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Abstract: Denial-of-Service attack in particular is a threat to zigbee  wireless networks. It is an attack in which 

the primary goal is to deny the legitimate users access to the resources. A node is prevented from receiving and 
sending data packets to its destinations.Typically the traffic through the network is heterogeneous and it flows 

from multiple utilities and applications Considering todays threats in network there is yet not a single solution 

to solve all the issues because the traditional methods of port-based and payload-based with machine learning 

algorithm suffers from dynamic ports and encrypted application.Many international network equipment 

manufactures like cisco, juniper also working to reduce these issues in the hardware side.Here this paper 

presents a new approach considering the idea based  on SOTC.This method adapts the current approaches with 

new idea based on service-oriented traffic classification(SOTC) and it can be used as an efficient alternate to 

existing methods to reduce the false positive and false negative traffic and to reduce computation and memory 

requirements.By evaluating the results on real traffic it confirm that this method is effective in improving the 

accuracy of traffic classification considerably,and promise to suits for a large number of applications.Finally, it 

is also possible to adopt a service database built offline, possibly provided by a third party and modeled after 
the signature database of antivirus programs,which in term reduce the work of training procedure and 

overfitting of parameters in case of parameteric classifier of supervised traffic classification. 

Index Terms: Network operations, traffic classification, security,zigbee ,wireless networks. 

 

I. Introduction 
The major challenge for administrators of Intrusion Detection Systems is distinguishing between events 

that are genuine malicious activity and those that are false positives.. On the one side, network managers want 

to know precisely the type  of traffic  transmitted over their networks to enforce various polices such as for 

quality of service (QoS), security, management, and more. On the other side, an increasing number of 

applications tend to hide their behavior (through encryption, tunneling, etc.) trying to avoid limitations 
imposed by such policies. Many international network equipment manufactures like cisco, juniper also 

working to reduce these issues in the hardware side. 

Traditionally, traffic classification relies on the port based method, which exploits transport layer 

information  (source and destination TCP/UDP ports). However, this method has many limitations that 

make it quite imprecise and inefficient despite its extensive usage. Not all servers respect well-known ports  

conventions,  malicious  software  can  use  well-known ports in order to let its traffic pass through port-based 

security restrictions,  many  peer-to-peer  applications  actively  try  to avoid classification using  random 

ports, network tunnels can be  instantiated  using  well  known  ports  in  order  to  avoid imposed traffic 

restrictions, IP payload encryption  hides the port numbers. 

An  evolution  of  this  approach  relies  on  payload-based inspection  that  is  used  in  most 

commercial  devices  and  is declined in different flavors  [4]. This technique shares some of the problems of 
port-based classification   (encrypted protocols, tunneling) and is perceived as really expensive from the 

computational  point  of  view.  Other classification techniques that aim at identifying applications based on 

their behavior as inferred from observed traffic (statistic traffic analysis or heuristic analysis) are being 

studied,but are far from being ready for commercial deployment. 

This paper presents a new classification technique that,  in some respect, is orthogonal to the above 

mentioned mechanisms.This approach service-oriented traffic classification (SOTC),  called exploits 

information about  services previously discovered in the network in order to  classify traffic flows. Main 

advantages of this method are  robustness, accuracy, a limited use  of processing power,  reduced memory 

requirements in classifying the false positive and false negative from the network traffic and the capability to  

use any classifier in the early stage of the classification (namely, the service identification phase). 

  

II. Related Work 
Currently deployed network classification algorithms generally  fall  in one of two categories:   

payload   based algorithms and behavioral algorithms. This section provides a brief  overview of  the  state  of  

the  art  in  network  traffic classification focusing on some    of    the   most   relevant algorithms in each 

category. 
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Payload-based classification is applied by most commercial solutions for various purposes ranging 

from statistics to security, because  it provides the best  trade-off between the classification accuracy and the 

coverage in terms of number of recognizable  protocols.  A  possibly  deep  inspection  of  data transported 
within packets is used to identify the flow packets belonging  to  and  the  application  generating  it.  In  fact,  

by inspecting the headers of the higher layer protocols, possibly up to the application layer payload, it is 

possible to precisely identify  the  protocol  being  used  by  the  application possibly gather information on 

the type of traffic it generates. However, the correct identification of a   protocol is  not straightforward. One 

approach relies on searching for patterns or   regular   expressions   that   can   uniquely   identify   each 

protocol;   a database   containing   the description   of   each protocol is needed. Many payload  based 

solutions have been proposed   [2]   [3],   some   coupled   with   an   approach   for describing  network  

protocols in order to make classification code   easy  to   reuse  and  update   [5][6]:  classification   of 

additional protocols or new versions of existing protocols can be achieved by simply adding their 

description,  without the necessity  of  any  modification  to  the  classification  software itself. 

