
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 6, Ver. I (Nov – Dec. 2015), PP 77-86

www.iosrjournals.org

DOI: 10.9790/0661-17617786 www.iosrjournals.org 77 | Page

Efficient Dynamic Scheduling Algorithm for Real-Time Multi-

Core Systems

Pratap Suryawanshi
1
, Radhakrishna Naik

2
, Ishwar Chaudhary

3

1,2,3
(Computer Science and Engineering Department, Marathwada Institute of Technology, India)

Abstract : Imprecise computation model is used in dynamic scheduling algorithm having heuristic function to

schedule task sets. A task is characterized by ready time, worst case computation time, deadline and resource

requirements. A task failing to meet its deadline and resource requirements on time is split into mandatory part

and optional part. These sub-tasks of a task can execute concurrently on multiple cores, thus achieving

parallelization provided by the multi-core system. Mandatory part produces acceptable results while optional

part refines the result further. To study the effectiveness of proposed scheduling algorithm, extensive simulation

studies have been carried out. Performance of proposed scheduling algorithm is compared with myopic and

improved myopic scheduling algorithm. The simulation studies shows that schedulability of task split myopic

algorithm is always higher than myopic and improved myopic algorithm.

Keywords: Dynamic real time scheduling, heuristic, imprecise computation, multi-core, real time systems,

resource requirement.

I. Introduction
In real time systems, correct computational results generated on time are required for a system to work

properly [1]. With wide applications of real time systems need for high computing hardware platform is also

there. Multi-core systems are emerging rapidly in real time systems. Multi-core system has high computing

power, more reliability and low energy consumption which makes them suitable for real- time systems. To

optimally exploit these high computing platforms efficient scheduling algorithms are also needed.

Many efficient algorithms are there which take processor requirement into consideration. Stankovic and

Ramamritham proposed heuristic scheduling algorithms which take processor requirement as well as resource

requirement into consideration [2]. Locking of resources and waiting of tasks might cause tasks to miss their

deadlines and thus reducing the predictability in real time systems [2]. In this paper dynamic scheduling

algorithm is developed which exploits the parallelization in tasks and strives to meet deadlines of tasks with

reduced computational complexity.

Optimal scheduling algorithms such as Rate Monotonic, Earliest Deadline First etc. do not take

resource requirement into consideration. Heuristic scheduling algorithm performs better than these algorithms.

Heuristic scheduling algorithm considers complete task set while searching for feasible schedule and hence has

a computational complexity of (O(n
2
)). Myopic scheduling algorithm using heuristic function for scheduling

considers only three tasks of complete task set while searching for feasible schedule [3]. Myopic algorithm has

reduced complexity of (O(n)). Task split myopic algorithm developed in this paper has same computational

complexity as that of myopic algorithm but with higher schedulability and less slack times between tasks

executing on cores.

Parallelizable task scheduling algorithm in [4] exploits parallelization in periodic tasks to schedule task

sets. Performance of myopic algorithm on heterogeneous processors is show in [5]. Minimal earliest finish time

algorithm shows that processor having smallest earliest available time performs better. Effect of different

window size and processing times of tasks on the performance of algorithm is shown in [6]. Myopic algorithm

performs better with tasks having smaller processing times and performance further increases for larger window

sizes.

Main purpose of task split myopic algorithm is to exploit the parallelization provided by the multi-core

processing platform. Parallelization in task set is exploited through imprecise computation model which splits

task into mandatory sub-task and optional sub-task. Task not meeting its deadline is allowed to execute on

multiple cores, thus achieving parallelization and better utilization of all executing cores. Better utilization of

executing cores increases the probability of task meeting its deadline.

Rest of the paper is organized as follows; Section 2 gives brief information on background model. In

section 3, related work is discussed. In section 4, task split myopic scheduling algorithm is proposed. In section

5, case studies and simulation results are presented. In section 6, performance analysis of improved myopic and

task split myopic is illustrated. Section 7 concludes the paper.

Efficient Dynamic Scheduling Algorithm for Real-Time Multi-Core Systems

DOI: 10.9790/0661-17617786 www.iosrjournals.org 78 | Page

II. Background
2.1 Multi-Core Processing Model

Multi-core processing model is assumed for scheduling proposed algorithm. A quad core processing

platform is considered having shared global memory. Core0 is reserved for scheduling and decision making also

called as scheduler while core1, core2 and core3 will be executing scheduled tasks also called as executing-cores.

