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Abstract: The heuristic optimization techniques were commonly used in solving several optimization 

problems. The present work aims to develop a hybrid algorithm to solve the scheduling optimization problem of 

JSSP.  There are different variants of these algorithms that were addressed in several previous works.  The 

impacts of these two kinds (Genetic Algorithm (GA) and Simulated Annealing (SA) based optimization model) 

of initial condition on the performance of these two algorithms were studied using the convergence curve and 

the achieved makespan.  Even though genetic algorithm performed better than other evolutionary algorithms, it 

has some weakness. During running GA, sometimes, it will produce same result without any improvement. SA 

has a mechanism to overcome from that situation. During SA, if same result will be repeated, then it is rapidly 

changing the change in temperature variable and re-initiates another random search.  By using this feature of 

SA, it has been implemented a hybrid based evolutionary model for solving JSSP by improving GA. 

Comparison has been made with the performance of the proposed SA-GA-Hybrid model with GA as well as SA. 
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I. Introduction 
Scheduling is an optimization method to make the best possible way to use the limited resources by 

making a suitable allocation of the constraint resources over a period of time. Those problems are combinatorial 

optimization problems, where a set of possible solutions is distinct or can be reduced to a discrete one, and the 

goal is to find the best possible solution. Scheduling falls under the NP-hard class of combinatorial optimization 

problems category. Developing of job processing schedules in a scheduling environment is a very difficult task. 

The number of possible schedules increases with the increase in the number of jobs and related operations. This 

growth makes it practically impossible to use mathematical programming or thorough search-based approaches 

to find the global optimum schedules. 

In the recent competitive atmosphere in manufacturing and service industries, the operational 

sequencing and scheduling has become a crucial for survival in the marketplace. Companies have to produce 

their product advance as opposed to due date. Otherwise, it will affect upon reputation of a business. At the same 

time, the activities and operations need to be scheduled with the intention that the available resources will be 

used in an efficient manner.  As a result, there is a great good scheduling algorithm and heuristics are invented. 

Most of the principal practical scheduling problems exist in stochastic and dynamic environment.   

Stochastic is a problem in that some of the variables are undefined while dynamic problem is when jobs 

arrive randomly. In another way, the problems with ready time is known and fixed are known problems such as 

static and for problem where all the parameter such as processing times are known and fixed is called 

deterministic problems. Regardless of this, it is impossible to predict exactly when jobs will become available for 

processing.  

The core objective in solving the job shop scheduling problem is to find the sequence for each operation 

on each machine that optimizes the objective function. The objective function that has been used in scheduling 

the job shop problem is minimization of makespan value or the time to complete all jobs.  

 

1.1 Problem Definition  

The Job Shop Scheduling Problem (JSSP) may be described as follows: Given „n‟ jobs, each composed 

of several operations that must be processed on „m‟ machines. Each operation uses one of the „m‟ machines for a 

fixed duration. Each machine can process at most one operation  at  a  time  and  once  an  operation  initiates  

processing  on  a  given  machine  it must  complete  processing  on  that  machine  without  interruption.  The  

operations  of a given  job  have  to  be  processed  in  a  given  order.  The  problem  consists  in  finding a 

schedule  of  the  operations  on  the  machines,  taking  into  account  the  precedence constraints,  that  

minimizes  the  makespan  (Cmax),  that  is,  the  finish  time  of  the  last operation completed in the schedule. 

The focus on job-shop scheduling problems composed of the following elements: 
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 Jobs: J = {J1 , · · · , Jn } is a set of n jobs to be scheduled. Each job Ji consists of a predetermined sequence 

of operations. Oi,j  is the operation j of Ji. All jobs are released at time 0. 

 

 Machines: M  = {M1 , · · · , Mm } is a set of m machines. Each machine can process only one operation at a 

time. And each operation can be processed without interruption during its performance on one of the set of 

machines. All machines are available at time 0. 

 

 Constraints: The constraints are rules that limit the possible assignments of the operations.  They can be 

divided mainly into following situations: 

- Each operation can be processed by only one machine at a time (disjunctive constraint). 

- Each operation, which has started, runs to completion (non-preemption condition). 

- Each machine performs operations one after another (capacity constraint). 

- Although there are no precedence constraints among operations of different jobs, the predetermined 

sequence of operation for each job forces each operation to be scheduled after all predecessor operations 

(precedence/conjunctive constraint). 

- The machine constraints emphasize the operations can be processed only by the machine from the given 

set (resource constraint). 

