
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 2, Ver. 1 (Mar – Apr. 2015), PP 89-102
www.iosrjournals.org

DOI: 10.9790/0661-172189102 www.iosrjournals.org 89 | Page

Performance Evaluation of the Bingo Electronic Voting Protocol

Waleed A. Naji, Sherif Khattab and Fatma A. Omara
Department of Computer Science, Faculty of Computers and Information

Cairo University, Egypt

Abstract: Research in e-voting aims at designing usable and secure electronic voting systems. This paper

provides an empirical analysis of the computational performance of a prototype implementation of the Bingo

electronic voting protocol. Bingo is a receipt-based end-to-end verifiable electronic voting protocol that claims

the property of coercion resistance. According to this work, a prototype of the Bingo design has been described
in terms of sequence and class diagrams. Also, its operation has been demonstrated using a case study of a

sample election. Four main operations have been analyzed; initialization of cyclic groups, generation of

dummy votes, zero-knowledge proof of fair vote distribution over candidates, and zero-knowledge proof of

receipt correctness. The performance was affected by the cyclic group order, number of candidates, and number

of voters.

Keywords: E-voting, Bingo voting, coercion resistance, zero-knowledge proof, commitments.

I. Introduction
Voting plays an essential role in a democracy. The result of voting determines the future of a country.

Voting must achieve a set of requirements. On the other hands, an e-voting system must achieve technical

requirements, user interaction requirements, integration requirements, and (most critically) security

requirements [1-4].

Security requirements of the e-voting system are classified into two group; voter-related requirements

and voting-related requirements. Voter-related requirements include authentication, where voting process is

accessible only by the voters who identify themselves; privacy (i.e., no one except the voter himself has the

ability to determine who has been) voted; anonymity (i.e., no one can link or extract hints between voters and

their votes); coercion-resistance, where each voter should be able to cast to her candidate without the influence

of a coercer and voters cannot prove to the coercer or others their cast, even if the voter wanted to cooperate

with the coercer; and individual verification, where each voter has the capability to guarantee that his vote has

been cast for the selected candidate. Coercion-resistance is one important security requirement in the e-voting

system.
Voting-related requirements include ballot box integrity, only registered voters can vote and after the

voter cast no one should be able to modify, delete or detect the voter choice; tally accuracy, votes must be

gathered and recorded in a correct way; fairness, no one should be able to know any information about the tally

(voting) result before the official announcement of the tally; and auditability, the e-voting system allows for a

third party to verify the voting process and that the final tally was calculated correctly.

Bingo is, an end-to-end verifiable electronic voting protocol [5]. It depends on a trusted random

number generator (TRNG) for correctness and provides the voter with a receipt that the voter can use it for

verification, but the voter cannot use this receipt to prove his choice. The work in this paper describes the design

and implementation of a prototype of Bingo voting system. A case study of a simple election with ten voters and

three candidates will be described to verify the system. Finally, empirical analysis of the computational

performance of the Bingo voting implementation is described.
The effect of the cyclic group order, number of voters, and number of candidates has been studied. The

cyclic group order was the crucial factor in the performance of Bingo voting system because the computation of

the commitment depends on it. When the cyclic group order increases, the speed of computing a commitment

decreases. Also, the number of voters and candidates play an important role because the number of

commitments depends on the number of voters and candidates.

The paper is organized as follows; Section II describes the background of cryptographic schemes,

techniques and tools used in Bingo voting system. In Section III, we the Bingo voting protocol is briefly

described. Section IV describes the sequence and class diagrams of the implementation prototype of Bingo

voting system and highlights the implementation details. Section V presents a case study of a simple election

system using the proposed prototype and measured performance of the main operations of Bingo voting system.

Finally, Section VI concludes the paper and briefly presents future work.

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 90 | Page

II. Background
E-voting protocols use many cryptographic schemes, techniques and tools (e.g. commitments and zero

knowledge proofs) to provide the security requirements. This section describes commitments, zero knowledge

proofs, mix-nets, efficient proofs of a shuffle of known content, and bulletin board, the cryptographic tools used

in the Bingo voting protocol.

2.1 Cyclic Groups

A group 𝔾 is a cyclic group if there is an element 𝑔 ∈ 𝔾, such that for each 𝑏 ∈ 𝔾 there exists an

integer 𝑖 such that 𝑏 = 𝑔𝑖 . Here, g is called a generator of the cyclic group 𝔾 and the number of elements in 𝔾

is called group order |𝔾|[5, 6]. In more details, if 𝑎 ∈ 𝔾, the set of all powers of a forms a cyclic group ⊆ 𝔾

called subgroup ‹a›, which is generated by a. The number of elements in ‹𝑎› is called the order of element 𝑎,

which is calculated as the smallest value 𝑗 such that 𝑎𝑗 𝑚𝑜𝑑 |𝔾| = 1. So, if 𝑗 = 𝔾 , then a is a generator of

the cyclic group 𝔾. For example, ℤ19 = 1, 2, 3… . , 18 has a group order 𝔾 = 18. So, if any element in this

group has 𝑜𝑟𝑑𝑒𝑟 = 18, that means this element is a generator. To calculate the order of any element, such as 7,

the equation 7𝑗 mod 19 = 1 is applied. Here, the minimum is 𝑗 = 3. So, 7 is not a generator of the cyclic group

ℤ19. In the same way, by calculating the order for each element 𝑎 ∈ 𝔾, if 𝑜𝑟𝑑𝑒𝑟 = 18 , then this element is a

generator of ℤ19. Table 1 shows the elements in ℤ19, element subgroups, element orders, and generators of ℤ19.

Table1: Elements, subgroups, orders and generators of ℤ𝟏𝟗

Elements Element subgroup Element order

1 {2} 1

18 {1,18} 2

7,11 {1,7,11} 3

8,12 {1,7,8,11,12,18} 6

4,5,6,9,16,17 {1,4,5,6,7,9,11,16,17} 9

2,3,10,13,14,15 (generators) {1,2,3,4,5,… . ,18} 18

2.2 Commitments

Commitment is a cryptographic scheme used to temporarily hide a value and ensure that anyone cannot

change it [7, 8]. The commitment scheme has two properties, a binding property, which ensures that the

commitment contains only one value, and a reveal property, which guarantees that the receiver cannot know the

value as long as he does not have the reveal information. We can say the commitment is perfectly hiding,

because commitment opening is impossible without knowledge of revealing information 𝑟.
In e-voting schemes that depend on the commitment, perfect hiding is required to hide the voter

choices to satisfy voters’ privacy. And, the binding property is needed to prove the correctness of the tally (voter

be convinced that her vote did not change). Pedersen commitment is one of the used commitment types in the

e-voting schemes [9].Pedersen commitment scheme is computationally binding and unconditionally hiding.

