CSP to the

CNA. CNA Verify both the contracts if both are identical then it generates the bill and sends to both user and

CSP. If not it checks the log details at the monitor and take further action against the violator.

SYSTEM ARCHITECTURE

Architecture diagram shows the relationship between different components of system. This diagram is

very important to understand the overall concept of system. Architecture diagram is a diagram of a system, in

which the principal parts or functions are represented by blocks connected by lines that show the relationships of

the blocks. They are heavily used in the engineering world in hardware design, electronic design, software

design, and process flow diagrams.

Figure 21: System Architecture Diagram

BILL

CNA

Contract

CSP + User Check

log

USER

CSP

MONITOR

Check

in

Contract

Service Confirmation

CSP

log

User

log

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 19 | Page

System Architecture Diagram shows that the entire flow of the project. When the users are validated by

the CSP, it will send the contract with hash chain to the user. After that the user request for the service with that

hash key. Once user finished accessing service from the CSP it sends the contract of the user and CSP to the

authority. Authority checks the contract; if it is identical then it generates the bill and sends the confirmation

message to the CSP and the user. If it found error it checks the log detail from the monitor and takes the action

against the person who violates the service level agreement.

Object Diagram

An object diagram in the Unified Modeling Language (UML), is a diagram that shows a complete or

partial view of the structure of a modeled system at a specific diagram focuses on some

articular set of object instances and attributes, and the links between the instances. A correlated set of object

diagrams provides insight into how an arbitrary view of a system is expected to evolve over time. Object

diagrams are more concrete than class diagrams, and are often used to provide examples, or act as test cases for

the class diagrams. Only those aspects of a model that are of current interest need be shown on an object

diagram. An object diagram may be considered a special case of a class diagram.

AUTHORITY

USER

Service Provider

Monitor

Figure 22: Object Diagram

 From the figure above which is an object diagram, we can know that how we create a object for a class
and how they perform the action. Simply it shows that flow of object. We create object for a class like service

provider, authority, user and monitor to perform the action of bill generation in efficient way. It is a diagram that

shows a complete or partial view of the structure of a modeled system.

State Diagram

A state diagram is a type of diagram used in computer science and related fields to describe the

behavior of systems. State diagrams require that the system described is composed of a finite number of states;

sometimes, this is indeed the case, while at other times this is a reasonable abstraction. There are many forms of

state diagrams, which differ slightly and have different semantics. A state diagram, also called a state

machine diagram or state chart diagram, is an illustration of the states an object can attain as well as the

transitions between those states in the Unified Modeling Language (UML). A state diagram resembles

a flowchart in which the initial state is represented by a large black dot and subsequent states are portrayed as

boxes with rounded corners. There may be one or two horizontal lines through a box, dividing it into stacked

sections.

CSP USER

authority

monitor

validation and response

Bill generation
Bill \ Error mesage

Bill\ error message

request

contract of CSP + USER

user logs

CSP logs

Log details

Figure 23: State Diagram

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 20 | Page

 In that case, the above fig 4.10 the upper section contains the name of the state, the middle section (if

any) contains the state variables and the lower section contains the actions performed in that state. If there are no

horizontal lines through a box, only the name of the state is written inside it. External straight lines, each with an

arrow at one end, connect various pairs of boxes. These lines define the transitions between states. The final

state is portrayed as a large black dot with a circle around it. In this State diagram the process starts from

validation of the user and then proceed with sending the contract. After accessing the service user send the

contract to the authority. By checking the both contract authority will generate the bill. If it is error it checks the

log details from the monitor and produce penalty or payment cancellation. After that it can send either bill or

error message to botrh user and csp at that point process come to end.

Component Diagram

In the Unified Modeling Language, a component diagram depicts how components are wired together

to form larger components and or software systems. They are used to illustrate the structure of arbitrarily

complex systems. The Component Diagram helps to model the physical aspect of an Object-Oriented software

system.

USER

CSP

CNA

Monitor

Contract / Service

CSP log

Check in

User log

Contract of CSP+USER

BILL generation

Log checking

TRUE

FALSE

BILL

BILL

Figure 24: Component Diagram

It illustrates the architectures of the software components and the dependencies between them. Those

software components including run-time components, executable components also the source code components.