In shared global memory model task are loaded into shared global memory and arrive at scheduler

(core0). Scheduler distributes these tasks to executing-cores for execution. The communication between

scheduler and executing-cores is through dispatch queues, each executing core has its dispatch queue. Scheduler

will be running in parallel with executing-cores scheduling newly arrived tasks and updating dispatch queues.

This organization ensures executing-cores will always find some tasks in dispatch queues when they finish

executing current tasks.

Executing-cores are of homogeneous kind and do not impose any relationship between them and tasks,

thus tasks are free to execute on any executing-core. Task finds a first available core among executing-core for

execution.

Task

Queue

hfeuighieug New Tasks Core 0

Scheduling Core Current Schedule

Core 1

Core 2

Core 3

Sorted Queue Feasible Schedule

Figure: 1 Multi-Core Architecture for Split Myopic Algorithm

1.2 Task Model

Tasks are dispatchable entities and have following notations:

 Task arrival time, AT

 Task deadline, DT

 Task worst case execution time, PT

 Task resource requirement, RT

Assumptions of tasks

 Task consist of mandatory sub-task and optional sub-task

 Tasks are independent, non preemptive and non-periodic

 Task uses a resource either in shared mode or exclusive mode

 For a schedule to be feasible following condition must be true for every task,

 0 A EST D PT T T T    …. (1)

 where, ESTT is the earliest start time of a task

2.3. Terminology

i. Feasible Task: A task is said to be feasible if its timing constraints and resource requirements are met in the

schedule.

ii. Partial Schedule: A partial schedule is a feasible schedule for a subset of tasks. A partial schedule is said to

be strongly feasible if all the schedules obtained by extending the current schedule by any of the remaining tasks

are also feasible.

iii. ()s kEAT EAT : It is the earliest time when resource R becomes available for shared (or exclusive) usage.

iv. ()iEST T : It is the earliest start time of a task at which it can start its execution. Assume, ir is the ready

time of a task. C is the set of cores, iR be the resource requested by the task, ()iEST T is given by,

 () (, (()), ())i i j c kEST T MAX T Min availtime j MAX EAT …. (2)

Efficient Dynamic Scheduling Algorithm for Real-Time Multi-Core Systems

DOI: 10.9790/0661-17617786 www.iosrjournals.org 79 | Page

()iEST T where ()availtime j denotes the earliest time at which the core jC becomes available for

executing a task and the third term denotes the maximum among the earliest available times of the resource

requested by task ()iT , in which u s for shared mode and u e for exclusive mode.

v. LAXITY (T): Expresses the laxity degree of task T , it is given by,
()

()
D

C

T EST T
LAXITY T

T


 (3)

vi. Mandatory sub-task: Sub-task (')iT of task ()iT that is required to complete its execution before its

deadline to produce acceptable imprecise results.

vii. Optional sub-task: Sub-task ('')iT of task ()iT , refines the imprecise result upon its completion before its

deadline, but can be terminated at its deadline even if its execution is still going on.

viii. Upper Bound Utilization of Cores (())iUB C : Core ()uC among executing cores having busy time

greater than other two cores is given by,

 () (, ,)i j kUB T MAX C C C ….. (4)

where , ,i j kC C C are executing cores.

ix. Lower Bound Utilization of Cores (())iLB C : Core ()lC among executing cores having busy time less

than other two cores is given by,

() (, ,)i j kLB T MIN C C C ….. (5)

 where , ,i j kC C C are executing cores.

x. Middle Bound Utilization of Cores (())iMB C : Core ()mC among executing cores having busy time in

between UB core and LB core is given by,

 ..… (6)

where , ,i j kC C C are executing cores.

III. Related Work
3.1 Imprecise Computation Model

If any time critical task fails to complete and produce results by its deadline, timing fault occurs.

Imprecise computation technique minimizes this difficulty; it achieves graceful degradation and produces

approximate results of acceptable quality [7].

 Mandatory Sub-Task Optional Sub-Task

 Figure: 2 Logical Decomposition of Task

Basic strategy is to minimize effect of timing faults by leaving less important tasks unfinished if

necessary. Imprecise Computation technique splits task into mandatory sub-task and optional sub-task.

Programmers structure every time critical task so that it can be logically decompose into mandatory sub-task

and optional sub-task [7]. Mandatory sub-task is required to complete its execution before deadline to generate

acceptable result. Optional sub-task refines this result. It can be left unfinished and can be terminated at its

deadline, if necessary.

The result produced by task which completes its execution before deadline is precise, has a zero error.