Pedersen commitment satisfies the binding and hiding properties if the discrete logarithm problem is hard. The

Pederson commitment consists of three algorithms: setup, commit and reveal[9].

Pederson Setup: Choose two large safe primes 𝑝 and 𝑞 where 𝑝 = 2𝑞 + 1. Then, create a cyclic group

𝔾 with order 𝑝. Then choose a random secret 𝑎 ∈ ℤ𝑞 as input. In addition, choose two generators

𝑔 and 𝑕 where 𝑕 = 𝑔𝑎 and 𝑔, 𝑕 ∈ ℤ𝑝 . Finally, the output public info is 𝑝, 𝑞, 𝑔 and 𝑕.

Pederson Commit (𝑚, 𝑟): Take a message 𝑚 that one wants to commit to and choose 𝑟 at random

(𝑚, 𝑟 ∈ ℤ𝑞) and the output is commitment 𝑐, where 𝑐 = 𝑔𝑚𝑕𝑟𝑚𝑜𝑑 𝑝.

Pederson Reveal (𝑐,𝑚, 𝑟): Receiver calculates and verifies that 𝑐 = 𝑔𝑚𝑕𝑟mod 𝑝.
Also, Pedersen commitments have the multiplicatively homomorphic property, which allows to mask

or re-randomize a commitment c without knowledge of 𝑐’s content. 𝑐` ≔ 𝑐 ∗ 𝑕𝑟` = 𝑔𝑚𝑕𝑟 ∗ 𝑕𝑟` = 𝑔𝑚𝑕(𝑟+𝑟`) In

this case 𝑐` is 𝑐𝑜𝑚𝑚𝑖𝑡(𝑚, 𝑟` + 𝑟). So, the reveal information is 𝑟` + 𝑟 . The homomorphic property is useful

in e-voting to keep the tallying secret by masking a set of 𝑐′s to obtain a set of 𝑐`′s and then reveal

(𝑐`,𝑚, 𝑟 + 𝑟`). Here, the link between 𝑐 and 𝑚 is difficult because 𝑟 is unknown.

2.3 Zero-Knowledge Proofs (ZKP)

ZKP [10, 11] is an interactive proof system between a prover, 𝑃, and a verifier, 𝑉. 𝑃 wants prove to 𝑉

that a statement is correct without revealing the secret information. For example, in authentication, the verifier

system should not know the password of the user. At the same time, the verifier must ensure that the password is

correct to allow 𝑃 (i.e., the user) to log in to the system. ZKP has three properties; completeness (an honest
prover is capable to convince an honest verifier that the statement is correct), soundness (a dishonest prover that

does not have a secret cannot convince an honest verifier that the statement is true), and zero-knowledge (the

proof does not leak any secret information).

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 91 | Page

E-voting schemes that use ZKP exploit the zero-knowledge property to satisfy coercion resistance in

the e-voting system because in the ZKP the verifier ensures that statements are correct (her vote has been

counted), but she cannot get the secret information to show that to anyone.

2.4 Mix-nets

Mix-nets have been proposed by Chaum[12]. A mix-net is a building block used for anonymity. So,

mix-nets are very important in the e-voting protocols to satisfy the anonymity requirement. By shuffling a set of

inputs using many servers (called mix servers), every server receives a set of input elements 𝑀 and shuffles

them by changing the position of every element to anonymize them, then send the output 𝑀′ (where

𝑠𝑕𝑢𝑓𝑓𝑙𝑒 (𝑀) → 𝑀′) to the next server as input. 𝑀 = 𝑚1 ,𝑚2 , … . . , 𝑚𝑛 is the input and

𝑀′ = { 𝑚′
𝜋 1 , . . , 𝑚′𝜋(𝑛) } is the output, where 𝜋 is a random permutation.

For the e-voting schemes, shuffles must achieve two properties; secrecy (it is infeasible to establish a

link between input (𝑚1) and output (𝑚′𝜋(1))), and verifiability (there exists a proof that 𝑀 is indeed a

permutation of 𝑀′ such that for each 𝑚′ ∈ 𝑀′ there exists only one value 𝑚𝑖 ∈ 𝑀 and vice versa).Since the
permutation in a mix-net remains hidden, the correctness of shuffling must be proved by zero-knowledge proofs,

called shuffle proofs.

Shuffle proofs can be done by several ways, such as the efficient shuffle proof (ESP) proposed by Neff

[13]. The ESP depends on the invariance of polynomials under the permutation of their roots:

(𝑚𝑖 − 𝑥 𝑛
𝑖=1 = (𝑚𝜋(𝑖) − 𝑥)𝑛

𝑖=1) where 𝑥 ∈ ℤ𝑞and 𝑥 is the random value chosen by the verifier. If

polynomials are equal, then the mixing result is correct. The shuffle proofs have been improved by Groth [14,

15].
Groth proposed a more efficient proof of a shuffle of known content by generating the interactive ZKP

protocol between the prover 𝑃 and verifier 𝑉. This proof is used to prove the contents of a set of

commitments C = {c1 , c2 ,… cn} ⊂ ℤp and each c contains only one message from 𝑀 = {𝑚1 ,𝑚2 , … 𝑚𝑛 } ⊂

 ℤ𝑞 without revealing which commitment contains which message. The protocol inputs are divided into common

input, which is the set of commitments 𝐶 and the set of messages 𝑀 and secret inputs private to 𝑃, which are the

set of random numbers (𝑟1 , 𝑟2 , … 𝑟𝑛) and permutation 𝜋, where 𝑐𝑖 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝑚𝜋 𝑖 , 𝑟𝑖) and 𝑖 ranges from 1 . . 𝑛.