Known problems of payload based classification algorithms are   (i)   high    sensitivity    to    packet   
loss    and   TCP/IP fragmentation  and  segmentation  issues,  (ii)  hard  and  time- consuming  task  of  

creating   protocol   signatures,  that  are crucial  to  the  effectiveness  of  the  solution,  (iii)  encryption and/or  

tunneling  that  hinders  access  to  data  contained  into application  layer  headers  and  payloads,  and (iv) 

significant requirements in terms of computational and memory resources that  actually  make  traffic  

classification  at  high  line  rates difficult. Due to the high computational requirements of deep packet 

inspection,  payload  based  classification  algorithms  usually limit  pattern  searching  to  the  initial  packets  

of  each  flow. According to this method, named Packet Based – Flow State in  [4],  once  the  protocol  

transported  by  a  flow  has  been recognized, the flow identifier (i.e., the  5-tuple including IP addresses,   

ports,   and   transport   layer   protocol)   and   the corresponding application-layer  protocol are added to a 

data structure  in  memory,  often   called   session  table,  that  is maintained  as  long  as  the  flow  is  

active1.  The  main  critic moved toward these methods is about the memory usage for maintaining flow 
state information; in case of large networks, the size  of such per-flow state  grows  significantly and this 

might become  an  issue.  Furthermore,  additional memory is required because  pattern matching usually 

relies  on regular expressions,    which   are   well-known   for   their   memory consumption due to the 

necessity of maintaining graph-based structures representing Deterministic Finite Automata. On the other 

side, also processing requirements  may be problematic due  to  regular  expression  matching   and  to  

session  table management    (lookup,    insertion,    deletion,    etc.).    These problems  become  even   worse   

in   the  Message   Based   – Protocol   State   flavor   [4]   of   the   payload-based   method (implemented  in  

Binpac  [6]  and  SML  [7]),  that  needs  to rebuild  the  entire  application-layer  message  to  enable  the 
analysis of the  entire data in order to achieve the precision required for  security appliances. In this case, 

the amount of information   to   be   maintained   grows   even   more,   as   do processing   requirements   for   

session   reconstruction  and application-layer processing, although some smart method can        be  devised  in  

order  to  decrease  this  complexity  [18].  It is    important  to  notice  that  [4]  demonstrates  that  the  

simpler Packet Based – Flow State approach is in most practical cases sufficient for the vast majority of 

applications. 

Another approach in traffic classification relies on behavioral techniques, whose  main  assumption  is 

that  each application is characterized by some specific behavior. Applications can then be  identified by just 

gathering information at different levels (e.g., packet inter-arrival time, jitter, packet size, etc.) and analyzing 

it (e.g., from a statistical point of view), often without inspecting protocol headers and application data 

transported.  Therefore behavioral algorithms are not affected by any of the shortcomings of payload based 

algorithms related to information hiding (e.g., by encryption) or  camouflage  (e.g.,  by  using  ports  
typically  deployed  by specific services). Specifically,  behavioral  algorithms  work the same way 

independently of whether  flows use encrypted payloads or  not.  Unfortunately, behavioral  algorithms  have 

some common limitations; first of all, most of them typically require a pre-classified  traffic  trace  in  order  

to  train  the classifier  before  it  can  start  working.  These  pre-classified traces are usually  classified  

using  payload-based  methods, manual inspections and human experience; although there are few guaranties 

about the actual  precision  of  these  pre- classified traces, all measurements are done starting from an 

imprecise base. Furthermore, a wide  class  of   behavioral methods needs to be trained in exactly the same 

conditions of the environment where they are going to be deployed, which often prevents the training sets 

obtained in one site from being usable as a trainer set in other places. Additional problems are related to the 

limited temporal validity of the training set due to network reconfiguration  and long term variations, and 

to the fact that these  algorithms often need to observe a fairly large number of packets before they can 
work properly. 