If the task is terminated before its completion, the intermediate result produced at that point is acceptable as long

as mandatory sub-task is complete. This intermediate result is called imprecise computation.

3.2 Efficient Dynamic Scheduling Algorithm for Multiprocessor Real Time System

Efficient scheduling algorithms based on heuristic functions were proposed by Ramamritham and

Stankovic. Following simple heuristic functions were compared,

 Minimum Deadline First (_)Min D

 Minimum Processing Time First (_)Min P

() i j kMB T C C C UB LB    

Efficient Dynamic Scheduling Algorithm for Real-Time Multi-Core Systems

DOI: 10.9790/0661-17617786 www.iosrjournals.org 80 | Page

 Minimum Earliest Time First (_)Min S

 Minimum Laxity First (_)Min L

 Out of these functions (_)Min D performed better. Above simple heuristic functions were further

integrated to give better results. Integrated heuristic functions take resource requirement into consideration

while simple heuristic functions only consider processor requirement [2]. Following are the integrated heuristic

functions,

 _ _Min D Min P

 _ _Min D Min S

Among the above functions, _ _Min D Min S performs better.

3.3 Myopic Scheduling Algorithm

Myopic algorithm was also proposed by Ramamritham and Stankovic with a heuristic function which

considers deadline and resource requirements. At each search level myopic algorithm searches tasks within a

window for partial feasible schedule. In myopic algorithm partial schedule is extended by one of the remaining

task in a specified window and having best heuristic value.

 Myopic algorithm has a reduced computational complexity of O(n) than original heuristic algorithm

O(n
2
). Complexity is reduced due to limiting the search space for finding a feasible partial schedule.

 {Tasks-remaining}: The tasks that remain to be scheduled. Tasks in {Tasks-remaining} are arranged

in the order of increasing deadlines.

 rN : Number of tasks in {Tasks-remaining}.

 k : Maximum number of tasks in Tasks-remaining considered for myopic scheduling algorithm

 kN : Actual number of tasks in { Tasks-remaining} considered by the myopic algorithm at each step

of scheduling, given by,

 min(,)k rN k N … (7)

 {Tasks-considered}: The first kN tasks in {Tasks remaining}.

Termination conditions of algorithm are either,

 A complete schedule is obtained.

 Maximum number of backtracks or number of evaluations of H functions has been reached.

 No more backtracking is possible.

3.4 Improved Myopic Scheduling Algorithm

 Improved myopic scheduling algorithm was proposed by Zhu Xiangbin. Myopic algorithm does not

consider processing time while calculating heuristic value of task. Zhu Xiangbin added laxity parameter to

heuristic function. Due to this task having low laxity has a higher probability of getting processor time than task

with high laxity [8]. In improved myopic scheduling algorithm heuristic function was given by,

1 2() * () * ()DH T T W IEST T W Laxity T   …... (8)

Steps in improved myopic scheduling algorithm,
Begin;

1) Order the task in non-decreasing order of their deadlines and then start with an empty partial schedule.

2) Determine whether the current vertex is strongly feasible by performing feasibility check for k tasks in the feasibility

check window. If the current vertex is strongly feasible, feasible=TRUE, otherwise, feasible=FALSE;

3) If (feasible is TRUE)

3.1) Computer the values of H function for all tasks in feasibility check window.

3.2) Extend the schedule by the task having the smallest H value.

4) Else

 4.1) Backtrack to the previous search level.

 4.2) Extend the schedule by the task having the next best H value

5) Move the feasibility check window by one task.

6) Repeat steps 2-5 until terminal condition is met.

End;

Efficient Dynamic Scheduling Algorithm for Real-Time Multi-Core Systems

DOI: 10.9790/0661-17617786 www.iosrjournals.org 81 | Page

IV. Task Split Myopic Scheduling Algorithm
 In this section proposed dynamic scheduling algorithm is discussed, which exploits parallelism present

in tasks to meet their deadlines. The proposed task split myopic algorithm is a variant of myopic scheduling

algorithm in [1]. Myopic or improved myopic algorithm checks first k tasks for feasibility, which is also

known as feasibility check window. Larger the size of feasibility check window, higher the scheduling cost.

The proposed scheduling algorithm is similar to myopic and improved myopic scheduling algorithm except that

it parallelizes task when there is not enough capacity left on core to meet that task’s deadline.

Steps in task split myopic scheduling algorithm,

Begin;

1) Order the task in non-decreasing order of their deadlines and then start with an empty partial schedule.