The protocol operates as follows:

𝑉 chooses at random 𝑥 ∈ ℤ𝑞 and sends 𝑥 to 𝑃.Then, 𝑃 and 𝑉 calculate ĉ = 𝑐𝑜𝑚𝑚𝑖𝑡 𝑥, 0 and perform

multiplication proof steps. In the first step 𝑃 calculates 𝑝𝑖 = (𝑚𝜋(𝑘) − 𝑥)𝑖
𝑘=1 where 𝑖 = 1. . 𝑛 and

𝑐𝑝𝑖 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝑝𝑖 , 𝑟𝑝𝑖) where 𝑟𝑝𝑖 ∈ ℤ𝑞 is chosen randomly except 𝑟𝑝𝑛 = 0. In the second step, for 𝑖 = 2 . . 𝑛

then 𝑃 calculates and sends 𝑐𝑎𝑖 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝑎𝑖 , 𝑟𝑎𝑖) and 𝑐𝑏𝑖 = 𝑐𝑜𝑚𝑚𝑖𝑡 𝑚𝜋 𝑖 − 𝑥 ∗ 𝑎𝑖 , 𝑟𝑏𝑖 where

𝑎𝑖 , 𝑟𝑎𝑖 and 𝑟𝑏𝑖 are chosen at random. In the third step, 𝑉 chooses 𝑑𝑖 at random and sends it. In the fourth step,

𝑃 calculates and sends 𝑒𝑖 = 𝑝𝑖−1 ∗ 𝑑𝑖 + 𝑟𝑎𝑖 , 𝑟𝑒𝑖 = 𝑟𝑝𝑖−1 ∗ 𝑑𝑖 + 𝑟𝑎𝑖 , and 𝑓𝑖 = 𝑟𝑖(𝑝𝑖−1 ∗ 𝑑𝑖 + 𝑟𝑎𝑖) − 𝑟𝑝𝑖 ∗ 𝑑𝑖 − 𝑟𝑏𝑖 .

Finally, 𝑉 verifies that 𝑕𝑓 =
ĉ𝑒𝑖

 𝑐𝑝𝑖
𝑑𝑖
∗ 𝑐𝑏𝑖

and 𝑐𝑝𝑛 = 𝑔 (𝑚 𝑖−𝑥).

2.5 Bulletin board
A bulletin board is a cryptographic building block proposed by Cohen[16-18]. It is a one way secure

asynchronous broadcast to display the messages from one party to another. Every published message cannot

change or get deleted and is provided with a time stamp. The e-voting schemes used the bulletin board to

display the election information such as candidates' list and election results.

III. Bingo Voting
Bingo voting is an end-to-end (E2E) voting scheme proposed by Bohli et al [19-21]. Bingo voting

depends on a trusted random number generator TRNG in correctness and uses some cryptographic techniques

and tools (e.g., commitments, zero knowledge proofs and bulletin boards).Bingo voting consists of three phases;
pre-voting phase, voting phase and post-voting phase.

Suppose that where 𝑗 is the number of eligible voters. For every candidate 𝐴𝑖 , the voting authority

generates 𝑗 random numbers 𝑁𝑖 where 𝑖 = 1. . 𝑗. Then, these numbers are committed, shuffled, and published on

the bulletin board as dummy votes (DV), which are pairs of commitments. The first commitment is of the

random number and the second is of candidate ID, that is, 𝑐𝑜𝑚𝑚𝑖𝑡(𝐴𝑖). So,

every 𝐷𝑉 =< 𝑐𝑜𝑚𝑚𝑖𝑡 𝑁𝑗 , 𝑐𝑜𝑚𝑚𝑖𝑡 𝐴𝑖 >. Also, the proof that every candidate has the same number of

dummy votes is published. It is done by opening the second commitment using a zero knowledge proof[11].

In the voting phase, as in traditional elections, voter’s eligibility is checked by the voting authority, and

then the voter enters to the voting booth and casts for intended candidate by pressing a button corresponding to

the candidate. The TRNG generates a fresh number and the voter visually verifies that the fresh number appears

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 92 | Page

next to the selected candidate. Then, the voting machine prints a receipt, which consists of a fresh number

besides the candidate whom the voter has chosen. Each other candidate gets a random number from their unused

dummy votes and these dummy votes are marked as used.
The post-voting phase starts when the election is finished. The voting authority publishes a list of

digital copies of all receipts issued and a list of all unused dummy-votes with the respective commitment and

reveal information. A non-interactive zero-knowledge proof proves the correctness. Here, every voter can check

if her receipt was published on the bulletin board correctly, and if the tally result is done correctly.

IV. Bingo Implementation
This section describes the design and implementation of Bingo prototype.

4.1 Bingo Voting Design

This subsection describes the sequence and class diagrams of Bingo prototype design. Fig. 1 depicts the
sequence diagram of the pre-voting phase. The committee member represents the election authority. The

committee represents the software component that receives a command from election authority and executes it.

The database represents the component that manages a secure database. The commitment manager is the

component that computes a commitment of a message. A bulletin board represents the component used as a

channel to communicate with auditors. The voting machine component represents the component that controls

the voting machine. The TRNG component represents the interface that connects with TRNG. The election

auditor is any party who wants to check the correctness of the Bingo voting. And, the verifier component is used

to check the correctness of the Bingo voting.

According to Fig. 1, the supreme committee members for elections commands the committee

component to generate the dummy votes. Then, the committee component inquires about the number of voters

and the number of candidates from the database. It is assumed that this information has been entered previously.

In addition, the committee component generates N dummy votes, where N is equal to the number of voters * the

number of candidates. Then, the commitment for each DV is computed by the commitment manager and stored

in the database. The committee member is then notified. After that, the committee member publishes the dummy

votes by using the committee component, which queries all DVs from the database and then displays them on

the bulletin board.

Fig. 2 shows that the election committee has a sub-committee supervising the elections at each polling

location to verify the voter’s eligibility and that the voter has not voted before. Then, it allows the voter to enter

the voting booth to vote and mark in front of the voter's name that he has voted to preventing him from double

voting. After that, the committee member signals to the committee to start the vote and the committee notifies

the voting machine (VM) to start voting. When the voter enters the voting booth, he sees the VM, TRNG and

printer. The voter votes by using the VM, which displays the list of candidates. The VM receives the voter’s
choice and then asks from the TRNG for a new fresh number (FN), which represents the voter's vote. The

TRNG generates FN and displays FN on its screen and sends the FN to the VM. The VM creates the receipt and

prints it, of which the voter takes a copy. Finally, the voter goes out of voting booth, and this process is repeated

for all voters.

