IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661,p-1SSN: 2278-8727, Volume 17, Issue 5, Ver. V (Sep. — Oct. 2015), PP 01-07
Www.iosrjournals.org

An application of flexible query interface to relational databases

Onwuachu Uzochukwu C, Oghenekaro, Linda U
Department of Computer Sciences, Imo state University, Owerri, Nigeria.
Department of Computer Sciences, University of Port Harcourt, Choba, Nigeria.

Abstract: The use of databases has for long been for the computer elites in the society as well as multinationals
that can pay for their services, and these has inhibited the scope and wide use of database applications. The aim
of this paper is to develop yet another flexible query interface for relational databases that is user friendly and
has the capability to adequately help users work with databases without a thorough knowledge of database
programming. It also provides guidelines for users interested in learning the technicalities involved in database
query writing. The proposed system uses an object oriented methodology and was implemented using Java
programming language.From the result, the system shows a high level of flexibility in database query
processing.

Keywords: Database, flexible query, Interface, object oriented and Java programming.

I. Introduction

The absence of a flexible and intelligent database query interface for non-expert users has been an issue
of concern for ages for the populace. A general information management system that is capable of managing
several kinds of data, stored in the database is known as Database Management System (DBMS). The DBMS
grants support for logical views of data that are separate from the physical views, i.e. how the data is actually
stored in the database. By permitting applications to define, access, and update data through a Data Definition
Language (DDL) and Data Manipulation Language (DML) combined into a declarative query language such as
the relational query language SQL, the separation is accomplished (Ribeiro andMoreiro, 2003).

Structured Query Language (SQL) is an ANSI standard for accessing and manipulating the information
stored in relational databases. It is comprehensively employed in industry and is supported by major database
management systems (DBMS). Most of the languages used for manipulating relational database systems are
based on the norms of SQL. They work on the basis of Boolean interpretation of the queries: a logical
expression is the only accepted selection criterion and the response always encompasses only these tuples for
what the expression results in a true value. But some user requirements may not be answered explicitly by a
classic querying system. It is due to the fact that the requirements’ characteristics cannot be expressed by regular
query languages (Hallet, 2006).

In recent times, there is a rising demands for non-expert users to query relational databases in a more
natural language encompassing linguistic variables and terms, instead of operating on the values of the
attributes. Flexible query interface, a promising approach, enhances the users in database management. They
work on the basis of Boolean interpretation of the queries: a logical expression is the only accepted selection
criterion and the response always encompasses only these tuples for what the expression results in a true value
[Neelu, etal 2009]. But some user requirements may not be answered explicitly by a classic querying system. It
is due to the fact that the requirements’ characteristics cannot be expressed by regular query languages. Many
novel-generation database applications stipulate intelligent information management necessitating efficient
interactions between the users and database. Flexible database systems, a promising approach, enhance the users
in performing database queries(Zongmin 2007). The research and advancement of flexible query interface have
lately emerged and have fascinated the attention of many people. It is to this end this research was done, so as to
make database querying in distributed platforms even much more flexible.

Il. Literature Review

Neelu etal, (2009), proposed an intelligent layer for database which is responsible for manipulating
flexible queries. Initially, the flexible queries from users in their natural language are submitted to intelligent
layer and this layer converts the amorphous query into a structured SQL query. The shaped query is executed
and the results are presented to the user. Afterwards, on the basis of results, feedback and the acceptance or
rejection of the results are requested from the user. It enables the design of a knowledge based self-learning
system based the values obtained from user, which will aid the selection of appropriate SQL query, when a same
flexible query is issued in the future. The experimental results demonstrate the effectiveness of the proposed
intelligent database system.