Behavioral algorithms can be further organized into  three sub-categories. Machine  learning  

algorithms [9]   [10]   [11] [12]  [13]  deploy  advanced  analysis   techniques,  such  as clustering  
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algorithms,  to  divide  network  flows  in  different classes  based   on  information   devised  without  

inspecting application layer payload.  Statistical algorithms [14] process statistical properties of  network 

flows through mathematical function, like  Bayesian filters, in order to derive a statistical ―fingerprint‖ for 
each application. Typical data analyzed by these algorithms are round-trip-time, inter-arrival time,  inter- 

arrival jitter, mean packet size. Heuristic algorithms evaluate how each host act within the network in order 

to identify the applications that hosts  are running.  Some examples of data analyzed  by these algorthims are 

the order of requests/responses  produced   by  a  host,  number  of  hosts contacted, number of ports 

deployed. 

 

III. Service-Oriented Traffic Classification 
 Service-Oriented Traffi Classification  is  a  surprisingly  simple  idea  that relies on the observation 

of how hosts usually interact and on the assumption that certain hosts, usually  called servers, perform 
similar interactions, usually  offering a service, with multiple other hosts over a certain time span. This 

assumption, which provides the foundation of our method, will be verified through experiments on real 

network data. 

According to the classic client-server paradigm, a potentially large number of hosts connect to a 

single  one to obtain  a  service. In  this  situation  it is  easy  to  identify the server as a main actor with a 

long lasting  role  as it usually offers the same service at the same ―network coordinates‖ (IP address  and  

TCP/UDP  port)   for  a  long  time.  The  basic assumption in service-based  classification  is  that  knowing 

which service is offered at an IP address/port pair, a classifier can infer that all sessions directed toward that 

pair will access such service. For example, if the classifier  knows that host www.polito.it is running a web 

server on TCP port 80, it can classify all sessions established to this IP address/port pair as HTTP traffic. It is 

important to notice that such a classifier does not work like a port  based classifier.  While the latter 
assumes  that  a  session  is  transporting  HTTP  because  it  is connected to TCP  port 80, a service-based 

classifier  knows that www.polito.it is running a web server on TCP port 80. When the classifier discovers a 

service, it stores the triple identifying it — i.e., IP address (of the server), TCP/UDP port (at  the  server),  

and  transport  protocol  in  an   appropriate structure in memory called Service Table. 

The same principle can be applied to hosts running peer-to- peer applications. In this case the 

application has a client part and a server part running simultaneously: the client part of a peer  establishes  

sessions  to  the  server  part  of  other  peers awaiting for connections at a specific  port. How this port is 

assigned and communicated to the other peers depends on the specific application and protocol, but the key 

point is that the port used to receive connections from other peers usually does not vary very  frequently and  

is reused  many times for the same  instance  of the  peer-to-peer application. So  when the client part of a 

peer connects to the server part of another peer to transfer information, the service-based classifier  identifies 

the server  part  of  such session  as  a service  and stores  the associated   triple   in   the   service   table.   
Also   peer-to-peer applications that use the same port for both the server part and the  client  part,  such  as  

Skype   for  example,  are  handled properly. After a peer A has received a connection to its server part, a 

triple containing its IP address and port is created in the service table as a  service. When its client part 

connects to another  peer  B,   the  service-based  classifier  classifies  the corresponding packets according to 

either A’s service entry or B’s  service   entry.  Although  classification  based  on  A’s service  entry  is  in  

principle  mistaken  as  packets  are being exchanged as part of a session whose server side is B,  the 

packets are anyway correctly classified  as belonging  to the peer-to-peer application at hand. When an  

application shows such behavior (which is not uncommon among P2P software) our approach can be 

extended by adding also the client-side of a session to the service table,  which will become the server part 

in a later data  exchange, for all traffic belonging to that application. 

It is important to notice that finding out which service  is running at a certain IP address/port   pair   
(i.e.,   service identification) is orthogonal to the service-based approach: in principle, any  method   can   be   

used   to   perform   service  

Table-1 List of false positivies seen on an internal network identification (payload-based, heuristic, or 

even manual inspection, and more). The service-oriented approach assumes to know precisely the service 

associated  to an IP address-port couple  and  from  that  point  on  it  will  guarantee  a  precise identification 

of that traffic. Obviously, service identification is not straightforward and  its effectiveness has an impact 

on the outcome of service based classification, as discussed later. 

Service-oriented classification features interesting advantages over   other   classification   methods. 