From this diagram components like cna, monitor, user, csp are connected to form the larger components. So can

have further decision making dynamically.

E-R DIAGRAM
In software engineering, an entity-relationship model (ERM) is an abstract and conceptual

representation of data. An entity-relationship (ER) diagram is a specialized graphic that illustrates

the relationships between entities in a database. ER diagrams often use symbols to represent three different types

of information. Boxes are commonly used to represent entities.

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 21 | Page

Figure 25: E-R Diagrams

Diamonds are normally used to represent relationships and ovals are used to represent attributes. E-R

diagram shows in fig 4.12 that shows relationship between the various entities with attributes. In this diagram

user have attributes like username and password having validation and service relationship with the entity CSP

with the attributes contract.

II. Results & Conclusion
Our aim in this study was to provide a full-fledged trusted, non obstructive billing system tailored for a

cloud computing environment. To accomplish this task, we thoroughly reviewed the ways in which existing

billing systems are used in the environment. We consequently derived blueprints for THEMIS, our mutually

verifiable, computationally efficient billing system. In addition to utilizing existing billing systems, we

conceived and implemented the concepts of a CNA and S-Mon, which supervise billing transactions to make

them more objective and acceptable to users and CSPs alike.

Our billing system features three remarkable achievements: First, we introduce a new concept of a

CNA to ensure undeniable verification of any transaction between a cloud service user and a CSP. Second, our

mutually verifiable billing protocol replaces prohibitively expensive PKI operations without compromising the

security level of the PKI; as a result, it significantly reduces the billing transaction overhead. Last but not least,

we devised a forgery-resistive SLA measuring and logging mechanism. By integrating the module into each

cloud resource, we made the billing transactions more objective and acceptable to users and CSPs.

CSP
detail

CNA

USER

CSP

MONIT

OR

Username Password

Contract

Hash
chain

Software’s

User log

CSP log

CNA

detail

Contract

BILL

User
detail

Bill generator

ERROR Checker

Validation

Log

Log

Check

log

Bill

transaction

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 22 | Page

Applications And Future Enhancement

EPN MOBILE PHONE

 This mobile phone have a application of transaction processing available at swiped rates through

common smart phones, cell phones and PDA's. The ePN Mobile Credit Card, Check and Gift/Loyalty

Application can prompt for invoice number, gratuity, other charges process the transaction real-time and show

the transaction authorization number right on the phone display.

VOSS FULFILMENT SOLUTION

 Specialty OSS vendors (Operational Support Systems) have developed end-to-end service orchestration

solutions for service providers in the cloud communications space. VOSS Solutions is the leading OSS vendor

in this public, cloud communications OSS space, with more tier-1 service provider customers than any other

player.

Absolute Performance Sla Monitoring

Organizations have an increasing demand for business visibility. As a business executive, it is vital to

know the state of your business-critical and revenue critical applications at all times. Knowing that your

application is being managed to meet your business requirements is necessary to ensure 24x7 availability,

transaction volume and performance of the application from the end-user perspective. Absolute Performance

provides the visibility through custom SLA monitoring, enabling executives to view real-time SLA compliance

and reporting, consolidated into a cohesive, easy to use portal view.

 Future Enhancement

In future, the deployment of THEMIS in the context of existing cloud computing services requires

minimal modification to the CSPs, CNA and users if seeking to provide mutually verifiable billing transactions.

Our next step is to consider the scalability and fault tolerance of THEMIS. This fault tolerance can be

implemented by Banking service.

References
[1]. Ki-Woong Park, Member, IEEE, Jaesun Han, Member, IEEE, JaeWoong Chung, Member, IEEE, and Kyu Ho Park, Member, IEEE

Transactions on information forensics and security, Vol. 6, No. 2, JUNE 2012

[2]. Microsoft, “Microsoft, windows azure platform,” 2010. [Online].Available: http://www.microsoft.com/windowsazure

[3]. M. Armbrust and A. E. Fox, “Above the clouds: A Berkeley view of cloud computing,” EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb 2009.