DOI: 10.9790/0661-17550107 www.iosrjournals.org 1| Page

An application of flexible query interface to relational databases

Ben, (2014) proposed the data, information and knowledge based technology of Smart/ Intelligent User
Interface (IUI) design, which interacts with users and systems in natural and other languages, utilizing
the principles of Situational Control and Fuzzy Logic theories, Artificial Intelligence, Linguistics,
Knowledge Base technologies and others. The proposed technology of IUI design was defined by multi-
agents of (a) Situational Control and of data, information and knowledge, (b) modeling of Fuzzy Logic
Inference, (c) Generalization, Representation and Explanation of knowledge, (c) Planning and Decision-making,
(d) Dialog Control, (e) Reasoning and Systems Thinking, (f) Fuzzy Control of organizational unit in real-time,
fuzzy conditions, heterogeneous domains, and (g) multi-lingual communication under uncertainty and in Fuzzy
Environment.

Oussama, (2001), indentified that Database flexible querying is an alternative to the classic one
for users. The use of Formal Concepts Analysis (FCA) makes it possible to make approximate answers
that those turned over by a classic Database Management System (DBMS). Some applications do not need
exact answers. However, flexible querying can be expensive in response time. This time is more significant
when the flexible querying require the calculation of aggregate functions (“Sum”, “Avg”, “Count”, “Var” etc.).
So, he proposed an approach which tries to solve this problem by using Approximate Query Processing (AQP).
Donald, (1990), at the Unisys center for advanced information technology paoli, Pennsylvania developed an
Intelligent Database Interface (IDI) with a cache-based interface designed to provide Artificial Intelligence
systems with efficient access to one or more databases on one or more remote database management systems
(DBMSs). It could be used to interface with a wide variety of different DBMSs with little or no modification
since SQL was used to communicate with remote DBMSs and the implementation of the ID1 provides a high
degree of portability. The query language of the ID1 is a restricted subset of function-free Horn clauses which
is translated into SQL. Results from the ID1 are returned one tuple at a time and the ID1 manages a cache of
result relations to improve efficiency. The ID1 is one of the key components of the Intelligent System Server
(ISS) knowledge representation and reasoning system and is also being used to provide database services for the
Unisys spoken language systems program.

Neelu, et al, (2010), in their paper discussed the mapping of natural language queries to SQL. They
further proposed a general architecture for an intelligent database interface and also a real implementation of
such a system which can be connected to any database. One of the main characteristics of this interface is
domain-independence, which means that this interface can be used with any database. Another characteristic of
this system is ease of configuration. The intelligent interface employs semantic matching technique to convert
natural language query to SQL using dictionary and set of production rules. The dictionary consists of semantics
sets for tables and columns. The shaped query is executed and the results are presented to the user. This
interface was first tested using Supplier-Parts database and secondl y with Northwind database of SQL server
7.0.

Nittaya and Kittisak, (2012), presented a paper at the International Journal of Database Theory and
Application which presents knowledge acquisition method focusing on association pattern mining, its
implementation, and a systematic method of rewriting query with association patterns and materialized views.
They research performed a preliminary efficiency tests of the system. The experimental results demonstrates the
effectiveness of the system in answering queries sharing the same pattern as the available knowledge and the
pre-computed views

Ribeiro, and Moreira, (2003), presented a paper which describes a fuzzy query interface for a business
database. Hence, queries in natural language with pre-defined syntactical structures are performed, and the
system uses a fuzzy natural language process to provide answers. This process uses the fuzzy translation rules of
the meaning representation language PRUF. The interface was built for a relational database of the 500 biggest
non-financial Portuguese companies. The attributes considered are the economic and financial indicators.
Examples of pseudo natural language queries, such as “is company X very profitable? ” or “ are most private
companies productive? ”, are presented to show the capabilities of this human-oriented interface.

Antonio et al (2006), present an overview of Flexible query languages for relational databases which is
the most important proposals for human-oriented query languages for relational databases, based on fuzzy sets
theory. To highlight important issues concerning communication with databases, they propose two taxonomies:
the first taxonomy deals with flexible query languages in crisp relational databases and the second deals with
flexible query languages in fuzzy relational databases. It helps database designers and users understand and
select the best approaches to solve their problems.