2) Determine whether the current vertex is strongly feasible by performing feasibility check for k tasks in the

feasibility check window. If the current vertex is strongly feasible, feasible=TRUE, otherwise, feasible=FALSE;

3) If (feasible is TRUE)

3.1) Computer the values of H function for all tasks in feasibility check window.

3.2) Extend the schedule by the task having the smallest H value.

4) Else

4.1) Split the task leading to infeasibility into mandatory sub-task and optional sub-task

 4.2) Extend the schedule by the task having the next best H value

5) Move the feasibility check window by one task.

6) Repeat steps 2-5 until terminal condition is met.

End;

The termination conditions are either

1) A complete feasible schedule has been found or,

2) Maximum number of backtracks are reached or,

3) No more task splitting is possible

The heuristic function 1 2() * () * ()DH T T W IEST T W Laxity T   is an integrated heuristic

which captures the deadline, resource requirement and laxity of a task [4]. The algorithm instead of backtrack

splits the task into mandatory sub-task and optional sub-task when the task cannot meet its deadline. Mandatory

sub-task will execute on earliest available core while optional sub-task will execute on second earliest available

core. Tasks use the required resource in shared or exclusive mode. Resource requirements are denoted as below,

1 2((1), (2),..... ())R R R RNT T T T r , where

0, _ _ _ _RT T does not require resource

1, _ _ () _ _ _ modR iT T require resource R in shared e

2, _ _ () _ _ _ modR iT T require resource R in exclusive e

 The complexity of proposed algorithm for scheduling non-periodic, non-preemptive tasks is O(kn)

which is same as that of myopic algorithm and improved myopic algorithm.

V. Performance Evaluation
 To study the effectiveness of imprecise computation model in meeting task’s deadline, three case

studies have been stimulated. Here focus is on whether or not all the tasks in the task set finish before their

deadlines. Therefore the most important metric is success ratio, which is defined as number of task sets found

schedulable to the number of task sets considered for scheduling.

Here it is shown how the workload of task sets are distributed to the executing cores under the

influence of imprecise computation model in task split myopic scheduling algorithm. Another performance

metric considered is upper bound utilization which is defined as the time instance till which executing cores are

remaining busy while executing task sets. Low upper bound utilization denotes equal distribution of tasks to

executing cores and less time required to complete a task set.

Simulation Parameters

 Three case studies, each with different scenario are simulated here. There are three executing cores and

two single instance resources (1R and 2R). Values of 1 2,W W and number of task splits are fixed to 1, 1 and

2 respectively. Textured boxes represent the mandatory sub-task while shaded boxes represent optional sub-task

in schedules obtained by task split myopic algorithm.

Efficient Dynamic Scheduling Algorithm for Real-Time Multi-Core Systems

DOI: 10.9790/0661-17617786 www.iosrjournals.org 82 | Page

Simulation Notations

 Task ID is denoted by, IDi

 Ready time of task, Ri.

 Computation time of task, Ci.

 Computation time of mandatory sub-task, Mi.

 Computation time of optional sub-task, Oi.

 Deadline of task, Di.

 Resource requirement of task, RESi.

Generation of Tasks

i) The computation time iC of task iT is randomly chosen between _ (1)Min C and _ (50)Max C .

ii) The deadline of each task iT is randomly chosen in the range computation time at max, maxC and

maxC R , where R , is the simulation parameter also called as laxity parameter and

 max Re _ ()i iC ady Time R C  ….… (10)

iii) The resource requirements of a task are generated based on the input parameters USeP and ShareP.

5.1 Case Study 1

Table 1: Task Set 1

In case study I there are six tasks having resource requirements. Their parameters are shown in Table 1.

At the first node, feasibility check window is having tasks T1, T2 and T3 task with best heuristic value (T1) will

be selected and it will execute on core1. At this stage first partial feasible schedule is obtained, now the window

will have tasks T2, T3, T4, again task T2 is having best heuristic value, so it will execute on core2. Feasibility

window will move by one step having tasks T3, T4, T5, T3 is having best heuristic value, it will execute on core3,

and so on.