 Fig. 1: Pre-voting phase sequence diagram Fig. 2: Voting phase sequence diagram

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 93 | Page

Fig. 3 shows that the committee member commands committee component to calculate the result, and

then the committee inquires about the unused dummy votes from the database. Then, committee component

calculates how many each candidate has remaining of his dummy votes (the result of the elections). Then, the
result is published on the bulletin board and the committee member is notified that the result was published

successfully. The committee member requests to display reveal information or proof of correctness. The

committee inquires the database for the secret information used to open the commitments. Also, the committee

component inquires for all receipts and publishes the reveal information and all receipts. Then, it notifies the

committee member that the reveal information has been published successfully.

Fig. 4 shows that the election auditor, which represents the person who wants to verify the contents of a

receipt through the verify component, enters a receipt number to the verify component to the committee

component and inquires about the commitments of this receipt from the committee. The committee component

gets the commitments from the database and returns the commitments to the verify component, which submits it

to the election auditor, who can check if the commitments exist on the bulletin board. After that, the election

auditor starts verifying by using the verify component, which generates a random challenge sent to the
committee. The committee requests secret information in this receipt and calculates a proof which proves that

the commitments contain the receipt data. This is done by Groth shuffle proof. Finally, it sends proof

Information to the verify component, which in turn verifying if calculations are done correctly. Then it notifies

the election auditor of the result of the verification process.

 Fig. 3: Tally sequence diagram Fig. 4: Verify sequence diagram

 Fig. 5: Committee class diagram Fig. 6: Voting class diagram

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 94 | Page

Fig. 5 shows the class diagram that describes the association between the committee component

classes. The PrevotingOperation class encapsulates all procedures needed before the voting operation, such as

generating dummy votes. The CandidateOperations class encapsulates all procedures needed after the election
complete operation, such as calculating results. The PostVoteOperation class encapsulates all needed procedures

after the voting operation, such as verifying correctness. The Candidate class represents a real candidate in the e-

voting system, including all methods and attributes related to this actor. The Commitment class encapsulates all

methods and properties of computing commitments. The DummyVote class represents a dummy vote value

before committing. The CommitDummyVote class represents the dummy vote value after commitment. The

PublicInfo class encapsulates the needed public data in the commitment scheme. The SecretInfo class

encapsulates the needed secret data in the commit operation. The TRNG class encapsulates all methods and

properties of generating fresh random numbers.

Fig. 6 shows the association between the Voting component classes. The VotingOperation class

encapsulates all procedures that happen during the voting process. The Receipt class encapsulates all methods

and properties of generating a receipt.

4.2 Bingo Voting Implementation

We have implemented Bingo using Java 1.8 in approximately 7,000 lines of code. We have used a

library called UniCrypt[22] to perform needed cryptographic functions. UniCrypt is an open source Java library

developed by E-Voting Group (EVG) to simplify the implementation of cryptographic voting protocols.

UniCrypt consists of two layers; mathematical fundamental layer, based on the concept of groups and their

elements, and cryptographic-primitives layer, which provides many cryptographic schemes. One of the

advantages of UniCrypt is not relying on a third party library that requires the Java standard edition runtime

environment, so it can be deployed on smart mobiles also.

Our implementation consists of four subprograms; Committee, Voting Machine, TRNG and Verifier.

 Fig. 8: Code of cyclic group creation

Fig. 7: Sample screens from the Bingo Voting prototype

Fig. 7(a) depicts the main committee interface. When the voting authority user clicks on the

Configuration button, the configuration interface appears as in Fig. 7(b). In addition, a Candidate interface
appears if the Candidates button is pressed. The Pre-vote interface appears if the Pre-vote button is clicked.

Also, if the user presses the Post-vote button, the post-vote interface appears. The Exit button is used to close

the window.

Fig. 7(b) depicts the configuration interface, through which the authority member can change the

security level from the combo box and enters the number of voters into the text box. If the level of security is

high, the computation overhead increases and, as a result, the speed of computing commitments decreases.

Then, clicking the Save button instructs the system to save this information. The Show button displays the

public information of the cyclic group, and the Delete button is used to delete the public info.

As an example, if security level is 1024 bits, it means that the length of 𝑝 = 1024 bits, where 𝑝 is the

order of cyclic group 𝔾 (see Fig. 8), it is used for the Pedersen commitments (see Fig. 10). The public

information consists of 𝑝 and 𝑞 (the two safe prime values), where 𝑝 = 2𝑞 + 1, and 𝑔 and 𝑕 (two generators of

the cyclic group 𝔾). After that the system generates the public info and the election committee enters the

candidates’ information by the Candidates interface.

Then, the system creates 𝑗 random numbers for each candidate, where 𝑗 is the number of voters, and

saves all these random numbers in a secure database. After that, the dummy votes of all candidates

(𝐷𝑉 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝑟𝑎𝑛𝑑𝑜𝑚𝑁𝑂), 𝑐𝑜𝑚𝑚𝑖𝑡(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐼𝐷)) are published as a list of dummy votes. The last step

in the pre-voting phase is to prove that all candidates have the same number of dummy votes. This is done using

an efficient proof of a shuffle of known content by Groth protocol (see Fig. 9). The protocol’s public inputs are

the cyclic group, the set of messages 𝑀 = { 𝑚𝜋 1 ,𝑚𝜋 2 , … . . ,𝑚𝜋 n } that represents the shuffled candidate IDs,

//Get random gOrder as safe prime with length =lengthOfP

RandomNoGeneratorrn = newRandomNoGenerator();

BigIntegergOrder = rn.getSafePrime(lengthOfP);

//Create a cyclicGroup with order gOrder

CyclicGroupcg = GStarModSafePrime.getInstance(gOrder);

(a) Main

committee

interface

(b)Configuration of pre-

voting process

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 95 | Page

and the set of second commitments from the dummy votes 𝐶 = {𝑐1 , 𝑐2 , … 𝑐n}. The private inputs of the prover

are the set of random numbers (𝑟1 , 𝑟2 , … 𝑟𝑛) and the permutation𝜋, where 𝑐𝑖 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝑚𝜋 𝑖 , 𝑟𝑖). Then, 𝑃 and

𝑉 perform the steps illustrated in Fig. 9.

