
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 16, Issue 5, Ver. IV (Sep – Oct. 2014), PP 154-159
www.iosrjournals.org

www.iosrjournals.org 154 | Page

Dynamic Query Form with query Refinement and Database

encryption

Meenu Joy Bhruguram T M
Adi Shankara Institute of Engineering and Technology, Kalady

Abstract: In the present circumstances real world databases contain thousands of attributes and relations.

Access the information from this corpulent database is a nontrivial task and is an exploring area. Queries are

using for database access, but it is a thought-provoking task to the end user because, dearth of familiarity with

query language and illiteracy of underlying schema. The new system uses the allowance of query by form

methodology. In which the user is granted with a query form that will help the user to iteratively search the

database and query enhancement is provided to the user by means of feedback or response. Ad hoc queries can

also gratified by using this proposed system. Query enhancement by response is provided by ranking the

attribute used in the form. Ranking is mean by precision and recall. To provide the security to the system and
make it efficient for private database an encryption is applied.

Keywords: Query Interface, Precision, Recall.

I. Introduction

Query by form is a simple and intuitive methodology that is frequently used as an entry to database.

Google and yahoo using this query by form approach that requires fill in the blanks to specify the parameters for

information retrieval. Query by form have an advantage that user does not need to worry about how data is

organized in storage and no expertise in query language like SQL, so query by form is an most frequently used

mechanism to access the database. The existing systems like SQF (static Query Form), CQF (Customized query
form) have lot of drawbacks that means these have no query refinement and there was no dynamic nature to

these methods to satisfy ad-hoc queries.

The problem identified here is how an efficient query form can be designed to boost the user

satisfaction in information retrieval. The problem can be solved by designing a good query form with dynamic

nature it means the user can iteratively search to the database until he or she get satisfied. Also the query form is

provided with a query refinement by means of ranking the attributes of encrypted database. Ranking is done by

precision and recall which are measures used for performance evaluation of information retrieval.

1.1 Proposed Approach

Proposed approach is a dynamic query form system with query refinement and database encryption.

This system provides a query by form interface to the user. The query form contains many fields to the user for

filling the attributes those he or she want to view. In addition with the attribute the user is provided a constraint
specification field by using that capability the user can easily make conditions. Every entry to the form is taken

as input to the database.

Fig.1. Dynamic Query Form System With Query Refinement and Database Encryption.

http://www.wordhippo.com/what-is/another-word-for/circumstances.html

Dynamic Query Form with query Refinement and Database encryption

www.iosrjournals.org 155 | Page

All attributes from the form along with condition is taken and query is generated, the system will

execute the generated query by accessing the encrypted database. The database encrypted by means of

symmetric cipher algorithm Advanced Encryption Standard.AES is old encryption standard even it is an old
standard it is more secure and the system will become more secure. By providing the security the usage of the

system can be extended to secure database applications.

The system will execute the query by means of structured query language. Along with execution the

ranking of attribute is also done. The attribute that is specified in the form is taken and a probability measure is

calculated by precision and recall. Precision means the ability to retrieve the top ranked documents that are

mostly relevant. Recall means the ability of the search to find all relevant items in the corpus.

 For a given query, produce the ranked list of retrievals. Adjusting a threshold on this ranked list

produces different sets of retrieved documents, and therefore different recall/precision measures. Mark each

document in the ranked list that is relevant according to the standard. Compute a recall/precision pair for each

position in the ranked list that contains a relevant document. Using this recall and precision F-Measure is

calculated, one measure of performance that takes into accounts both recall and precision. Harmonic mean of
recall and precision. That F-Measure is sorted and highest score attribute is listed to the user as query refinement

and feedback. The system will display the result to the user. If the user is satisfied with the result user can stop

the search else the system will display the ranked attribute and user can add these ranked attribute to the form

that is query enrichment. These query enrichment can help the user for boosting the user satisfaction. This

search can iteratively progress until user gets satisfied. Keyword search is also given to the user for accessing

the database. In this case user has to know about the keywords.

1.2 Own Contribution
 In order to extent the system performance , security and make the system suitable for private database

applications an encryption is provided to the database.AES advanced encryption Standard algorithm is

using here for encryption.

 The user is provided a keyword search option as an entry to database access.

