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Abstract: Among the various challenges to industry, the major challenge is to offer products with high level of 

quality andfunctionality at inexpensive value and short time and energy to market. Component-based software 

development(CBSD) approach have become quite popular from the point of view of quality assurance. The most 

captivating reason for embracing CBSD approach is the conjecture of reuse. The goal of this study is to 

comprehend categorize and inspect prevailing research in CBSD field from quality point of view. The main 

focus is given onproposals that are accustomed to assess the quality of component- based software system 

(CBSS). This paper represents the methodology through which the quality of component-based software system 

can be assured. Quality assurance is taken as a vital research term. In this paper, two main approaches for 

assuring quality are taken under consideration: encapsulation and composition rules. Functional and non 

functional properties are encapsulated as an individual unit to be able to fulfill the product quality demands. In 

this paper, focus is given on two main quality attributes: predictability and reusability. This paper analyze the 
prior work being prepared for quality assurance and compare the work on the foundation of their research 

methodology. No matter what but it is very difficult to develop a software system by fulfilling all the quality 

demands and because of this reason a more determined attempt is required to meet an improved assessment 

approach in the future. 
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I. Introduction 
Software quality is defined as conformance to standards and requirements. Quality assurance should go 

hand in hand while developing the software system because without an appropriate level of quality , the  

component usage will provide ruinous results. A CBSS is a system in which component is used as a basic unit. 

A software component can be considered as a unit of composition with specified interfaces and context 

dependencies. [4] The main aim of component-based development approach is to develop the software system 
by using already existing components and hence there is no need to start from the scratch. 

The main benefits of  CBSS is reusability as software system is developed by using already existing 

components, reduced time to market and hence reduced software production cost.[10] The heart of  component-

based development (CBD)  technology is its software component model which defines the various standards for 

component implementation ,naming, customization, interoperability, deployment and composition [4]. The main 

use of component model is for composition of components. Composition  defines the following key points: 

 Specifies the particular components used to develop the system. 

 What type of interfaces these components have. 

 What are the pattern of their execution. 

 

The reason for doing this review is to present the advantages of using component- based approach for 
improving the quality of software system. CBD is an important emerging topic which can provide concepts 

which provides us with more sophisticated methods as compared to traditional  techniques. This paper surveys 

the previous work being done for assuring the quality of CBSS and it also reveals the strength and weakness of 

these approaches for assuring quality. The two main quality attributes that are taken into consideration are 

predictability and reusability. 

This paper is organized as follows. In section II , the previous work being done for assuring the quality 

of CBSS is explained briefly. In section III the research method for assuring the quality is described  and various 

research questions are identified and the observations are explained . In section IV conclusions are derived.

 

II. Related Work 
There are many research works being done for enhancing the quality of CBSS and quality assurance is 

considered as a key research content in our review work. The literature review of various papers is being 

explained below in much detail. 
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Seceleanu et al.(2013) [15] has discussed the method by which the system design can be simplified. 

Component- based design technique is used for developing software. It is a technique in which a software 

system is developed by using commercial off the shelf (COTS) components and hence increases the 
predictability and reuse of the software system.. According to this paper a software design can be simplified if 

we encapsulate both functional and extra functional attributes (quality assurance). This approach has several 

challenges like this method is quite complex and in many case not achievable. Abdellatief et al.(2013) [1] has 

classified and studied existing metrics for component- based software system (CBSS) and identified the 

elements for evaluating the quality of CBSS. Two metrics discussed are component consumer and component 

producer. According to this paper the true benefits of component- based software system can be achieved if the 

components are evaluated by using appropriate metrics. 

Nikolik et al.(June 2012) [14] has discussed about the economic metrics. The main aspects taken into 

consideration for assuring quality are artifact defect and artifact test cases. The concept of test cases is used 

which is a procedure applied to artifact on order to obtain actual results. The cost and the value of test cases are 

considered as important economic variables of quality assurance economics. Defects are handled by using three 
techniques prevention, defect removal, defect avoidance. The test case cost value is used to calculate ROI which 

is a performance measure used for evaluating efficiency. Case study is performed in this paper in order to 

determine the change in test case with respect to changes in artifact. Based on the case study some guidelines 

are introduced for maximizing the test case value and ROI and minimizing the test case cost. In order to get 