[4]. N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards trusted cloud computing,” in Proc. of USENIX HotCloud 2009.
[5]. R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper detection in audit logs,” in Proc. of 30th intl. conf. on Very large data bases,

ser. VLDB ’04. VLDB Endowment, 2004, pp. 504–515.

[6]. L. C. M. C. Rob Byrom, Roney Cordenonsib, “Apel: An implementation of grid accounting using r-gma,” UK e-Science All Hands

Conference, Nottingham, September 2005.

[7]. Frey, Tannenbaum, Livny, Foster, and Tuecke, “Condor-g: A computation management agent for multi-institutional grids,” Cluster
Computing, vol. 5, pp. 237–246, 2002.

[8]. O.-K. Kwon, J. Hahm, S. Kim, and J. Lee, “Grasp: A grid resource allocation system based on ogsa,” in Proc. of the 13th IEEE Intl.

Sympo. on High Performance Distributed Computing.IEEE Computer Society, 2004, pp. 278–279.

[9]. I. P. Release, “Tivoli: Usage and accounting manager,” IBM press 2009.

[10]. P. working group, “http://www.ietf.org/html.charters/pkixcharter.html,” 2008.
[11]. A. Guarise, R. Piro, and Werbrouck, “A. datagrid accounting system - architecture - v1.0,” EU DataGrid, Tech. Rep., 2003.

[12]. P. G., E. E., L. J, O. M., and T. S., “Scalable grid-wide capacity allocation with the swegrid accounting system (sgas),”

Concurr.Comput. : Pract. Exper., vol. 20, pp. 2089–2122, Dec 2008.

[13]. A. Barmouta and R. Buyya, “Gridbank: A grid accounting services architecture (gasa) for distributed systems sharing and

integration,” in Proceedings of the 17th International Symposium on Parallel and Distributed Processing, ser. IPDPS ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 22–26.

[14]. G. von Voigt and W. Muller, “Comparison of grid accounting concepts for d-grid,” in Proceedings of Cracow Grid Workshop 2006.

ACC Cyfronet AGH, October 2006, pp. 459–466.

[15]. NexR, “icube cloud computing and elastic-storage services,” Mar 2011. [Online]. Available: https://testbed.icubecloud.com

[16]. H. Rajan and M. Hosamani, “Tisa: Toward trustworthy services in a service-oriented architecture,” IEEE Transactions on Services
Computing, vol. 1, pp. 201–213, 2008.

[17]. S. Meng, L. Liu, and T. Wang, “State monitoring in cloud datacenters,” IEEE Transactions on Knowledge and Data Engineering,

vol. 23, pp. 1328–1344, 2011.

[18]. C. Olston and B. Reed, “Inspector gadget: a framework for custom monitoring and debugging of distributed dataflows,” in Proc. of

the 2011 international conference on Management of data, ser. SIGMOD ’11. ACM, 2011, pp. 1221–1224.
[19]. P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “Monitoring, prediction and prevention of SLA violations in composite

services,” in Proc. of the 2010 IEEE ICWS. IEEE Computer Society, 2010, pp. 369–376.

[20]. S. Pearson and B. Balacheff, Trusted computing platforms: TCPA technology in context, ser. HP Professional Series. Prentice Hall

PTR, 2003.

[21]. I. P. Release, “White paper: Trusted execution technology, hardware-based technology for enhancing server platform security,”
Intel Press, Tech. Rep., 2010.

[22]. A. Haeberlen, “A case for the accountable cloud,” SIGOPS Oper. Syst. Rev., vol. 44, pp. 52–57, April 2010.

Design & Development of a Trustworthy and Secure Billing System for Cloud Computing…

DOI: 10.9790/0661-17620123 www.iosrjournals.org 23 | Page

[23]. F. Koeppe and J. Schneider, “Do you get what you pay for? using proof-of-work functions to verify performance assertions in the

cloud,” in Cloud Computing Technology and Science (Cloud-Com), 2010 IEEE 2nd Intl. Conf. on, 2010, pp. 687–692.

[24]. R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic models for resource management and scheduling in grid

computing.” Wiley Press, 2002, pp. 1507–1542.

[25]. B. N. Chun and D. E. Culler, “Market-based proportional resource sharing for clusters,” Tech. Rep., 1999.