Figure 3: Feasible schedule of improved myopic for case study I

Figure 4: Feasible schedule of task split myopic for case study I

IDi Ri Ci Mi Oi Di RESi

1 0 10 5 5 12 2

2 0 8 4 4 18 1

3 0 20 10 10 28 0

4 6 15 8 7 34 2

5 8 4 2 2 43 1

6 15 23 12 11 52 0

Efficient Dynamic Scheduling Algorithm for Real-Time Multi-Core Systems

DOI: 10.9790/0661-17617786 www.iosrjournals.org 83 | Page

Fig. 3 represents the schedule obtained by improved myopic algorithm while Fig. 4 represents the

schedule obtained by task split myopic algorithm. Both are feasible schedules. In Fig. 4 every task executes its

sub-tasks in sequential manner or mandatory and optional sub-task are executing on single core for every task

because no task in schedule is leading to infeasibility. Tasks in task set are meeting their deadlines after

scheduling them with improved myopic or task split myopic. Upper bound utilization is 38 time units for both

scheduling algorithms.

5.2 Case Study II

Table 2: Task set 2
IDi Ri Ci Mi Oi Di RESi

1 0 10 5 5 12 2

2 0 14 7 7 18 1

3 0 27 14 13 28 1

4 8 11 6 5 38 0

5 12 14 7 7 40 2

6 15 30 15 15 51 1

In second case there are again six tasks and their parameters are as shown in table 2. Below Fig. 5

represents the schedule obtained by improved myopic algorithm while Fig. 6 represents the schedule obtained

by task split myopic algorithm for case study II. Both are feasible schedules. In Fig. 3, while building schedule

at window T4, T5, T6, task T6 is leading to infeasibility so improved myopic algorithm will backtrack to next best

task in window, hence, T5 will execute first on earliest available core, then T6 will execute and lastly T4 will

execute, thus finding a feasible schedule.

Figure 5: Feasible schedule of improved myopic for case study II

Figure 6: Feasible schedule of task split myopic for case study II

In task split myopic algorithm while scheduling task set in case study II, task T6 is leading to

infeasibility as shown in Fig. 5, so it will be split and mandatory sub-task will execute on earliest available core

i.e. core1 and optional sub-task will execute on middle bound core i.e. core3. Upper bound utilization of cores is

45 time units for improved myopic algorithm while it is 42 time units for task split myopic algorithm.

Efficient Dynamic Scheduling Algorithm for Real-Time Multi-Core Systems

DOI: 10.9790/0661-17617786 www.iosrjournals.org 84 | Page

5.3 Case Study III

Table 3: Task set 3
IDi Ri Ci Mi Oi Di RESi

1 0 20 10 10 22 1

2 0 23 12 11 23 2

3 0 40 20 20 47 0

4 15 20 10 10 50 1

5 25 25 13 12 60 0

6 30 44 22 22 74 2

Third case study consists of six tasks and their parameters are shown in Table 3. Fig. 7 shows the

infeasible schedule obtained by improved myopic algorithm and Fig. 8 shows the feasible schedule obtained by

task split myopic algorithm for the task set in case study III.

Figure 7: Infeasible schedule of improved myopic for case study III

Figure 8: Feasible schedule of task split myopic for case study III

 In Fig. 7, while building schedule at window T4, T5, T6, task T6 is leading to infeasibility so improved

myopic algorithm will backtrack to next best task in window, hence T5 will execute first on earliest available

core, then T6 will execute and lastly T4 will execute, but this T4 task also leading to infeasibility. Improved

myopic algorithm is not able to find feasible schedule even after backtrack for the task set in case study III. In

task split myopic algorithm while scheduling task set, task T6 is leading to infeasibility, so it will be split and

mandatory sub-task will execute on earliest available core i.e. core1 or core3 and optional sub-task will execute

on core1 or core3 whichever not used by mandatory sub-task. Upper bound utilization of cores is 74 time units

for improved myopic algorithm while it is 62 time units for task split myopic algorithm.

VI. Performance Analysis
 Performance analysis of improved myopic algorithm and task split myopic algorithm is carried out on

the basis of three parameters namely, Upper bound utilization, success ratio and average waiting time of task

set.

Efficient Dynamic Scheduling Algorithm for Real-Time Multi-Core Systems

DOI: 10.9790/0661-17617786 www.iosrjournals.org 85 | Page

 Upper bound utilization of executing cores is given by the core having highest busy time among three

executing cores. It also denotes time required by cores to finish execution of a task set.

Waiting time of task in a task set is given by, . . () Re _ ()i iW T EST T ady Time R  .. (11)

It shows for much time task has to wait once it is ready till it gets scheduled.