Encrypted  traffic   at application layer can be properly classified provided that the corresponding service 

has  been previously identified, i.e., it has an entry in the service table. It offers pattern segmentation 

transparency,  i.e.,  a  flow  can  be  properly  classified  even though  protocol identifying patterns are split 

across multiple packets, avoiding the complexity of reassembling application data units. A service-oriented 
classifier needs to  maintain only information  about  services  (i.e.,  IP  address,  port,  transport protocol and 

http://www.polito.it/
http://www.polito.it/
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service offered) independently of the number of traffic flows actually using such services; hence it has 

limited memory requirements.The  limited   amount  of  state information  kept  by a service-orinted classifier 

impacts (i) scalability, performance (ii) lookup time and (iii) hardware  implementations  that  can  rely  on  
faster  on-chip memory.  Classification  of  a  packet  belonging  to  a  known service requires a single 

lookup on three fields  (IP address, port and transport protocol) in a relatively small lookup table, therefore  

with  low computational  cost. Moreover,  service identification, which might have higher computational 

cost, is expected  to  be  performed  only  on  a  small  fraction  of  the packets and  it can  be  even 

performed offline; in any  case, service   identification   is   orthogonal   to   the   service-based method.  

Finally,  as  we  said,  service-oriented  classification  is among the few methods that guarantees early  

classification, i.e. being able to classify even the first  packet (e.g., a TCP SYN)  within  each  session,  

while   other  methods  need  to process at least the first few packets within each session.Table-1 shows the 

list of possible false positives which occurs on a network. 

Service-oriented classification also has some potentially critical issues.Its effectiveness, in terms of  

minimizing both misses and wrong matches, and also its  performance heavily depends on identification of 
network services that must be as accurate as possible. A wrong entry in the service table leads to wrongly 

classifying a potentially large number of flows, while a  missing entry   possibly leads   to  both  a  failing 

classification  of   a  large  number of flows and deploying significant amount of computational resources in 

an effort to identify the service being used, e.g., by deeply inspecting the corresponding packets. Consequently, 

a successful service-oriented classification is tightly coupled to a robust and effective service identification   

solution, which as we said, is orthogonal to service-oriented classification. 

In addition, not keeping information about individual sessions,   service-oriented traffic   classification   

is   not   suitable for applications that require such granularity level, such as, for example, per-session 

enforcement of QoS policies. A service-oriented classifier can  be  customized  for such applications to 

keep an additional  session table for those services requiring so,  which  is  a  simple  extension  that  can  be  

added  to  any implementation. 

 

IV. Implementing Sotc 
Although the service-oriented traffic classifier looks simple and elegant, some issues need to be 

addressed to make it working properly. This section presents such issues and  gives some insigh in how  

they  have been addressed  in our implementation. Given the generality of the service-oriented method, other 

implementation strategies can be adopted. 

 

A. Service identification 

  Given the expertise and previous work of the authors,  a payload-based   implementation   of   a   

service identification module has been an obvious choice. In particular, an existing packet processing  engine 
based   on   the  Network  Packet Description Language (NetPDL) [1] [5] has been reused in the 

implementation of the service identification module. NetPDL is   an   application-independent   packet   

format   description language that  enables  the  creation  of  a  generic   protocol description database: the 

NetPDL database, in fact. Although it includes only packet header formats and  does not support the 

description of protocol temporal behavior (e.g., a protocol state machine), it has proved  being extremely 

effective and robust with respect to  traffic  classification [4], thanks to an extension   that enables   

management of lookup   tables, originally used  to maintain transport-level sessions [5]. The high  flexibility 

of NetPDL makes the engine suitable for the implementation of  the  service-based  classifier  as  well,  in 

addition to the payload-based service identification module. 