 

 Objective: The objective is to find a schedule that has minimum time required to complete all operations 

(minimum makespan).    

 

1.2 Different Approaches for Solving Scheduling Problems 

Job shop scheduling problem is a NP-hard problem with no easy solution. Branch-and-bound, Tabu 

search, and biologically inspired approaches such as GA, Swarm Intelligence and other stochastic model such as 

Simulated Annealing algorithm were proposed for achieving possible solutions to complex problems such as job 

shop scheduling. 

SA is a stochastic heuristic algorithm which is used to resolve combinatorial optimization problems. 

Simulated Annealing optimization is analogous to the annealing of metals.  This Simulated Annealing is different 

from other algorithms, such that SA uses a probability mechanism to have power over the process of jumping out 

of the local minimum. In the process of searching, SA is not only accepting better solutions, but also accepting 

worse solutions randomly with a certain probability. At high temperatures, the probability of accepting better 

solutions is comparatively big. With the decrease of the temperature, the chance of accepting worse solutions also 

move downs, and when the temperature closes in upon zero, SA no longer accepts any worse solution. These 

make SA have more chance to avoid getting trapped in a local minimum and avoid the limitation of other local 

search algorithms and the gradient algorithms.  Because of its qualities above, SA has become an enormously 

accepted method for solving large-sized and practical problems like job shop scheduling, timetabling, traveling 

salesman and packing problem. However, like many other search algorithms, SA may get trapped in a local 

minimum or take a long time to find a reasonable solution. For these reasons, SA is often used as a part of a 

hybrid method. 

 

II. The JSSP And The Hybrid Evolutionary Model For Solving JSSP 
Let J = {0, 1, …, n, n+1} denote the set of operations to be scheduled and M = {1,..., m} the  set  of  

machines.  The  operations  0  and  n+1  are  dummy,  have  no  duration  and represent the initial and final 

operations. The operations are interrelated by two kinds of constraints.  First,  the  precedence  constraints,  which  

force  each  operation  j  to  be scheduled  after  all  predecessor  operations, Pj,  are  completed.  Second,  

operation j  can only be  scheduled  if  the  machine  it  requires  is  idle.  Further,  let dj  denote  the  (fixed) 

duration (processing time) of operation j. Let Fj  represent the finish time of operation j. A schedule can be 

represented by a vector of finish times (F1, ,  Fm, ... , Fn+1). Let A(t) be the set of operations being processed at 

time t, and let rj,m  = 1 if operation j requires machine m to be processed  and rj,m  = 0 otherwise. 

The conceptual model of the JSP can be described the following way (Goncalvesetal 2005): 

 

Minimize Fn+1 (Cmax)                  ……….(1) 

 

Subject to: 

 

Fk ≤ Fj – dj         j-1,…,n+2 ; k ϵ Pj     ……….(2) 

 


( ) ,jA t j m

r ≤ 1         m ϵ  M ; t ≥  0    ……….(3) 
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Fj ≥  0  j=1,….,n+1    ……….(4) 

 

The  objective  function  (1)  minimizes  the  finish  time  of  operation  n+1  (the  last operation),   and   

therefore   minimizes   the   makespan.   Constraints   (2)   impose   the precedence relations between operations 

and constraints (3) state that one machine can only process one operation at a time.  Finally (4) forces the finish 

times to be non- negative. The JSP is amongst the hardest combinatorial optimization problems. The JSP is NP- 

hard  (Lenstra  and  Rinnooy  Kan,  1979),  and  has  also  proven  to  be  computationally challenging. 

 

2.1 Simulated Annealing 

Simulated Annealing (SA) is motivated by an analogy to annealing in solids. The idea of SA comes 

from a paper published by Metropolis etc al in 1953 [Metropolis, 1953]. The algorithm in this paper simulated 

the cooling of material in a heat bath. This is a process known as annealing. If a solid is heated up to the melting 

point of that metal and then cool it, the structural properties of the solid depend on the rate of cooling. If the liquid 

metal is cooled very slowly, large crystals will be formed. However, if the liquid is cooled quickly the crystals 

will contain imperfections. Metropolis's algorithm simulated the material as a system of particles. This algorithm 

simulates the cooling process by slowly lowering the temperature of the system until it converges to a steady, 

frozen state. In 1982, Kirkpatrick et al (Kirkpatrick, 1983) took the idea of the Metropolis algorithm and applied 

it to optimization problems. The idea is to use simulated annealing to search for feasible solutions and converge 

to an optimal solution. 