II. Related Work
How to let non-proficient users make use of the relational database is a challenging topic. A lot of

research works focus on database interfaces which assist users to query the relational database without SQL.

QBE (Query-By-Example) [36] and Query Form are two most widely used database querying interfaces. At

present, query forms have been utilized in most real-world business or scientific information systems. Current

studies and works mainly focus on how to generate the query forms. [1]

2.1 Customized Query Form: Existing database clients and tools make great efforts to help developers design
and generate the query forms, such as Easy Query [3], Cold Fusion [1], SAP, Microsoft Access and so on. They

provide visual interfaces for developers to create or customize query forms. The problem of those tools is that,

they are provided for the professional developers who are familiar with their databases, not for end-users [16].

[17] Proposed a system which allows end-users to customize the existing query form at run time. However, an

end-user may not be familiar with the database. If the database schema is very large, it is difficult for them to

find appropriate database entities and attributes and to create desired query forms.

2.2 Autocompletion for Database Queries: In [26], [21], novel user interfaces have been developed to assist

the user to type the database queries based on the query workload, the data distribution and the database schema.

Different from our work which focuses on query forms, the queries in their work are in the forms of SQL and

keywords.

2.3 Query Refinement: Query refinement is a common practical technique used by most information retrieval

systems [15]. It recommends new terms related to the query or modifies the terms according to the navigation

path of the user in the search engine. But for the database query form, a database query is a structured relational

query, not just a set of terms.

III. Query Form
3.1 Query by Form Interface

In this section we formally define the query form. Each query form corresponds to an SQL query

template. A query form QF is defined as a tuple (AF, RF, σF, ⋈, (RF)), which represents a database query

template as follows:

Where AF = {A1, A2... An} are n attributes for projection, n > 0. RF = {R1, R2... Rm} is the set of m

relations (or entities) involved in this query, m > 0. Each attribute in AF belongs to one relation in RF. σF is a

Dynamic Query Form with query Refinement and Database encryption

www.iosrjournals.org 156 | Page

conjunction of expressions for selections (or conditions) on relations in RF. ⋈ (RF) is a join function to generate

a conjunction of expressions for joining relations of RF .
In the user interface of a query form F, AF is the set of columns of the result table; σF is the set of input

components for users to fill. Query forms allow users to fill parameters to generate different queries. RF and ⋈

(RF) are not visible in the user. Interface, which are usually generated by the system according to the database

schema. For a query form F, (RF) is automatically constructed according to the foreign keys among relations in

RF. Meanwhile, RF is determined by AF and σF. RF is the union set of relations which contains at least one

attribute of AF or σF. Hence, the components of query form F are actually determined by AF and σF. As we

mentioned, only AF and σF are visible to the user in the user interface. In this paper, we focus on the projection

and selection components of a query form. Ad-hoc join is not handled by our dynamic query form because join

is not a part of the query form and is invisible for users.

3.2 Query Result
To check the query form is useful or not, user does not have time to go through every result .To avoid

the many answer problem [10] in database here uses a clustering technique. Then, the user can click through

interested clusters to view the detailed data instances. There are many one-pass clustering algorithms for

generating the compressed view efficiently [34], [5]. In our implementation, we choose the incremental data

clustering framework [5] because of the efficiency issue Certainly, different data clustering methods [1].

Another important usage of the compressed view is to collect the user feedback. Using the collected

feed-back, we can estimate the goodness of a query form so that we could recommend appropriate query form

components. In real world, end-users are reluctant to provide explicit feedback [19]. The click-through on the

compressed view table is an implicit feedback to tell our system which cluster (or subset) of data instances is

desired by the user. The clicked subset is denoted by Sud. Note that Sud is only a subset of all user desired data

instances in the database. But it can help our system generate recommended form components that help users
discover more desired data instances. In some recommendation systems and search engines, the end-users are

also allowed to provide the negative feedback. The negative feedback is a collection of the data instances that

are not desired by the users. In the query form results, we assume most of the queried data instances are not

desired by the users because if they are already desired, then the query form generation is almost done.

Therefore, the positive feedback is more informative than the negative feedback in the query form generation.

Our proposed model can be easily extended for incorporating the negative feedback.