I11. Methodology
Figure 1 describes the flowchart of the proposed system. The Login Interface requires a USERNAME
and PASSWORD. The Flexible Query Interface provides the user with the server name of all the servers in the
system. From the list of server provided by the system the user can now select the required server. The sever
status will indicate connected immediately the user is connected to the server. All the created databases in the

DOI: 10.9790/0661-17550107 www.iosrjournals.org 2 | Page

An application of flexible query interface to relational databases

server will appear for the user to select the required database. From the FQI, there is a button the list out all the
tables that is found in database. The user is required to select from the list of table and FQI still gives the user an
alternative to create tables when the desired table is not available. The user executes query if the desired query is
already written and there is also an alternative for the user to write his/her own query. After successfully
executing a query for queries that are often executed, you can save such query as a script file with the Save

Script button for further execution.

| Log'in
¥

1.7

Input User Mame and

MNo
15 login successful?

| Yes

| Select Server Mame

| Select Database Nalme |

| Select Table name |
hJ

=~ Isthetables Available?

| Select Querv

Yes

| Execute Query

Figure 1.

Createtables

Is the Query Available? Bl

Access Denied

Write Query

Flowchart of the Proposed System

In figure 2 the login class connects the user to the login section, and then in the login session helps the
user in Flexible Query Interface. The user can as well access the database directly from the login section. The
query processor will always query the database to get the required information.

B . i 8 ol Connee o,
b irport java sl PropanedSastesnent
privale DEASCOME BOCORE

Eon Clapees Guery PTOCES ROT.
FEEO COME LOgNEEE R0,

Prograss pgenas Progiess(); prevle & connect;
PO Oheok Lissr (Lsrnams, Pass); pubde Siring getPesrtiame]
KL Inar=='iabdi] Fiturn P Faere.
PO st Bis{ T rus) } 3
e voal BeiPeeriame| Sring i
Wi Peartiame = .

DataBaseConnect Class

#rpon v o Fie NP cungExcepon;
T o0 I R

mpar ava sal Connachon

srport v 8l SOLExCapton.

rrpor v sl DﬂvllMl’!lﬂﬂ

PO jay B el inetiddne:

T e LA A N E 8P

ot e Ut egeng Lagge:

Priate COrnel10n CONNasl
privats SIng serveiEme |
privabe Sirng password = “null;
privabe Strng DBNae = null

private woid l-lMNIln-|'hnp-:nf
T Posrbiame =

JDBC AP

QueryProcessor Class

g v e Fie.

D e e

O s o F-rClurpulélmm
rport jares o Pl Foaacies,

mpart s o, Filsnter.

ot jaes o PreaSirean,

G i S GO B
el jrve 88 Resuliae
et s 801 ResuRfatiletaData;

irpert e Al Scanner
e e oA Vo
R e S T D

IS CONNGE i SDED,
privaie Conneci reconn

bl voud getServens(i
Lin AP eers O Network | Siring TCP Port 1433),
1

Prieate woud Connes iToPeen Sirng |
eLin D Rers geifeleciediiemn;
raturn e

PSS v @ DUy (]
#connSiatue geiTexi(). slarisWlih(Daconnecied’))|
IDptionFane. showkless. Sor

publc Connection getConnec tiond)
mram. SOLExceptan, Clanshotf sundExceptan

Guu R e P PR WS T TE P
warverblame = guiSercer el

Siring url = b Bglerver " sservarHames” 1413, +

atabanaMETE = sCAMATE+ T R AW R e
COnnect = DxiverManeger. atormes ton] ur }

MS SOL SERVER DatnBass

(&7
FEUTA Sl
(Tables)] Object
Tl prwvain Siring geiervorHamal
N : Ecarwer rif i = nult
ty
Database Fis = o Boannen v FlsReader sarverhsma. bt}
} caach | FiehotF oundEacepson axh |
Logger gatlogaer
(Funclicns) Databane (DtAcces s class gethame) ol Lavel SEVERE, null ax)}
Objoct PP P pp—r
(Triggers) renem serverbiame;

age!
u-a ary Barver. Pmass iy connett
Sige’
H0 s ainG mmua WRESEAGE) N#tary.
]
Sinng sqESOLC B geTT sat();

Iy (SIESTESAL SHFE = ABeonn craatsSIEementi)) |
#EGLGuery getT anip e W “selmar” |
SOLGusny. et eni) simris VWi " Saleci"]||
SOLCusry QAT euil} S WEn " SELECT 1)
MeauliSed ra = bk sancubeOuery(sl)