more practical knowledge about the metrics experimentation is needed on large industrial projects. In order to 

make defect avoidance possible more experimentation is needed. Experimentation on economic release criteria 

is also needed. Li et al.(2012) [11] pointed out that the true benefit of dynamic configuration can only be 

achieved if it causes minimum disruption to the ongoing application. The main issue on which this paper 

concentrates are the properties of configuration framework which include dynamic version control (DVM), 

reconfiguration timing control, stateless equivalent and controllability overhead. Various methods are used to 

preserve the features of quality of service (QoS)  assurance. In order to control the overheads the reconfiguration 

mechanism is divided into three phases: installation, transformation, removal. The measure challenge for 
implementing the concepts discussed above is that these concepts can only be applied to local process, hence 

component state migration is the biggest challenge. Esposito et al.(June 2011) [6]  has given an appropriate 

method for assessing the quality of each component in a CBSS and selecting that component which fits better 

according to the system requirements. A framework is formed which can achieve the above mentioned 

objectives. A customized quality model is used which describes the quality attributes and will properly evaluate 

off the shelf products. A personalized and stratified definition of quality model is being provided. The approach 

used in this paper is very flexible so that changes can be easily made according to current state of art and the 

approach is mainly used for critical software. Crnkovic et al.(2010) [4] focused on component models and gives 

a brief description about currently available software component models. This paper defines the component 

models as set of standards which are used for implementing, customizing, composing and deploying of 

components. The research methodology used in this paper is based on an empirical approach which follows 
three main steps: observations and analysis, classification, validation. This paper has given a brief description 

about basic characteristics and principles used for component models which includes lifecycle, construction and 

extra functional properties.. The main aim of this paper is to enhance the understanding of component- based 

approach. 

Lau et al.(2007) [10] gives a brief description about software components models. The three main 

quality attributes described in this paper which can be achieved by using component- based approach are 

reusability, productivity and reduced time to market. In this paper currently available component models are 

analyzed and classified into a taxonomy suitable for component based development .This paper has given 

description about 13 software component model which include JavaBeans, EJB,COM, .NET, CCM, Web 

services, Koala, Kobra, Acme like ADLs, UML2.0 , PECOS, SOFA and fractal. After the selection of 

appropriate component model their syntax, semantics and composition is explained. The taxonomy explains the 

characteristics of the existing component models. An ideal model is still under survey that would allow 
composition on both deployment and design phase together with the use of a repository. The ideal model should 

have the key characteristics of encapsulation and compositionality. Kenett et. al(2007) [8] explores the quality 

concepts. This paper describes an extended quality conceptual framework which represents an extension of 

software quality framework. Two fundamental concepts discussed in this paper are assuring the quality and 

testing the product. The main aim is to place quality in proper prospective in relation to acquisition and 

development of computer software. Various activities are performed to assure quality which includes 

establishing requirements and controlling the changes, establishing method of implementation and achieving 

specified product quality and finally evaluating process and product quality. These three concepts are explored 

in detail. In order to characterize the extended quality framework a set of definitions and related concepts are 

first specified and explained in detail. The product quality is specified by using product attributes. The 
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definitions forms the basis for establishing quality requirements, methods to help satisfy these requirements, and 

quality evaluation. Liangli et al.(June 2006) [12] describes the method for improving the  testability of CBSS 

and quality assurance is taken as a key research content. In this paper eight types of dependencies have been 
summarized between two components in a component- based system. Two types of graphs are used component 

dependency graph (CDG) and component direct dependency graph (CDDG) and then  dependency relationship 

matrix and direct dependency relationship matrix are defined. Two types of approach code- based and 

specification- based approach are used to find the dependency. Matrix-based approach is used to test a 

component when it is integrated to a component-based system. 

Alvaro et al.(2005) [2] discusses the advantages of using component based approach for software 

development. Reliability quality feature is described in much detail as how reliability is ensured by using a 

component based development approach. According to this paper as COTS components  are reused on various 

occasions , hence they are likely to be more reliable as compared to the components developed from scratch. 