Fig. 9: Pseudocode of efficient proof of a shuffle of known content

The Candidates interface in Fig 12, allows the committee user candidates’ information (candidate

number, candidate name and candidate symbol). To add new candidate, the user enters the candidate

information and clicks Save button. The Delete button is used to delete the displayed candidate information. In
Fig 12, candidate number 1 will be deleted if the Delete button is pressed. The Search button is used to find a

particular candidate’s information. When pressing the Search button, the input box will ask the user to enter the

candidate’s number. The screen displays the candidate’s information if the Candidate’s number exists or notifies

the user that there is no information for this id. To delete all candidates, the button Delete all is used.

In the Election Day, the subcommittee in the location of the voting booth checks each voter’s

eligibility, as in any traditional election, and allows the voter to enter the voting booth to cast her vote. In the

booth the voting-machine (VM), subprogram displays a list of candidates (see Fig. 14(a)). We assume the

numbers photos are the candidates’ symbols. When the voter chooses her candidate by pressing the candidate

symbol, the voting-machine requests a fresh number from the TRNG. Here, the voter must ensure that the fresh

number (FN) has assigned to her selected candidate by checking if the fresh number displayed on the screen of

TRNG matches the fresh number beside her selected candidate (see Fig. 14(b) and (c) . As shown in the Fig. 14,
the voter has chosen the second candidate, because the FN appears next to the second candidate. The selected

candidate gets one vote and each of the other candidates takes a random number from his unused dummy votes;

the dummy vote is then marked as used. This means that each candidate loses one vote except the selected one.

Then, the VM prints a receipt, the voter takes the receipt and keeps it to use later in the verification step. Fig. 15

shows the receipt which is given to the voter. This receipt does not show the voter’s choice, because no one can

distinguish the FN in the receipt.

After the election is finished, the committee calculates the results by tallying and opening unused

dummy votes only. In the prototype, this is done by going to the main committee interface (Fig 7(a)) and

clicking the Post-vote button. Then the Post-vote interface appears as in Fig. 16. If the user presses the Publish

result button, the result appears (see Fig. 17).

To prove the correctness of the result, the authority publishes the reveal information of the

commitments of all unused dummy votes and publishes all receipts. Also, the voter or any third party can verify

𝑥 = 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚(); 𝑠𝑒𝑛𝑑 𝑥 ;
ĉ = 𝑐𝑜𝑚𝑚𝑖𝑡 𝑥, 0

𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑐𝑝𝑖);

𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑐𝑎𝑖 , 𝑐𝑏𝑖);

 𝑑𝑖 = 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚();

𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑒𝑖 , 𝑟𝑒𝑖 , 𝑓𝑖 ;

Verifier

If(𝑐𝑝𝑛 = 𝑔 (𝑚 𝑖−𝑥)&&𝑕𝑓 =
ĉ𝑒𝑖

 𝑐𝑝𝑖
𝑑𝑖
∗ 𝑐𝑏𝑖

))

Verified else Not verified

𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑥 ;

ĉ = 𝑐𝑜𝑚𝑚𝑖𝑡 𝑥, 0 ;

 𝑎𝑖 = 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚();
 𝑐𝑎𝑖 = 𝑐𝑜𝑚𝑚𝑖𝑡 𝑎𝑖 ;

𝑐𝑏𝑖 = 𝑐𝑜𝑚𝑚𝑖𝑡 𝑚𝜋 𝑖 − 𝑥 ∗ 𝑎𝑖 ;

 𝑠𝑒𝑛𝑑 𝑐𝑎𝑖 , 𝑐𝑏𝑖 ;

𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑑𝑖 ;

𝑓𝑖 = 𝑟𝑖 𝑝𝑖−1 ∗ 𝑑𝑖 + 𝑟𝑎𝑖 − 𝑟𝑝𝑖 ∗ 𝑑𝑖 − 𝑟𝑏𝑖 ;

 𝑠𝑒𝑛𝑑 𝑒𝑖 , 𝑟𝑒𝑖 , 𝑓𝑖 ;

Prover

for (inti = 1; i<= n; i++) {

𝑝𝑖 = (𝑚𝜋(𝑘) − 𝑥)𝑖
𝑘=1 ;

if(i!=n) 𝑐𝑝𝑖 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝑝𝑖) ;

else𝑐𝑝𝑖 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝑝𝑖 , 0);

send(𝑐𝑝𝑖);
if(i>=2){

𝑒𝑖 = 𝑝𝑖−1 ∗ 𝑑𝑖 + 𝑟𝑎𝑖 ;
𝑟𝑒𝑖 = 𝑟𝑝𝑖−1 ∗ 𝑑𝑖 + 𝑟𝑎𝑖 ;

}//end if

}//end for

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 96 | Page

the correctness of receipts. This is done in two steps; in the first step the voter checks if his receipt exists and in

the second step the voter verifies the validity of the content of the receipt (see Fig. 18).

 Fig. 10: Code of commitment of a message Fig. 11: Code for verifying if 𝒉𝒇 = ĉ𝒆𝒊/ 𝒄𝒑𝒊
𝒅𝒊
∗ 𝒄𝒃𝒊

V. Performance Evaluation of Bingo Prototype
This section describes a case study to evaluate the performance of the Bingo prototype.

5.1 Case study

The following case study represents a simple election with ten voters and three candidates. The

information of the candidates is entered in the per-voting phase. Then, a cyclic group is created. In this example,

we assume the group order is 32 bits to simplify the example, but in real voting the group order must be large

(e.g., 1024 bits) to guarantee security. The cyclic group and the candidates are shown in Table 2 and Table 3

respectively.

Then, the election authority creates 𝑛 random numbers for every candidate where 𝑛 is the voters'

number. So, in total 𝑡𝑜𝑡𝑎𝑙𝑁𝑜 = 𝑛 ∗ 𝑖 are generated, where 𝑖 is the number of candidates. Table 4 shows every

candidate and its random numbers.
After creating 30 random numbers for all candidates, the authority creates the dummy votes (Table 5).