The main modification made to the NetPDL engine is  the addition of some new  tables,  such as 

the service  table  that contains information about services. The  process starts with an empty service table, 
while traffic is processed by extracting IP addresses and ports from each  arriving packet. Since the server  

side  of  the  communication  cannot  be  inferred  on  a packet-basis, the service table is looked up twice: 

once  with the source identification (source IP/port) and once  with the destination   identification.   If   one   

of   these    lookups is successful, the packet is classified through the  service-oriented method.  Otherwise,  

as  depicted  in  Figure   1, the service identification module performs a payload-based classification to 

possibly introduce a  new entry in  the  service table containing the IP address and the transport layer port 

used by the server side of the session and the  application  protocol associated. Any new packet toward this 

―known service‖ can subsequently  be  classified  directly  through  the  information kept  in  the  service  table  

as  described  above  without  any further processing (e.g., payload inspection). Please note that the 

identification of the  server  side of the connection is not straightforward and will be discussed. As time 

passes, more and more traffic will be classified by the service- based method since the service table will 

include an increasing number, possibly most, of the services active in the network. 
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B. Understanding  the  clients and servers 

     The server side of a TCP session can be easily identified by   observing the SYN and ACK 

flags during in the  three-way handshake of the TCP protocol. In our implementation we use an additional 
lookup table, called Candidate Service Table, in which a new entry is added with the IP address and port of 

a host that accepted an unclassified TCP session by generating a TCP packet with  both the SYN and ACK 

flag enabled. The Candidate Service Table is required to keep track of the server side of  a session because 

the service is possibly identified, e.g.,  through payload inspection, once the session has been opened, i.e., 

when the SYN/ACK flags, used only during the initial  handshake  phase,  are  not  available  to   enable   

the identification of the server side. When the  service is finally identified, the server information is moved 

from the candidate service table the service table. 

Entries of the Candidate Service Table are subject to a very fast ageing (about ten seconds [19]) in 

order to  avoid their number  to  explode  over  time  due  to  sessions  opened  by unidentified  services,  

unsuccessful   handshakes,  or  unused opened sessions, as in cases of malicious activity such as SYN flooding 

and port scanning.With UDP services identifying the server is different,Since explicit information like the 
SYN flag in the TCP case is not available. Although, especially with the growing  adoption of broadband 

multimedia applications, UDP is expected to significantly  increase  its  traffic  share,   possibly  becoming 

predominant, this paper focuses on  TCP traffic, which as of today  accounts  for  the  vast  majority  of  

data.  UDP  traffic classification, that requires a non-straightforward extension of what is proposed in this  

work, is left to a companion future paper. 

 

C. Managing the service table for false positive and false negative determination 

Besides properly populating the service table, an important issue  is  the  prompt  elimination  of  

service  entries  once  the corresponding service is no longer provided. This is important in  order  to  avoid  

the  explosion  of  the  number  of  service entries and that a  service offered only temporarily leads to 

classification  errors.  One  possible  approach  is  to  purge  an entry that  does not make a hit for a certain 

amount of time, hereafter referred to as service inactivity timeout. As a further refinement, the service 
inactivity timeout can be differentiated for different service classes. For example,  some services are offered 

over a long time period,  possibly permanently, even with a low connection rate, and their entries are given 

a long service inactivity timeout. A  typical example of this service class is an SMTP server contacted only 

few times in a day,    but providing its service over a very long time period. Vice versa, other services  have a 

naturally short life  and the inactivity timeout  associated  to  their  entry  may  be  shorter.  Typical examples 

are peer-to-peer applications. 

Assigning  distinct service  inactivity timeouts to  different classes of services, although not strictly 

necessary, is useful in avoiding multiple re-identification of long-term services, e.g., through  costly  deep  

packet  inspection.  On  the  other  hand, assigning an entry to the long-term service category is critical 

because if the service is not actually long-term or it has been wrongly   identified,    the   entry    can    lead    

to    persisting classification errors.  Consequently, there should be a certain level  of  certainty  about  service  
before  categorizing  it  as  a long-term  one.   One  possible  policy  is  to  set  any  newly identified service 

―under observation‖: its entry is categorized as  short-term and some additional checks are performed on 

packets  classified   according   to   the  entry.  For   example, payload inspection can be executed on 

randomly chosen new sessions. After a certain period of observation confirming the initial identification, 

hence the long-term nature of the service, the  corresponding  entry  can  be  categorized  as  long-term. 

Another policy can be to categorize services as long-term only through explicit (e.g., manual) configuration. 

With      respect  to   the scalability  of  service-oriented classification, it is worth noticing that the 

management of the service table is independent of the classification  process  and can be implemented as a 

distinct process running  separately from the core classification process.And invoking this service-oriented 

result to determine the false positive and false negative to classify the network traffic. 