FAesuatetitetsDaln e = rs gotviemCan:
A SAATHYS = T O ARV QU b
pes el re1 = il axaculelipaats] ol)
]

Figure 2: UML Class Diagram of the Proposed System

DOI: 10.9790/0661-17550107

www.iosrjournals.org

3| Page

An application of flexible query interface to relational databases

IV. Experiment And Results
The user needs to have the username and password before he/she can access the system. Immediately
the username and the password are entered to the system, the login button takes you to the FQI platform. Figure
3 shows the Flexible Query Interface Login Module.

Fexible Query Interface Login Console
Username :
Password :
=
Laogin .

Figure 3: Flexible Query Interface Login Module

Figure 4 shows Flexible Query Interface module. The FQI provides the user with the server name of all
the servers in the system. From the list of server provided by the system the user can now select the required
server. The sever status will indicate connected immediately the user is connected to the server. All the created
databases in the server will appear for the user to select the required database. From the FQI, there is a button
the list out the entire table that is found in database. The user is required to select from the list of table and FQI
still gives the user an alternative to create tables when the desired table is not available. The user executes query
if the desired query is already written and there is also an alternative for the user to write his/her own query.

| Fexible Query Interface

Fexible Query Interface

Server Name: | ENEFIOK-PC v Database Name: | Select TJ |_Connect | | Disconnectfrom Server |
Server Status: Disconnected All Tables Found: | Select ¥
All Column Found: | Select TJ | Add Selection to Query |
Select All Record

Query Executing

Execute Query Clear Query

Result Set
Emply | Empty | Empty | Empty

Figure 4. Flexible Query Interface module

Figure 5 shows the flexible query interface with the query result. After successfully executing a query
for queries that are often executed, you can save such query as a script file with the Save Script button for
further execution.The Execute Query from Script button allows you to execute queries that are save on script
file. After every successful execution of queries (e.g SELECT STATEMENT) the result are displayed on the
Result Set Table but for other queries like the DDL or DML, a message dialog box displays the success/error
message.

DOI: 10.9790/0661-17550107 www.iosrjournals.org 4| Page

An application of flexible query interface to relational databases

|| Fexible Query Interfa
File Edit

Server Stalus: Connected to El

All Column Found: \ PaymentType

=

Fexible Query Interface
SenerName: | ENEFIOK-PC v

Database Name: | BankDB TJ | Connect | | Disconnectfiom Server |

All Tables Found. \Custumen_sdgev v 8 Found

NEFIOK-PC Server

¥| | AddSelectionto Query |

Query Executing.

select* from CustomerLedger

SelectAll Record

Execute Query Clear Query

Result Set

Cust_ID DocType Trans_ID PaymentType Debit Credit Balance Post_Date Post_Time Usemame TrackiD

00144720641 Official Receipt | STH1456493138 | Cash 0.0000 50000.0000 -50000.0000 2014-03-26 00:_| 2014-03-26 07- Payment A

00144720641 Official Receipt | STH82856331 Cash 0.0000 50000.0000 100000.0000 2014-04-30 00:.. | 2014-04-30 08: Payment)

0010407768 Official Receipt | STN105294422 | Cash 0.0000 150000.0000 -150000.0000 2014-03-28 00:_| 2014-03-28 06 Payment

00144720641 Official Receipt | 8TN32999797 | Cash 0.0000 50000.0000 150000.0000 2014-05-3100: . | 2014-05-31 08: Payment

00144720641 Official Receipt | TN33268296 | Cash 0.0000 50000.0000 200000.0000 2014-06-18 00: | 2014-06-18 09 Payment

00144720641 Official Receipt | 8TN33492070 | Cash 0.0000 100000.0000 300000.0000 2014-07-18 00 . | 2014-07-18 09: Payment

00144720641 Official Receipt | STN33772450 | Cash 0.0000 100000.0000 400000.0000 2014-07-3100: | 2014-07-3109: Payment

00144720641 Official Receipt | 8TN85326280 | Cash 0.0000 100000.0000 500000.0000 2014-08-1300: . | 2014-08-13 09: Payment