This paper discuses the issues emerged while implementing component based approach and also provide 

appropriate directions for resolving these issues. Three main questions which this paper raises are what to 
evaluate, how to evaluate and who will evaluate. Various quality models are discussed  which are based on 

component technology and software quality experience of the researchers. Apart from reliability other quality 

attributes like functionality, usability, efficiency, portability, maintainability are also discussed. However the 

quality models discussed are not evaluated into academic or industrial scenario due to which the real efficiency 

to evaluate software components using these models remain unknown. Lau et al.(2005) [9]  represents the 

taxonomy of current component models. The purpose of representing this taxonomy is to find out the 

similarities and differences between the currently available models according to  commonly accepted criteria. A 

reference framework for software component model is represented. The syntax, semantics and composition of 

the of the component models are explained in detail. Composition is explained in two phases design phase and 

development phase. Component models are classified according to various categories based on component 

syntax which include JavaBeans, EJB(the components are implemented in java) COM, CCM (these use IDLs to 

define generic interfaces) Kobra, UML 2.0 (components are explained by using architectural design languages). 
This taxonomy clearly  reveals the strength and weakness of currently available component models. As a future 

work we need to find a model that supports predictable assembly which forms the cornerstone for component- 

based development approach. Muccini et al.(June 2005) [13] represents the dependability level in a component-

based software system. Two main issues taken into consideration while determining the dependability are 

quality assurance of reusable software components and quality assurance of the assembled component-based 

system. This paper  mainly evaluates software architecture-based  regression testing methods that warranties 

reusability. This paper mainly concentrates on the factors by which the testing efforts can be reduced and quality 

can be increased. As a future work a more diligent method will be used to meet the above objectives. Xia et 

al.(2001) [16] discuss about component- based software engineering(CBSE) approach. The main area of interest 

of this paper is to study as how quality assurance can be made possible by using CBSE. A risk analyzer tool 

ARMOR is also studied. The main focus is given on system architecture which is a layered and modular 
architecture. The three main component technologies discussed in this paper are CORBA, COM and DCOM, 

Sun’s javabeans and enterprise javabeans. Quality assurance technologies are also studied which include 

reliability analysis model and component- based approach to software engineering. The quality assurance model 

should address to both process of component and process of overall system. The ARMOR tool measures and 

test the quality and risk for software programs. As future work the ARMOR tool is made to evaluate and 

analyze the quality and risk of components and component- based software system.  Dias et al.(June 2000) [5] 

has pointed out that the component- based software development depends mainly upon the quality of the 

components as well as their layout. This paper represents an approach to analyze the architecture and 

component-based development on the basis of statechart semantics. In order to assure the quality , behavior of 

the specified components is also taken into consideration. Both static and dynamic techniques are used for 

analysis process. A gap is found between the state –of-the- art and state-of-practice which is reduced by using 

two approaches : bringing art-to-practice and bringing practice-to-art. If an integrated set of capabilities are used 
for both architecture and component-based development then the quality of the software system can be 

enhanced. 

 

III. Research Method 
3.1 Research Questions 

Various research questions have been tackled and  recognition of these research questions is the first step for 

consistent literature review. 
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RQ1. What are the proposed definition of CBSS and why CBSS become quite popular? 

Motivation: To understand about CBSS. 

A CBSS is a system in which component is used as a basic unit. A software component can be considered as a 
unit of composition with specified interfaces and context dependencies.[4]. A CBSS is a system which is being 

developed by combining components that have been deployed independently.[1]. CBSS are becoming quite 

popular because of the following advantages. Firstly, the reusability feature as software system is developed by 

using already existing components. Secondly, reduced time to market and hence reduced software production 

cost [10]. Thirdly, it provides us with shorter software life cycles. 

 

RQ2. Is quality assurance is taken as a key research content? 

Motivation: To understand the importance of quality during software design. 

Software quality is defined as conformance to standards and requirements. Quality assurance should go hand in 

hand while developing the software system because without an appropriate level of quality , the  component 

usage will provide ruinous results. 

 

RQ3.  Can we assure quality in a CBSS ? 

Motivation: Develop an appropriate method for     developing a quality software. 

The latest resonance in the hardware development encouraged the developers to create a software which is 

simple in its design but contains an appropriate level of quality .In order to develop a system which contains a 

well defined quality level, the developers must satisfy challenges that go afar from pure functionality. In order to 

meet the above objectives an appropriate methodology is to be developed developed which contains the 

following key features: 

 Simplifying the software design by using functional and extra functional attributes. 