 

V. Experimental Evaluation 
This  Section provides an experimental evaluation of service-based classification, including some 

problems that arise in its implementation. The next section first devises the benefits   expected   by   the   

deployment   of   service-based classification from an analysis of network traffic itself — i.e., not based on the 

results of particular  classification experiments — which provides a more general assessment of the potential 

of service based classification. Then, the results of   specific classification  experiments are reported to 

substantiate such general assessment. 

 

A.  General Assessment 

Before implementing our service-oriented traffic classifier we collected a set of session-related 
statistics on the link that connects our University to the Internet to assess the potential benefits of sotc 
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classification in terms of memory occupancy to distinguish false positive and false negative, i.e., if the 

number of services was really smaller than the number of sessions. These measurements, done using Tstat 

[15] and lasting  several days, wanted to determine the maximum number of service entries required to 
classify all the traffic with a sotc approach, compared to the number of session  entries required by a 

classifier  based  on session identification.  The  obtained  results  must  be  intended  as  a lower  bound  of  

the  session/service  table  size  since   they account for the session/services present and actually active at 

any given time. A TCP session is considered  closed when a FIN   or   RST   packet   is   observed;   in   case   

of   abnormal termination, a 10-minutes session inactivity timeout is used to declare  a  session  terminated,  

as  suggested  in  [22]  and  0. Analogously, services  are  considered closed  if no traffic is observed in an 

idle period of the same duration. 

Figure  2  shows,  for  each  minute,  the  number  of  active traffic sessions and the corresponding 

number of services on the uplink (100 Mbps) of our university network (about 6,000 hosts)  over  a  7-day  

period.  The  average  number  of  active traffic sessions is 80,000 with  peaks  of 180,000, while the total  

number  of  services  never  exceeds  10,000.  Figure  3 shows the same figures  for a traffic trace2     from 
the MAWI wide  traffic  archive   [21].  The  average  number  of  active session is 120,000  with  a peak 

of 380,000,  while the total number of services never exceeds 10,000. The average on the whole  observation  

period  of  the  session  to  service  ratio  is about 20  for  both  traces,  which  means that  a service  table 

requires roughly 20 times fewer entries than a  session  table. 

Furthermore, a service entry is smaller than a session  entry, thanks to the smaller number of 

information that  has to be stored. This is beneficial in terms of memory requirements as well  as  both  

processing  requirements  and  performance  for session/service information look-up. 

 
Observed sessions 40503 

Observed services 21675 
Observed applications 81 
Services in which sessions are  classified 

univocally   as   belonging   to    the   

same 

21042 

Table-2 Observation results 

 

The tool  has  been  installed  on  11 hosts   (with   Linux,    Windows   and   MacOS-X   operating 

systems, running several applications; among the other Skype, Emule,   Joost,   uTorrent),   the   traffic   

produced   has   been captured for 4 days and the traffic traces have been analyzed by a payload-based 

classifier. 

 

 
Fig-1 Comparision 

 
An  important  observation  is  that  simply  increasing  the service inactivity timeout may not be a 

good idea,  since we may end up filling the service table with entries related to one- shot  services  or  

services  that  are  anyway  not  any  longer active, which will never appear again in  the future. This is 
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evident in Figure 2 that shows an almost four-fold increase of the  service  table  size  when  changing  the  

service  inactivity timeout  from  10  to  60  minutes—  without  any  appreciable advantage in terms of 

classified traffic, Therefore, a 10 minute  service  inactivity  timeout  has  been used in the experiments 
producing all the results presented in this discussion. 

 

B. Accuracy 

Our  tests show that service-based classification  offers  an improvement in classification accuracy 

over results  obtained with the original payload-based classifier. For example, trace Weekend contains a 

significant amount of traffic generated by eDonkey   that   hinders   payload-based   classification   when 

application-layer   data   is    encrypted.    The   payload-based classifier  recognized  only  a  small  

percentage  of  the  flows generated by these  applications, e.g., some sessions that are occasionally sent in 

clear and that represent special cases. For example,  Skype  sometimes  produces  packets  that  are  only 

partially    encrypted   and   consequently   can   be    properly inspected and classified; similarly, not all 

eDonkey messages are  encrypted.  In  all  the  other   cases,   the  payload-based classifier is unable to 
identify the protocol transported and it marks  flows  as  unknown,   as  it  is  shown  by  the  high 

percentage  of  unknown   traffic  in  Figure  1.  Experimental evaluation   also   showed   another   problem   

related   to   the completeness  of  the  pattern  database  used  by  the  payload- based  method.  In  fact,  some  