Every dummy vote is a pair of commitments; the first commitment is of the random number 𝑐𝑜𝑚𝑚𝑖𝑡(𝑛) and the

second commitment is of candidate ID 𝑐𝑜𝑚𝑚𝑖𝑡(𝑐𝑎𝑛𝑑𝐼𝐷). So, every 𝐷𝑉 = 𝑐𝑜𝑚𝑚𝑖𝑡 𝑛 , 𝑐𝑜𝑚𝑚𝑖𝑡(𝑐𝑎𝑛𝑑𝐼𝐷).

Where 𝑐𝑜𝑚𝑚𝑖𝑡 𝑛 = 𝑔𝑛 ∗ 𝑕𝑟𝑚𝑜𝑑 𝑝 and 𝑐𝑜𝑚𝑚𝑖𝑡 𝑐𝑎𝑛𝑑𝐼𝐷 = 𝑔𝑐𝑎𝑛𝑑𝐼𝐷 ∗ 𝑕𝑟𝑚𝑜𝑑 𝑝, where 𝑟 choice at random

and 𝑔 and 𝑕 are two generators of the cyclic group.

Let us take the first random number of the first candidate (see Table 4) as an example of creating

dummy votes. 𝐷𝑉1 = 𝑐𝑜𝑚𝑚𝑖𝑡 718737022 , 𝑐𝑜𝑚𝑚𝑖𝑡(1).

𝑐𝑜𝑚𝑚𝑖𝑡 718737022 = (2060739020)718737022 ∗ 2252587668 748076828 𝑚𝑜𝑑 2638495943 =
506775964 and 𝑐𝑜𝑚𝑚𝑖𝑡 1 = (2060739020)1 ∗ 2252587668 747039234 𝑚𝑜𝑑 2638495943 = 661220067.

//Get group order into p

BigIntegerp = publicInfo.getpGroupOrder();

//Create cyclic group with order p

CyclicGroupcg = GStarModSafePrime.getInstance(p);

//Put the message generator into G

G=publicInfo.getMessageGenerator();

Element g = cyclicGroup.getElementFrom(G);

//Put the random generator into H

H=publicInfo.getRandomNumberGenerator();

Element h =cyclicGroup.getElementFrom(H);

//Create Pedersen commitment with two

generators

PedersenCommitmentSchemepc =

PedersenCommitmentScheme.getInstance(h, g);

//Pass a message to Pedersen commitment

Element m,r;

m= pc.getMessageSpace().getElementFrom(message);

//Get random element to be used in Pedersen

commitment

r =pc.getRandomizationSpace().getRandomElement();

//Commit the message

c = pc.commit(m, h);

BigInteger p = publicInfo.getpGroupOrder();

BigInteger h=publicInfo.getRandomNumberGenerator();

for (inti = 2; i<listOfd.size(); i++) {

 //calculate the ĉ𝑒𝑖

numerator = listOfCl.get(i).modPow(listOfe.get(i),p);

// calculate the (𝑐𝑝𝑖)
𝑑𝑖

equation1 = listOfCp.get(i).modPow(listOfd.get(ip);

// calculate the (𝑐𝑝𝑖)
𝑑𝑖 ∗ 𝑐𝑏𝑖

denominator = equation1.multiply(listOfCb.get(i)).mod(p);

// calculate the ĉ𝑒𝑖 / (𝑐𝑝𝑖
𝑑𝑖
∗ 𝑐𝑏𝑖)

leftSide =

numerator.multiply(denominator.modInverse(p)).mod(p);

// calculate the 𝑕𝑓

rightSide = h.modPow(listOff.get(i),p);

//Verify

if (leftSide.compareTo(rightSide) == 0)

 return true;

 else

 return false;

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 97 | Page

So, 𝐷𝑉1 = (506775964 , 661220067). Then, the dummy votes are shuffled and published with a proof that

every candidate has the same number of dummy votes. This proof opens the second commitment of all dummy
votes, so that the candidate IDs appear. This is a proof of a shuffle of known content (see Fig. 9).

Here, the verifier can check if the left side equals the right side or not; if equal, that means every

commitment 𝑐𝑖𝜖 (𝑐1 , 𝑐2 , … 𝑐i) contains only one message 𝑚𝑖𝜖 (𝑚𝜋 1 ,𝑚𝜋 2 , … . . , 𝑚𝜋 i). So, the verifier can

check if every ID appears the same number of times, in the messages(𝑚𝜋 1 ,𝑚𝜋 2 , … . . , 𝑚𝜋 i); if yes, then

every candidate has the same number of dummy votes and vice versa. All previous steps are called pre-voting

phase, which should be happens before the election starts.

 Fig. 12: Candidates interface Fig. 13: Pre-vote interface

As in Fig.14, the voter chooses the second candidate because the fresh number generated by the TRNG
is displayed next to the second candidate. A voter can know if the voting machine has cheated her by checking

whether the fresh number appears next to her choice on the VM screen and in the receipt (Fig. 15) or not. The

second candidate keeps one dummy vote (calculated as a vote in the tally) and the other two candidates lose one

dummy vote (the voter can ensure the latter by verifying that her receipt is formed correctly).

(a)Voting Machine (VM) before casting (b) VM after casting

Fig. 14: Screens at the voting booth

 Fig. 15: Receipt

Table 2: Cyclic group info Table 3: Candidate info

p 2638495943 ID Name

q 1319247971 1 Alice

g 2060739020 2 Bob

h 2252587668 3 John

(c)TRNG

interface

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 98 | Page

 Fig. 16: Post-vote interface Fig. 17: election result

 Fig. 18: Verifier interface

In the post-vote phase, the authority calculates the election result by collecting the remaining dummy

votes for every candidate and subtracting the absentees. If we assume that one of the ten voters is absent and

four voters choose the first candidate, two voters choose the second candidate, and three voters choose the third

candidate, the remaining random numbers for every candidate after the voting finishes are shown in Table 6.