IV. Ranking of Attributes
Query forms are designed to return the user’s desired result. There are two traditional measures to

evaluate the quality of the query results: precision and recall [30]. Query forms are able to produce different

queries by different inputs, and different queries can output different query results and achieve different

precisions and recalls, so we use expected precision and expected recall to evaluate the expected performance of

the query form. Intuitively, expected precision is the expected proportion of the query results which are

interested by the current user. Expected recall is the expected proportion of user interested data instances which

are returned by the current query form. The user interest is estimated based on the user’s click through on query

results displayed by the query form. For example, if some data instances are clicked by the user, these data

instances must have high user interests. Then, the query form components which can capture these data

instances should be ranked higher than other components. Next we introduce some notations and then define

expected precision and recall.

Let F be a query form with selection condition σF and projection attribute set AF. Let D be the

collection of instances in ⋈ (RF). N is the number of data instances in D. Let d be an instance in D with a set of
attributes A = {A1, A2, ...,An}, where n = |A|. We use dAF to denote the projection of instance d on attribute set

AF and we call it a projected instance, P(d) is the occurrence probability of d in D. P(σF |d) is the probability of d

satisfies σF. P(σF |d) ∈ {0, 1}.P(σF |d) = 1 if d is returned by F and P(σF |d) = 0 otherwise.

Metrics: We now describe the two measures expected Precision and expected recall for query forms [1].

Definition 2: Given a set of projection attributes A and a universe of selection expressions σ, the expected

precision and expected recall of a query form F=(AF ,

RF, σF, ⋈ (RF)) are PrecisionE (F) and RecallE (F) respectively.

 (1)

 (2)

α is the fraction of instances desired by the user, i.e.,

Dynamic Query Form with query Refinement and Database encryption

www.iosrjournals.org 157 | Page

(3)

The numerators of both equations represent the expected number of data instances in the query result that are

desired by the user. In the query result, each data instance is projected to attributes in AF. So Pu (dAF) represents
the user interest on instance d in the query result. P (dAF)N is the expected number of rows in D that the

projected instance dAF represents. Considering both expected precision and expected recall, we derive the

overall performance measure, expected F-Measure as shown in Equation 4. Note that β is a constant parameter

to control the preference on expected precision or expected recall.

(4)
The FScore calculated is sorted and the attribute with highest FScore is listed to the user as query refinement.

V. Evaluvation
The goal of our evaluation is to verify the following hypotheses:

H1: Is DQF more usable than existing approaches such as static query form and customized query form?

H2: Is DQF more effective to rank projection and selection components than the baseline method and the

random method ?

H3: Is DQF efficient to rank the recommended query form components in an online user interface?

VI. System Implementation and Experimental Setup
We implemented the dynamic query forms as a web based system using JDK 1.6 with Java Server Page. The

dynamic web interface for the query forms used open-source javascript library jQuery 1.4. We used MySQL

5.1.39 as the database engine. All experiments were run using a machine with Intel Core 2 CPU @2.83GHz,

3.5G main memory, and running on Windows XP SP2.

Data sets: 3 databases: NBA 1, Green Car 2 and

Geobase 3 was used in our experiments.

6.1 User study Result
Usability Metrics: In this paper, we employ some widely used metrics in Human-Computer interaction and

Software Quality for measuring the usability of a system [31], [27]. These metrics are listed in Table 1.

Table 1: Table of metric.

In database query forms, one action means a mouse click or a keyboard input for a textbox. ACmin is the

minimal number of actions for a querying task. One function means a provided option for the user to use, such

as a query form or a form component. In a web page based system, FNmax is the total number of UI components
in web pages explored by the user. In this user study, each page at most contains 5 UI components. The smaller

ACmin, AC, FNmax, and FN, the better the usability. Similarly, the higher the ACratio, FNratio, and Success, the

better the usability. There is a trade-off between ACmin and FNmax. An extreme case is that, we generate all

possible query forms in one web page, the user only needs to choose one query form to finish his(or her) query

task, so ACmin is 1.

Table 2: Table of Query Task.

Dynamic Query Form with query Refinement and Database encryption

www.iosrjournals.org 158 | Page

6.2 Usability Result

Table 3: Usability result of dynamic query form with query refinement and database encryption.