00144720641 Official Receipt | 8TN106541793 | Cash 0.0000 100000.0000 600000.0000 2014-08-30 00: | 2014-08-30 15: Payment

00144720641 Official Receipt | 8TN106635053 | Cash 0.0000 100000.0000 700000.0000 2014-09-06 00 . | 2014-09-06 15: Payment

009193013 Official Receipt | STN92614959 | Savings 0.0000 500000.0000 0.0000 2014-04-12 00| 2014-04-12 15: Last Payment

0045465047 Deposit STN457610379 | Current 0.0000 10000.0000 0.0000 2014-04-27 00: . | 2014-04-27 19: Last Payment

0045494341 Deposit STN457878827 | Current 0.0000 20000.0000 0.0000 2014-04-27 00: | 2014-04-27 19: Last Payment

0010407768 Official Receipt | 8TN32431204 | Cash 0.0000 50000.0000 200000.0000 2014-04-0200: . | 2014-04-02 08: | Chizaram Obanu_| Last Payment

00144720641 Official Receipt | STN440800847 | Cash 0.0000 200000.0000 1000000.0000 | 2014-04-06 00: . | 2014-04-06 10: Payment -
| 00144720641 | Official Receipt | STN441133834 | Cash 0.0000 0.0000 1000000.0000 | 2014-04-07 00: | 2014-04-07 10: LastPayment |7

Result Set

Account_Mo | Cust_ID | Account_Type | Branch | Balance

0042321962 CsT1 Corporate

0051280944 csT2

0061310530 CsT3

0051341126 CsT4 Head-Office

0061356846 Cs8TS Head-Office

0061460477 CSTE Head-Office

0061454209 CsT7 Savings Head-Office 5000

00135299430 CsT8 Savings MNIA 20000

00144720641 CETo Savings MNIA 50000

0010407768 CsT2 Current Head-Office 50000

009193013 009193013 Savings MIA 500000

0045465047 0045465047 Current NIA 10000

0045494341 0045494341 Current NIA 20000

Tabl
Table 2

Result Set

e 1 the Result Set for the query (select*from accounts)

the Result Set for the query (select*from computeprofit)

AccountNo | AcountType | Profit | DateUpdated |
0010407768 Current 400.0000 2014-04-02 00:00:00.0
00144720641 Savings 8760082.1918 2014-04-26 00:00:00.0
009193013 Savings 50.0000 2014-04-1200:00:00.0
0045465047 Current £5.7534 2014-04-27 00:00:00.0
0045494341 Current £57.5342 2014-04-27 00:00:00.0

DOI: 10.9790/0661-17550107

www.iosrjournals.org 5 | Page

An application of flexible query interface to relational databases

Table 3 the Result Set for the query (select*from customer_transaction)