Simulated annealing refers to the annealing process done on a computer by simulation. In this model, a 

parameter T, equivalent to temperature in annealing, is reduced slowly.  The law of thermodynamics state that at 

temperature, t, the probability of an increase in energy of magnitude, δE, is given by (Kirkpatrick et al 1983): 

P(δE) = exp(-δE /kt)  

Where k is a constant known Boltzmann's constant. 

The simulation in the Metropolis algorithm calculates the new energy of the system. If the energy has 

decreased then the systems move to this state. If the energy has increased then the new state is established using 

the probability returned by the above formula. A certain number of iterations are carried out at each temperature 

and then the temperature is decreased. This is repeated until the system freezes into a steady state. 

The following equation is directly used in simulated annealing, although it is usual to drop the Boltzmann 

constant as this was only introduced into the equation to cope with different materials. Therefore, the probability 

of accepting a worse state is given by the equation (Kirkpatrick et al 1983): 

P = exp(-c/t) > r  

Where 

c = the change in the evaluation function 

t = the current temperature 

r = a random number between 0 and 1 

 

The probability of accepting a worse move is a function of both the temperature of the system and of the 

change in the cost function. It can be valued that as the temperature of the system decreases the probability of 

accepting a worse move is decreased. This is the same as slowly moving to a frozen state in physical annealing.  

Also note, that if the temperature is zero then only better moves will be accepted which effectively makes 

simulated annealing act like hill climbing. The following algorithm is mentioned by Russell, 1995. 

Function SIMULATED-ANNEALING(Problem, Schedule) returns a solution state 

Inputs :Problem, a problem 

 Schedule, a mapping from time to temperature 

Local Variables :Current, a node 

Next, a node 

T, a “temperature” controlling the probability of downward steps 

 

Current = MAKE-NODE(INITIAL-STATE[Problem]) 

For t = 1 to  do 

T = Schedule[t] 

If  Termination Condition then  

return Current 

Next = a randomly selected successor of Current 

E = fittness[Next] – fittness[Current] 

if E > 0 then  

Current = Next 
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else if (exp(-E/T) > probability then 

Current = Next  

 

2.2 Genetic Algorithm (GA) 

Genetic  algorithms  are  adaptive  methods,  which  may  be  used  to  solve  search  and optimization 

problems (Beasley et al. (1993)). They are based on the genetic process of biological organisms. Over many 

generations, natural populations evolve according to the principles of natural selection, i.e.  Survival of the fittest, 

first clearly  stated  by Charles Darwin in The Origin of Species. By simulating this process, genetic algorithms 

are able to evolve solutions to real world problems.   

Before a genetic algorithm can be run, an appropriate encoding (or representation) for the problem must 

be developed. A fitness function is also required, which assigns a figure of merit   to   each   encoded   solution.   

During   the   run,   parents   must   be   selected   for reproduction, and recombined to generate offspring. It  is  

assumed  that  a  solution  to  a  problem  may  be  represented  as  a  set  of parameters. These parameters 

(known as genes) are coupled together to form a string of values (chromosome).  In  genetic  terminology,  the  set  

of  parameters  represented  by a particular  chromosome  is  referred  to  as  an  individual.  The fitness  of  an  

individual depends on its chromosome and is evaluated by the fitness function.  

The  individuals,  during  the  reproductive  phase,  are  selected  from  the  population  and recombined,  

producing  offspring,  which  involve  the  next  generation.  Parents  are randomly selected from the population 

using a scheme, which favors fitter individuals. Having  selected  two  parents,  their  chromosomes  are  

recombined,  typically  using  mechanisms of crossover and mutation. Mutation is usually applied to some 

individuals, to guarantee population diversity.  The basic genetic pseudo code is as follows. 

 

Genetic Algorithm 

{ 

Generate initial population Pt 

Evaluate population Pt 

While stopping criteria not satisfied Repeat 

{ 

Select elements from Pt  to copy into Pt+l  

Crossover elements of Pt  and put into Pt+l  

Mutation elements of Pt  and put into Pt+l  

Evaluate new population Pt+l 

Pt  = Pt+l 

} 

 

} 

2.3 Proposed Hybrid Evolutionary Optimization Model 

 

The following steps explains the Proposed SA-GA-Hybrid Model for solving JSSP 

1. Initialize the solution  X  of size [p x (rxc)] (where r x c is the size of the JSSP and p is the population size) 

2. For Each Generation Repeat 3 to 6 

3. Xmin  X1  ; Fmin  Fittness(X1) ; Current  X1 

4. Do GA based perturbation on  X and produce Xnew 

             T = Schedule[t] 

        If  SA_Termination_Condition then  

            Go to 8 

        Xnew= GeneticOperationsOn(X) 

5.      Calculate Fitness of Xnew 

         Fnew= Fittness(Xnew) 

          Where 

                     Fnew be the p x 1 matrix which will contain the   

                     individual fitness values. 