Table 4: Comparative Study of Algorithms with respect to Upper Bound Utilization

U
p

p
e
r

B

o
u

n
d

 U
ti

li
za

ti
o

n
 Algorithm

Case Study

Improved Myopic

(time units)

Task Split Myopic

(time units)

Case Study I 38 38

Case Study II 45 42

Case Study III 74 62

 Figure 9: Upper Bound Utilization Analysis

Table 5: Comparative Study of Algorithms with respect to Average Waiting Time

A
v

e
ra

g
e

 W

a
it

in
g

T

im
e

 Algorithm

Case Study

Improved Myopic

(time units)

Task Split Myopic

(time units)

Case Study I 1 1

Case Study II 3.5 1.3

Case Study III 4.16 2.5

Figure 10: Average Waiting Time Analysis

Efficient Dynamic Scheduling Algorithm for Real-Time Multi-Core Systems

DOI: 10.9790/0661-17617786 www.iosrjournals.org 86 | Page

Success ratio in scheduling task sets in case study I, II and III by improved myopic algorithm is 0.6

while that of task split myopic algorithm is 1.

Figure 11: Success Ratio Analysis

VII. Conclusion
 Once a feasible schedule is obtained by a dynamic scheduling algorithm it is guaranteed that all the

tasks in task set will execute before their deadlines. Multi-Core processing platform requires efficient dynamic

scheduling algorithm to exploit its processing power optimally.

Task split myopic algorithm exploits the parallelization present in tasks to schedule the tasks under the

influence of imprecise computation model. This use of parallelization helps tasks in meeting their deadlines

when there is not enough capacity left on cores. Splitting tasks into mandatory sub-task and optional sub-task

also results in better utilization of cores.

 Upper bound utilization of cores in split myopic algorithm is reduced by 11.46% than improved

myopic algorithm.

 Average waiting time of tasks in task split myopic algorithm is 43.7% less than improved myopic

algorithm.

 In three case studies improved myopic algorithm achieves 66.33% schedulability while task split

myopic algorithm achieves 100% schedulability.

References
[1] Handbook of Real-Time and Embedded Systems (Chapman & HallCrc Computer & Information Science Series), 2008.
[2] W, Zhao and K. Ramamritham, “Simple and Integrated Heuristic Algorithms for Scheduling Tasks with Time and Resource

Constraints” J. Syst. Software, 1987.

[3] K. Ramamritham, J.A. Stankovic, and P.F. Shiah, “Efficient Scheduhng Algorithms for Real- Time Multiprocessor Systems”, IEEE
Trans. on Parallel and Disfribufed System, Vol.1, No.2, pp.184194, April, 1990.

[4] G Manimaran and C.S.R Murthy, “An Efficient Dynamic Scheduling Algorithm for Real-Time Systems”, IEEE Trans. on Parallel

and Distributed Systems, Vo1.9, No.3, pp.312-319, March, 1998.
[5] Yang Yuhai, Yu Shengsheng, ” A new Dynamic Scheduling Algorithm for Real-Time Heterogeneous Multiprocessor Systems”,

Intelligent Information Technology Application, pp. 112-115, December 2007.

[6] Kazi Sakib, M.S. Hasan, “Effects of Hard Real Time Constraints in Implementing the Myopic Scheduling Algorithm”, Journal of
Computer Science, Vol. 1 and 2, July, 2014

[7] Jane W.S. Liu and Kwei-Jay Lin, “Algorithms for Scheduling Imprecise Computations”, Computer Systems, 1991. pp. 58-68, May,

1991.
[8] Zhu Xiangbin and Tu Shiliang,“An Improved Dynamic Scheduling Algorithm for Multiprocessor Real Time Systems”, Parallel and

Distributed Computing, Applications and Technologies, pp.710-714, August, 2003.

 [9] Hitesh P. Daulani, Dr. Radhakrishna Naik and Pavan S. Wankhade,“Precedence Constraint Task Scheduling for Multicore
Multikernel Architecture”, IOSR Journal of Computer Engineering (IOSR-JCE), Volume 16, Issue 4, Ver. II , PP 43-53, August

2014.

[10] W. Zhao, K. Ramamritham, and J. A. Stankovic, “Scheduling Tasks with Resource Requirements in Hard Real-Time Systems,”
IEEE Trans. Software Eng., vol. SE-12, May 1987.

[11] Robert I. Davis and Alan Burns, “A Survey of Hard Real-Time Scheduling for Multiprocessor Systems”, © ACM, (2010).

[12] Rekha Kulkarni, Suhas Patil, “A Survey on Improving Performance of Real Time Scheduling for Cloud Systems”, International
Journal for Innovative Research in Science and Technology, Volume 1,Issue 7, pp. 171-173, January, 2015.