Result Set
Account_No | Trans_Type | depositor | Amount | Trans_Time | Trans_Date
0061484299 Deposit Self 5000 16:35:38 PM 051212013
00138299430 Deposit Self 20000 133305 PN 0312512014
00144720641 Deposit 031262014
0010407768 Deposit Self 50000 06:18:43 AN 0312812014
009193013 Deposit Self 500000 15:32:48 P 041212014
0045465047 Deposit Self 10000 18:04:27 PN 0402712014
0045494341 Deposit Self 20000 19:08:54 PN 0402712014
Table 4 the Result Set for the query (select*from customerLedger)
Result Set
Cust_ID | DocType | Trans_ID | PaymentT... | Debit | Credit | Balance | Post_Date | Post_Time | Username | TrackiD
00144720... | Official Re... | STN1456... | Cash 0.0000 50000.00... |-50000.00... | 2014-03-... | 2014-03-... Payment
00144720... | Official Re... | STNB285... | Cash 0.0000 50000.00... | 100000.0... | 2014-04-... | 2014-04-... Payment
00104077... | Official Re... | STN1052... | Cash 0.0000 150000.0... |-150000.0... | 2014-03-.. | 2014-03-... Payment
00144720... | Official Re... | STNB299... | Cash 0.0000 50000.00... | 150000.0... | 2014-05-.. | 2014-05-... Payment
00144720... | Official Re... | STNB326... | Cash 0.0000 50000.00... | 200000.0... | 2014-06-... | 2014-06-... Payment
00144720... | Official Re... | STN8340... | Cash 0.0000 100000.0... [200000.0... | 2014-07-... | 2014-07-... Payment
00144720... | Official Re... | STN8377... | Cash 0.0000 100000.0... | 400000.0... | 2014-07-... | 2014-07-... Payment
00144720... | Official Re... | STNB532... | Cash 0.0000 100000.0... | 500000.0... | 2014-08-... | 2014-08-... Payment
00144720... | Official Re... | STN1065... | Cash 0.0000 100000.0... | 600000.0... | 2014-08-... | 2014-08-... Payment
00144720... | Official Re... | STN1066... | Cash 0.0000 100000.0... | 700000.0... | 2014-09-.. | 2014-09-... Payment
009193013 | Official Re... | STN9261... | Savings | 0.0000 500000.0... | 0.0000 2014-04-.. | 2014-04-.. Last Pay..
00454650... | Deposit | STN4576... | Current | 0.0000 10000.00... | 0.0000 2014-04-.. | 2014-04-.. Last Pay..
00454943.. | Deposit | STN4578.. | Cument | 0.0000 20000.00... | 0.0000 2014-04-.. | 2014-04-.. Last Pay..
00104077... | Official Re... | STN8243... | Cash 0.0000 50000.00... | 200000.0... | 2014-04-.. | 2014-04-.. | Chizaram...| LastPay..
Table 5 the Result Set for the query (select*from customer)
Result Set
Cust D Tille | Sumame Firsthlame ' HiddeName | NickName | Gender NaritalStatus
010407768 i George Kent Kebin Kelin Male Haried
00144720641 0. Uche Warizu N Do lal Narmed
0045465047 i Promise I T Male Single
0045494341 . Juge Opu] k Hale Single
008183013 Praf. Jaa Dickson Male Single

Table 6 the Result Set for the query (select*from loan)
Result Seit

Cust 1D | LoanType | Loanamo... | TransCrate |
0O 144720. .. HNo Wahala 100000 0. Z2014-04—_ .
OOAS5A550 . o WWahala 2000 0000 2014—-0a—
O0O04A54943 Short Ter. .. 1000000 Z2014-04—_

Once the output requirements are determined, the system designer can decide what to include in the
system and how to structure it so that they require output can be produced. For the proposed software, it is
necessary that the output reports be compatible in format with the existing reports. The output must be
concerned to the overall performance and the system’s working, as it should. It consists of developing
specifications and procedures for data preparation, those steps necessary to put the inputs and the desired output,
i.e. maximum user friendly. Proper messages and appropriate directions can control errors committed by users.

V. Result Discussion
In table 1 the Result Set for the query (select*from accounts) was displayed by just clicking a button.
The columns that were displayed include the account number, customer identity, account type, branch and
balance. In table 2 the Result Set for the query (select*from computeprofit) was displayed by just clicking a
button. The columns that were displayed include the account number, account type, profit and DateUpdated. In
table 3 the Result Set for the query (select*from customer_transaction) was displayed by just clicking a button.

DOI: 10.9790/0661-17550107 www.iosrjournals.org 6 | Page

An application of flexible query interface to relational databases

The columns that were displayed include the account number, transaction type, depositor, amount, transaction
time and transaction date. In table 4 the Result Set for the query (select*from customerledger) was displayed by
just clicking a button. The columns that were displayed include the account number, document type, transaction
identity, payment type, debit, credit, balance, post_time, username and track identity. In table 5 the Result Set
for the query (select*from customer) was displayed by just clicking a button. The columns that were displayed
include the account number, title, surname, midname, gender and maritalstatus. In table 6 the Result Set for the
query (select*from loan) was displayed by just clicking a button. The columns that were displayed include the
account number, loan type, loan amount and transdate.