 6.    Main SA based Check   

        [FSorted, Index]  sort(Fnew) ; 

         Next  FSorted (top) 

         E = fittness[Next] – fittness[Current] 

         if E > 0 then  

              Current Next 

         else if (exp(-E/T) > probability then 
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              Current  Next  

7.       X(Index (top))  Current 

              go to  step 4 

8.     Finally return the results 

             Makespan   fittness[Current] 

   BestSolution  Current 

  Stop. 

 

The following is an example for a 3 x 3 JSSP. 

 

Table 1 :  A 3x3 JSSP  
Job Operations routing (processing time) 

1 1(3) 2(3) 3(3) 

2 1(2) 3(3) 2(4) 

3 2(3) 1(2) 3(1) 

 

The one of the optimum schedule of the above problem is   [ J1,1, J3,1, J2,1, J1,2, J3,2, J2,2, J2,3, J1,3, J3,3 ]. Here, for 

example,  J1,2 represents the operation 2 of the Job 1. Figure1shows one of such a optimum solution for the 

problem represented by “Gantt-Chart". 

 
Figure 1 :  The Gantt-Chart Representation of the Solution of the above 3x3 Problem   

 

If we denote the operations of the job as follows, 

Job1: Op1, Op2, Op3  

Job2: Op4, Op5, Op6  

Job3: Op7, Op8, Op9  

Or simply 

1  2  3 

4  5  6 

7  8  9 

 

then,  the schedule [ J1,1, J1,2, J1,3, J2,1, J2,2, J2,3, J3,1, J3,2, J3,3] or simply [1, 2, 3, 4, 5, 6, 7, 8, 9]  will be 

the one of the known worst case schedule which will satisfy all the conditions of the JSSP. But in this case, the 

makespan will not be optimum. The schedule  [ J1,1, J3,1, J2,1, J1,2, J3,2, J2,2, J2,3, J1,3, J3,3 ] or simply [1, 7, 4, 2, 8, 5, 

6, 3, 9]  will be the one of the best know optimum solution. Here the strings “1, 2, 3, 4, 5, 6, 7, 8, 9” and “1, 7, 4, 

2, 8, 5, 6, 3, 9” represents solutions and known as valid strings. 

In GA, a legal string or a illegal string (of numbers) which represent the order of the schedule can be 

represented by a chromosome. For example, the known worst case solution can be represented as a chromosome 

of GA by a string “1, 2, 3, 4, 5, 6, 7, 8, 9”. Similarly, the chromosome of GA “1, 7, 4, 2, 8, 5, 6, 3, 9” will 

represent a legal string which is an optimal solution of JSSP. And for example, the chromosome “3, 9, 4, 2, 1, 5, 

6, 7, 8” will be a invalid string which correspond to a illegal operation or schedule since this schedule will not 

satisfy the conditions of JSSP. 

So, if the initial selection of chromosomes of GA with random values, then there will be lot of invalid 

strings in the initial guess. The scope of the evolutionary algorithm is to permute  the most optimal string to better 

most optimal string which will hopefully make that string as a legal string in proceeding generations/steps and 

finally it will end up with a string belongs to a better solution or optimal schedule with minimum makespan. 

This assumption will be good and can produce meaningful solutions for lower order scheduling 

problems such as 3x3 JSSP or 4x4 JSSP. But, it may produce illegal solutions even after very long runs in the 

case of higher order scheduling problems like 15x15 JSSP. Because, if we randomly chose initial population then 

there will be much chance for getting all illegal strings in the initial set which belongs to no nearby solution. So 

the fitness calculation methods will lead to meaningless fitness values and the selection method will also be 

incapable of selecting a better solution in each generation or step. So in each step of the evolutionary process 

there will not be any guaranty of getting progressive solution.  
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So we believe that the random selection of initial solution/seed in an evolutionary algorithm will not lead 

to a better result in higher order scheduling problems such as 15x15 JSSP. So in this work, we have evaluated the 

performance of two evolutionary optimization techniques SA and GA with different initial conditions.  