 Study of metrics that is used for evaluating quality of  Component- based software system. 

 Validation of metrics  by developing component-based software system with functional as well as extra 
functional attributes. 

 

RQ4. How can we evaluate the available component-based software metrics? 

Motivation: The main purpose of this question is to tackle the currently available component-based software 

metrics and identify their advantages and disadvantages. 

The metrics are mainly used to identify the CBSS attributes. CBSS metrics have been viewed as a 

perspective of consumer and producer. The metrics can be evaluated by first gathering all the relevant 

information about currently available metrics and then comparing these metrics and identifying their pros and 

cons according to the gathered information. 

 

Table-1: Answers evaluation criteria 
The answers Original scale of the answers 

The answers can be correlated to the related work Yes 

The answers can be mostly surmised from related work Mostly 

The answers can be somewhat surmised from related work Somewhat 

The answers are undetectable or unknown No 

 

Table-2: Assessment of related work 
Research paper RQ1 RQ2 RQ3 RQ4 

Seceleanu et al.(2013) Somewhat Mostly Mostly No 

Abdellatief et al.(2013) Yes Somewhat Somewhat Mostly 

Nikoli)k et al.(June 2012 No Somewhat Somewhat Somewhat 

Li et al.(2012) Somewhat Mostly Somewhat No 

Carlson et al.(2012) Somewhat Yes Mostly No 

George et al.(June 2012)   No Yes Somewhat No 

Esposito et al.(June 2011)   Yes Yes Mostly No 

Crnkovic et al.(2010)   Somewhat No Somewhat No 

Lau et al.(2007) Somewhat Somewhat Mostly No 

Kenett et. al(2007)   No Yes Somewhat No 

Liangli et al.(June 2006)   Somewhat Yes Somewhat No 

Alvaro et al.(2005) Yes Somewhat Mostly No 

Lau et al.(2005) Somewhat Somewhat Somewhat No 

Muccini et al.(June 2005) Mostly No Somewhat No 

Xie et al.(June 2004)   Somewhat No No No 

Xia et al.(2001 Yes No Somewhat No 

Dias et al.(June 2000)   Somewhat No Somewhat No 
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3.2 Observations 

Software quality is an important factor which  simplifies a system design and increases the trust in the 

correct functioning of the software. Various analysis and prediction techniques are developed to  form a sound 
software development methodology that will produce quality software. Component- based software engineering 

has become well known as it offers reduced development cost,   theory of reuse and shorter life cycles also act 

as a motivational factor. All the above mentioned features has improved the product quality and make this 

approach very attractive. In order to simplify  a system’s design while maintaining the quality feature, the 

concept of component binding is  being studied which is a mechanism to connect the component in such a way 

that one component’s interface is connected to other’s. There are two types of component binding[15]: 

 Horizontal binding: It represents the connection of a component’s provided interface with a subsequent 

component’s required interface. This assembly does not necessarily constitute a new component; it is just 

an assembly of interacting components, and the resulting composition is called a horizontal composition. 

 Vertical Binding: It is an assembly that constitutes a new composite component that complies with the 

model’s interface; the new composite component can be connected to other components in the same way as 
any other component complying with its model. 

 In order to simplify the design of software system, an appropriate method is to encapsulate both functional 

and extra functional properties. [15] 

 Functional properties describe the relationship between component and system variables and constrain the 

values associated with system operations or state changes . 

 Extra functional properties also known as nonfunctional properties mainly includes the quality attributes 

such as efficiency, effectiveness. These properties has higher trustworthiness, due to its ability to uncover 

potential trouble spots before actual system implementation. 

 

However it remains a challenge to simplify system’s design while maintaining the quality feature. For this 

reason much effort is needed to develop an evaluation approach that will enhance the quality of component- 
based software system. 

IV. Conclusions 

Today’s software system is characterized by its quality. A component – based approach  that maintains 

the quality to an appropriate level while simplifying the system’s design is must. The work represented here 

introduces various techniques  by which the quality of component-based software system can be improved. 

More sophisticated experimentation and evaluation methods are required so that quality assurance and 

simplification of system’s design should go hand in hand and in future work we will try to perform such 

experiments. 
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