unknown  traffic  is  related  to flows that use particularly rare or undocumented  application level messages 

that are not part of the pattern database of the payload-based classifier. Service-oriented traffic classification 

does not have this problem, because once a service has been identified thanks   to   the   presence   of   some   

known   signatures   in application-level messages,  following sessions are classified based on the network 

coordinates they are related to. This is confirmed by Figure 1 where the service-oriented t r a f f i c  

classification leaves a  much smaller amount of traffic as unknown, while classifies as eDonkey a much 

larger percentage of traffic than payload-based classification. Results reported in Figure 2 are referred  to  

the  percentage  of  packet  classified;  results  are slightly worse in terms of bytes, in  which the percentage 

of the unknown traffic is 11%. 
 

 
Fig-2 Comparision of both service and payload-based classification 

 

Payload based classification on trace WorkingDay results in a  low  percentage  of  unknown  

traffic  because  the   trace includes   mainly   HTTP   traffic.   However,    service-based classification   

results   in   improved   accuracy   also   on   the WorkingDay trace. Figure 1 focuses only on the unclassified 

traffic  of  Figure  2  and  shows  how  this  traffic  has  been classified by the service-based classifier. For 

instance, among the 54% of  unclassified traffic of the Weekend  trace, about 18%  was  eDonkey,  14%  

RPC  (which  is  included  in  the ―others‖ bin in Figure 2), and more. Manual investigations on a randomly 

chosen subset of classified flows confirm that the outcome of the service-based classifier is correct. 

 

C. Scalability 

Scalability m u s t   be  assessed  in  terms  of  memory   and    processing requirements. 
From the processing side, the computational complexity of a classification solution is an important 
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index of its scalability. Profiling done on our classification code  (written in C/C++) confirmed that the cost 

for a lookup in the service table (i.e. the main cost associated to each  packet by the service-based method) 

is 37 times lower than the cost for a pattern matching on the payload (9700 clock ticks against 2607). Fig-3 
shows a GUI screen which produces the resultsof service-oriented classification to find the false positive and 

false negative traffics in the network. Although the asymptotic processing cost remains the same in both 

service-oriented and payload-based classifier (in the unfortunate case in which  each  service  is  associated  

to  a  single  session),  in practical terms our method guarantees a speed-up of more than an order of 

magnitude at best. 

In summary, the performance and scalability improvements of service-oriented classification over 

payload-based classification  is  directly  proportional  to  the  percentage  of traffic classified by the service 

table, i.e., without performing payload inspection. 
 

 
Fig-3 Classification of traffic 

 

VI. Conclusions 
The major challenge for administrators of Intrusion Detection Systems is distinguishing between events 

that are genuine malicious activity and those that are false positives.This  paper  presents  a  new  idea  for  

traffic  classification, named service-oriented traffic classification, that is,  in some respect, orthogonal to the 
other classification techniques. This method introduces also in the traffic classification arena the concept of 

fast path, through which  the vast majority of the traffic is processed  with  a   limited  use  of  processing  

and  memory resources —ultimately in a short time— and a slow path that is  invoked  in  a  limited  number  

of  cases. Experimental  data  confirm that services are very stable  even over long periods, making this 

method        extremely simple, efficient    and  robust to classify the false positive and false negative netwrork traffic. 

Particularly, robustness is achieved because this method does not require the analysis of all sessions: 

provided that a service has been previously recognized, sessions accessing it can  be classified even if 

encrypted at application-layer or data flow is observed only in one direction. Results in terms of efficiency 

are impressive, leading to a 37x reduction in processing cost, and a 20x reduction in the number of entries in 

data structures compared to  session  based  classifiers  at least  in  the traffic trace examined;  furthermore 

each  entry being half the size. Real-time  measurements on the actual traffic transmitted on the upstream 

link of our University show that roughly 81% of the  packets  and  93%  of  the  traffic  (in  terms  of  bytes)  
is successfully classified with  the                                                                         proposed method.Furthermore,service based  classification  is  

among  the  few methods  that  guarantee  early  classification,   including   the initial TCP handshake of a 

session. Among the few drawbacks of this method is the impossibility to classify IPsec traffic. It is worthy 

noticing that the precision of the service identification process is crucial for obtaining  high-quality results, 

since a mismatch in service identification  will  impair  the classification of all the sessions related to that service. 
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