The election result = 𝑟𝑒𝑚𝑎𝑖𝑛𝐷𝑉 − 𝑎𝑏𝑠𝑒𝑛𝑡. For 𝑐𝑎𝑛𝑑1 = 5 − 1 = 4, for 𝑐𝑎𝑛𝑑2 = 3 − 1 = 2, and

for 𝑐𝑎𝑛𝑑3 = 4 − 1 = 3.

 Then, all unused or remained dummy votes are published with their reveal information to the bulletin

board. The authority publishes digital copies of all receipts created by the voting machine in the voting phase
and the proof that every receipt is constructed correctly (see Table 7). If a voter inquires about receipt number

1(see Fig. 18), then the receipt information exhibits in the editor pane. The set of messages is

𝑀 = 1, 540679138 , 2, 969036104 , 3, 648514493 , which appears in receipt number 1 (see Fig. 15).

Here, the voter guarantees that her receipt information was not changed. In addition, the voter can search for her

receipt information after election authority publishes digital copies of all receipts (Table 9). The editor pane in

Fig. 18 shows the set of commitments 𝐶 = {(2550146535, 475589064), (961138291, 638986615),
(2347269045, 785526148)}. For correctness, the voter must insure that every commitment from 𝐶 contains

only one message from 𝑀. This proof is done by efficient proof of a shuffle of known content (see Fig. 9).

In addition, the voter verifies that her receipt contains 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠− 1 dummy votes
(published in pre-vote phase). These dummy votes must be one of each candidate except the selected candidate.

Because every uncounted dummy vote appears in a receipt, this means that the candidate who has this dummy

vote lost one vote. Here, voter searches in the published dummy votes (Table 5) and finds that the dummy votes

with IDs (4, 7) are used in the receipt (number 1). But, no one can know these dummy votes are for which

candidates; otherwise the voter’s choice will be revealed. Since the number of candidates is three, this receipt

contains two dummy votes. This means that this receipt affects the election result by adding one vote. Since the

voter guaranties during the voting process (individual verification) that the FN has gone next to her chosen

candidate, this receipt contains two dummy votes and each candidate is represented once in this receipt (in the

set of message each candidate ID appears once). So this receipt is formed correctly.

Table 4: Candidates’ random numbers

Alice Bob John

718737022 949637843 648514493

664061844 727674345 1061417450

961533900 826256578 819496873

597953815 872008370 717687494

828036001 584078372 812468695

763463492 571099849 1046829965

898817955 1003839261 674460312

758952278 656563607 618638857

754109819 780406295 900347419

540679138 725424571 697942052

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 99 | Page

Table 5: Generated dummy votes in the case study election Table 7: All receipts election

5.2 Bingo voting performance

In this subsection, the performance of our Bingo prototype is described. The proposed prototype is
executed on a PC with 4 GB RAM and Intel Pentium dual core CPU T3200 @2.00 GHz with Windows 8 (32-

bit). We measured the computation time (CT) of creating cyclic groups with 128, 256, 512, 1024 and 2048-bit

group orders. Also, we measured the computation time of creating dummy votes with 512-bit group order.

Receipt proof is used to prove to voter that her receipt contents are correct. This proof uses an efficient proof of

a shuffle of known content protocol by Groth. The proof computation time depends on the number of candidates

and the order of cyclic group (CG).

Fig. 19 shows the CT of receipt proof with three candidates while changing the cyclic group order. The

CT increased with CG order because the commitment length increased. Also, the number of candidates affected

the CT of receipt proof (Fig. 20) because the number of commitments that must be proved depends on the

number of candidates.

ReceiptID CandidateID RandomNO

1 1 540679138

2 969036104

3 648514493

2 1 921751750

2 872008370

3 1046829965

3 1 912986837

2 780406295

3 697942052

4 1 828036001

2 1031942604

3 819496873

5 1 754109819

2 656563607

3 568822455

6 1 718737022

2 826256578

3 545346373

7 1 763463492

2 584078372

3 944457595

8 1 807879909

2 1003839261

3 812468695

9 1 917287570

2 725424571

3 674460312

DVID Commit(random) commit(CandidateID)

1 506775964 661220067

2 452596593 199116972

3 190290780 2604765173

4 2550146535 475589064

5 949955150 1943771889

6 687724326 258376349

7 638986615 961138291

8 264946713 1197452649

9 1264144908 660019061

10 2453224082 1702997694

11 949583802 981193728

12 2116084166 1739685557

13 1937467131 1762373354

14 51602341 2327002076

15 2255223524 146135369

16 565736580 1739788070

17 229710590 1005168288

18 96793866 1102136801

19 1452535935 1713666352

20 1414560182 1846923293

21 2481927530 2336506451

22 2548125545 1807127465

23 1354796730 1865007420

24 261107135 1712116904

25 2219800873 310350223

26 1161970051 2532924964

27 1191530419 2292780905

28 1215461090 1794448993

29 2391083785 1451610246

30 2625762441 164963088

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 100 | Page

According to proposed Bingo prototype, Bingo proves that every candidate has the same number of

dummy votes. To do that we must open the second commitment of each dummy vote then the candidate ID

appears. Then, grouping every candidate ID and verifying that each candidate has the same number of dummy
votes are done. The computation time of first proof depended on CG order and the number of dummy votes

where 𝑑𝑢𝑚𝑚𝑦𝑣𝑜𝑡𝑒𝑠 = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑁𝑜 ∗ 𝑣𝑜𝑡𝑒𝑟𝑠𝑁𝑜. In Fig. 21, 300 dummy votes (three candidates and 100

voters) were used with changing CG order. Computation time increased as the CG order increased because the

commitment length increased. Also, when the number of dummy votes increased the number of commitments

increased too and computation time increased (see Fig. 22).

The time to create dummy votes was effected by two factors: the cyclic group order and the number of

dummy votes. Fig. 21 shows, the time increased with cyclic group order and Fig. 22 shows the computation
time of creating dummy votes with 512-bit cyclic group if change the dummy numbers. As noted in Fig 22

when the number of dummy votes increased, the computation time also increased linearly. Approximately 3.95

dummy votes were created every second.