VI. Conclusion

This research represents a first step toward the design of a complete flexible query system. It is yet
another flexible query interface for relational databases that is user friendly and has the capability to adequately
help users work with databases without a thorough knowledge of database programming. A system designed for
an efficient and flexible database query processing model in distributed system. It supports a more diverse and
richer set of queries, and presents the techniques for flexible query processing.The algorithms of query
processing were described in unstructured systems. The main concern in unstructured systems is how to
processing the query to obtain high quality answers while minimizing the communication cost. This paper
describes how flexible query interface can be used to produce an efficient query system for a relational database.

References

[1] Antonio Rosado, Rita A. Ribeiro, SlawomirZadrozny, JanuszKacprzyk.(2006), Flexible query languages for relational databases:
An overview. In: Flexible databases supporting imprecision and uncertainty, Gloria Bordogna and Giuseppe Psaila (eds), Studies in
Fuzziness and Soft Computing Series, Vol 203, Springer (2006).

[2] .Ben K., Kazar O., Caplat G., [2014] “intelligent query processing for semantic interoperable information systems” Department 1of
computer science, university of Mohammed KhiderBiskra, Algeria

[3] Brodie M. [2008], “Future Intelligent Information Systems: Al and Database Technologies Working Together” in Readings in
Artificial Intelligence and Databases, Morgan Kaufman, San Mateo, CA.

[4] Donald P. McKay and Timothy W. Finin [1990], “The Intelligent Database Interface: Integrating Al and Database systems", In
Proceedings of the 1990 National Conference on Artificial Intelligence: 677-684.

[5] Hallett C., [2006] “Generic Querying of Relational Databases using Natural Language Generation Techniques”, Proceedings of the
Fourth International Natural Language Generation Conference, pages 95-102.

[6] Huanliang Sun, YubinBao, Faxin Zhao, Ge Yu and Daling Wang [2004], "CD-Trees: An Efficient Index Structure for Outlier
Detection”, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, vol. 3129, 2004.

[71 Kacprzyk, J., Zadrozny, S. (2001). Computing with words in intelligent database querying: standalone and Internet-based
applications, Information Sciences, 134, Elsevier, pp.71-109

[8] Murugan K., and Ravichandran T.[2012]“ event matching approach based human language interface in databases” . International
journal of computational intelligence research (IJCIR)

[9] Neelu N., Sanjay S., and Mahesh M.[2009] “Design of an intelligent layer for flexible querying in database” International Journal
on Computer Science and Engineering Vol.1(2), 30-39.

[10] Neelu N., Sanjay S., and Mahesh M.[2010], “An Intelligent Interface for relational databases” International Journal on Computer
Science and Engineering Vol.1(5), 330-340

[11] Nittaya K. and Kittisak K.,[2012] “Semantic-based query answering supported association patterns and materialized views “. Data
engineering research unit, School of computer engineering, Suranaree University of Technology, NakhonRatchasima 30000,
thialand.

[12] OussamaTuli, Minyar S., Habib O.[2001] “Intelligent Database Flexible Querying by Approximate Query Processing (AQP)”.
Faculty of science of Tunis, Campus Universitaire 1060 Tunis, Tunisia

[13] R. A Ribeiro, A. M. Moreira.(2003), Fuzzy query interface for a business database. International Journal of Human-Computer
Interfaces Vol. 58, No 4, 363-391

[14] TorstenHothorn, David A. James, and Brian D. Ripley. [2001]” R/S interfaces to databases. In Proceedings of the Distributed
Statistical Computing 2001Workshop, http://www.ci.tuwien.ac.at/Conferences/DSC-2001, 2001.Vienna University of Technology.

[15] Zongmin M,[2007] "Intelligent Databases: Technologies andApplications", IGI publishing, 320 pages, 2007.

DOI: 10.9790/0661-17550107 www.iosrjournals.org 7| Page

http://www.ca3-uninova.org/docs/2006-BJ-SpringerORM.pdf
http://www.ca3-uninova.org/docs/2006-BJ-SpringerORM.pdf
http://www.ca3-uninova.org/docs/2003-BJ-IJHCS.pdf