 

 

III. Results And Analysis 
In the experiments, we have given the known worst case solution as initial “seed” for the evolutionary 

process. We expect that, the system will be capable of producing at latest one meaningful legal string in every 

generation/step/iteration and hence there will be a much good probability of achieving a better solution in the 

succeeding generations or steps. 

 

3.1 Analysis of Performance with Different Problem Size 

The GA was run for 100 generations with population size of 100. The SA was run for 3000 iterations 

since this simple SA will only handle one solution at a time. 

  

The following figure shows a result (makespan=68) found by the GA based method for a 6x6 problem.  

 

 
Figure  2 : Solution found by GA for a 6x6 Problem. 

The following figure show a s result (makespan=77) found by the SA based method for a 6x6 problem. 

 

 
Figure  3 : Solution found by SA for a 6x6 Problem 

 

The following figure shows a result (makespan=62) found by the SA-GA-Hybrid based method for the same   

6x6 problem.  

 
Figure  4 : A Solutions found by SA-GA-Hybrid for a 6x6 Problem . 

 

The following figure shows another result (makespan=61) found by the SA-GA-Hybrid based method for the 

same   6x6 problem. 



A Hybrid Evolutionary Optimization model for Solving Job Shop Scheduling Problem using GA… 

DOI: 10.9790/0661-17611624                                         www.iosrjournals.org                                         22 | Page 

 
Figure  5: Another Solutions found by SA-GA-Hybrid for a 6x6 Problem  

 

The Following fugures show the average fitness of the two methods over generations.  If we see these plots, we 

can realize that both the algorithms behaves in a similar fashion.  

 

 
 

 
Figure  6 :  The Average Fitness Plot  of the Solutions found by GA and SA-GA-Hybrid algorithm for a 6x6 

Problem . 

 

The Following fugures show the best  fitness of the two methods over generations.  If we see these plots, we can 

realize that proposed SA-GA-Hybrid algorithm performes little bit better than the normal GA . 

 

 
Figure  7 :  The Best Fitness Plot  of the Solutions found by GA and SA-GA-Hybrid algorithm for a 6x6 Problem  

3.2  Performance in terms of speed 
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To measure the performance in terms of speed, the model was run with problems of different sizes and the results 

were tabulated as follows: 

Table 2 : The time taken for different JSSP size  

Sl.No JSSP Size 

Time Taken(sec) 

GA SA 
SA-GA 

Hybrid 

1 3x3 2.87 8.44 2.86 

2 4x4 3.61 9.14 3.47 

3 6x6 5.70 10.51 5.61 

4 10x10 16.75 12.72 16.85 

5 15x15 58.28 19.82 55.73 

The following figure shows the performance in terms of time with respect to different JSSP problem 

size. If we carefully see the lines of GA and SA-GA Hybrid, then we can say that the performance of SA-GA 

Hybrid is little bit better than GA in some cases and almost equal in some cases. 

 
Figure  8 : JSSP Size vs Time Chart 

 

3.3 Convergence Capability of the Algorithms 

The convergence was measured in terms of makespan for different size of the problems was tabulated 

below. We only considered the convergence up to the first 100 iterations in the case of GA and SA-GA-Hybrid 

model during its run. 

To measure the performance in terms of convergence, the model  was tested with problems of different 

sizes and the results were tabulated as follows: 

 

Table 3 : Startup with known worst case solution 

Sl. 

No 

JSSP 
Achieved Optimal Solution 

(Makespan) 

Size 

Known 

optimum 

value 

GA SA 
SA-GA 

Hybrid 

1 3x3 12 12 12 12 

2 4x4 272 272 286 272 

3 6x6 55 68 72 61 

4 10x10 902 2214 2899 2011 

5 15x15 1268 6771 8241 6637 

 

The following figure shows the performance in terms of Makespan with respect to different JSSP problem size. 
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Figure  9: JSSP Size Vs Makespan Chart. 
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Even though they arrived solution is far from the optimal solution, the better performance in the case of 

SA-GA-Hybrid is very obvious. 

 

IV. Conclusion And Future Work 
The algorithms have successfully implemented two basic evolutionary models for solving JSSP using 

GA & SA, and also the proposed SA-GA-Hybrid. They arrived results showing that the models produced optimal 

or near-optimal solutions medium level job shop scheduling problems in a shot duration.  While initializing with 

known, worst case solution, the evolutionary process was capable of converging into meaningful and more 

optimum solutions. Further, as shown in the convergence curves in the previous section, The SA-GA-Hybrid 

performed in a very better way than GA. Future works may address the issued involved in improving the 

performance of the SA-GA-Hybrid for high dimensional problems. 
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