Table 6: Remaining candidates’ dummy votes

Alice Bob John

 949637843

664061844

 819496873

597953815

828036001

 571099849

 674460312

758952278

 900347419

718737022 725424571 697942052

0.429 1.0874

4.0005

14.10421

19.736

0

5

10

15

20

25

128 256 512 1024 2048

R
ec

ei
p

t p
ro

o
f t

im
e

(s
)

Cyclic group order(bits)

5.895818.5205

80.2516

265.1118

317.2895

0

50

100

150

200

250

300

350

128 256 512 1024 2048

Ti
m

e
(s

)

Cyclic group order (bits)

Compatition of Create Dummy vote(300 DV)

Fig. 20: Receipt proof computation time vs.

candidates’ number

Fig. 21: Creation Time of 300 dummy votes

vs. cyclic group order

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

Ti
m

e
(s

)

candidates number

Fig. 19: Receipt proof computation time vs.

cyclic group order

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 101 | Page

Fig. 24: Computation time for creating acyclic group vs. cyclic groups order

The computation time for initialization of the cyclic group depended on the cyclic group order (Fig.

24).When the cyclic group order increased the commitment length increased and the discrete logarithm became

harder to compute, thereby the commitment security was stronger. But, the speed decreased.

VI. Conclusions
This paper studies the performance of the cryptographic operations used in the Bingo e-voting protocol.

It also explains the sequence and class diagrams, implementation details, and user interface of a prototype

implementation of Bingo voting. We demonstrate the prototype implementation using a case study of an

election with three candidates and ten voters. Finally, we measured the performance of the Bingo voting

implementation while changing the cyclic group order and the number of dummy votes.

Our next steps are to analyze the Bingo voting security and evaluate its coercion-resistance and privacy

properties, comparing the protocol with other end-to-end e-voting protocols, such as Scantegrity, ScantegrityII,

ThreeBallot and Punchscan.

References
[1]. R. Jardí-Cedó, J. Pujol-Ahulló, J. Castellà-Roca, and A. Viejo, "Study on poll-site voting and verification systems," vol. 31, no. 8,

pp. 989-1010, 2012.

0.1

1

10

100

1000

10000

128 256 512 1024 2048

Ti
m

e
 (

s)
 (

lo
g

sc
al

e)

Cyclic group order (bits)

Time for initialization of cyclic group

Fig. 22: First proof computation time vs. cyclic

group order

Fig. 23: Creation time of dummy votes vs.

number of dummy votes at 512-bit cyclic group

order

Performance Evaluation of the Bingo Electronic Voting Protocol

DOI: 10.9790/0661-172189102 www.iosrjournals.org 102 | Page

[2]. M. F. Mursi, G. M. Assassa, A. Abdelhafez, and K. M. Abo, "On the Development of Electronic Voting: A Survey," vol. 61, no. 16,

pp. 1-11, 2013.

[3]. R. Küsters, T. Truderung, and A. Vogt, "A game-based definition of coercion resistance and its applications," vol. 20, no. 6, pp.

709-764, 2012.

[4]. L. AhmedQubati, S. Khattab, and I. Farag, "Survey on End-to-End Verifiable Cryptographic Voting Systems," vol. 100, no. 16, pp.

43-57, 2014.

[5]. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography: CRC press, 2010.

[6]. MathWorld. (February 21). Group Order. Available: http://mathworld.wolfram.com/GroupOrder.html

[7]. G. Brassard, D. Chaum, and C. Crépeau, "Minimum disclosure proofs of knowledge," vol. 37, no. 2, pp. 156-189, 1988.

[8]. D. Chaum, I. B. Damgård, and J. Van de Graaf, "Multiparty computations ensuring privacy of each party’s input and correctness of

the result," in Advances in Cryptology—CRYPTO’87, 1988, pp. 87-119.

[9]. T. P. Pedersen, "Non-interactive and information-theoretic secure verifiable secret sharing," in Advances in Cryptology—

CRYPTO’91, 1992, pp. 129-140.

[10]. O. Goldreich, S. Micali, and A. Wigderson, "How to prove all NP statements in zero-knowledge and a methodology of

cryptographic protocol design," in Advances in Cryptology—CRYPTO’86, 1987, pp. 171-185.

[11]. S. Goldwasser, S. Micali, and C. Rackoff, "The knowledge complexity of interactive proof systems," vol. 18, no. 1, pp. 186-208,

1989.

[12]. D. L. Chaum, "Untraceable electronic mail, return addresses, and digital pseudonyms," vol. 24, no. 2, pp. 84-90, 1981.

[13]. C. A. Neff, "A verifiable secret shuffle and its application to e-voting," in Proceedings of the 8th ACM conference on Computer and

Communications Security, 2001, pp. 116-125.

[14]. J. Groth, "A verifiable secret shuffe of homomorphic encryptions," in Public Key Cryptography—PKC 2003, ed: Springer, 2002,

pp. 145-160.

[15]. J. Groth, "A verifiable secret shuffle of homomorphic encryptions," vol. 23, no. 4, pp. 546-579, 2010.

[16]. J. D. C. Benaloh, Verifiable secret-ballot elections: Yale University. Department of Computer Science, 1987.

[17]. J. C. Benaloh and M. Yung, "Distributing the power of a government to enhance the privacy of voters," in Proceedings of the fifth

annual ACM symposium on Principles of distributed computing, 1986, pp. 52-62.

[18]. J. D. Cohen and M. J. Fischer, "A robust and verifiable cryptographically secure election scheme," in 2013 IEEE 54th Annual

Symposium on Foundations of Computer Science, 1985, pp. 372-382.

[19]. J. M. Bohli, C. Henrich, C. Kempka, J. Muller-Quade, and S. Rohrich, "Enhancing Electronic Voting Machines on the Example of

Bingo Voting," vol. 4, no. 4, pp. 745-750, 2009.

[20]. M. Bär, C. Henrich, J. Müller-Quade, S. Röhrich, and C. Stüber, "Real world experiences with Bingo Voting and a comparison of

usability," in Workshop On Trustworthy Elections, WOTE, 2008.

[21]. J.-M. Bohli, J. Müller-Quade, and S. Röhrich, "Bingo voting: Secure and coercion-free voting using a trusted random number

generator," in E-Voting and Identity, ed: Springer, 2007, pp. 111-124.

[22]. P. Locher and R. Haenni, "A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems," no.