Table 4: Comparison of dynamic query form with static query form and customized query form.

VII. Conclusion and Future Work
In this paper we propose a dynamic query form generation approach which helps users dynamically

generate query forms. The key idea is to use a probabilistic model to rank form components based on user
preferences. We capture user preference using both

Historical queries and run-time response such as click through. Experimental results show that the

dynamic approach often leads to higher success rate and simpler query forms compared with a static approach.

The ranking of form components also makes it easier for users to customize query forms. As future work, we

can extend our approach can be extended to non relational data.

Fig 2. Comparison of dynamic query form system with static query form and customized query form.

Acknowledgement
First of all I would like to thank almighty god. I would like to thank my guide Bhruguram TM

Assistant professor in information technology in Adi Shankara institute of Engineering and Technology, Kalady

.Also to my friends and family.

References
[1]. Liang Tang, Tao Li, Yexi Jiang, and Zhiyuan Chen Dynamic Query Forms for Database Queries, in proceedings of

TKDE.2013.62,pages 1041-4347,U.S.A,June 2013

[2]. DBPedia. http://DBPedia.org.

[3]. EasyQuery. http://devtools.korzh.com/eq/dotnet/.

[4]. Freebase. http://www.freebase.com.

[5]. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams. In Proceedings of VLDB, pages 81–

92, Berlin, Germany, September 2003.

Dynamic Query Form with query Refinement and Database encryption

www.iosrjournals.org 159 | Page

[6]. R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In Proceedings of WSDM, pages 5–14,Barcelona,

Spain, February 2009.

[7]. S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated ranking of database query results. In CIDR, 2003.

[8]. S. Boriah, V. Chandola, and V. Kumar. Similarity measures for categorical data: A comparative evaluation. In Proceedings of SIAM

International Conference on Data Mining (SDM 2008), pages 243–254, Atlanta, Georgia, USA, April 2008.

[9]. G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query recommendations for interactive database exploration. In Proceedings of

SSDBM, pages 3–18, New Orleans, LA, USA, June 2009.

[10]. S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic information retrieval approach for ranking of database query results.

ACM Trans. Database Syst. (TODS), 31(3):1134–1168, 2006.

[11]. K. Chen, H. Chen, N. Conway, J. M. Hellerstein, and T. S. Parikh. Usher: Improving data quality with dynamic forms. In Proceedings of

ICDE conference, pages 321–332, Long Beach,California, USA, March 2010.

[12]. E. Chu, A. Baid, X. Chai, A. Doan, and J. F. Naughton. Combining keyword search and forms for ad hoc querying of databases. In

Proceedings of ACM SIGMOD Conference, pages 349–360, Providence, Rhode Island, USA, June 2009.

[13]. S. Cohen-Boulakia, O. Biton, S. Davidson, and C. Froidevaux. Bioguidesrs: querying multiple sources with a user-centric perspective.

Bioinformatics, 23(10):1301–1303, 2007.

[14]. G. Das and H. Mannila. Context-based similarity measures for categorical databases. In Proceedings of PKDD 2000, pages 201–210,

Lyon, France, September 2000.

[15]. W. B. Frakes and R. A. Baeza-Yates. Information Retrieval: Data Structures and Algorithms. Prentice-Hall, 1992.

[16]. M. Jayapandian and H. V. Jagadish. Automated creation of a forms-based database query interface. In Proceedings of the VLDB

Endowment, pages 695–709, August 2008.

[17]. M. Jayapandian and H. V. Jagadish. Expressive query specification through form customization. In Proceedings of International

Conference on Extending Database Technology (EDBT), pages 416–427, Nantes, France, March 2008.

[18]. M. Jayapandian and H. V. Jagadish. Automating the design and construction of query forms. IEEE TKDE, 21(10):1389–1402, 2009.

[19]. T. Joachims and F. Radlinski. Search engines that learn from implicit feedback. IEEE Computer (COMPUTER), 40(8):34–40,2007.

[20]. N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon, and D. Suciu. A case for a collaborative query management system. In

Proceedings of CIDR, Asilomar, CA, USA, January 2009.

[21]. N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. Snipsuggest: Context-aware autocompletion for sql. PVLDB, 4(1):22–33,

2010.

[22]. J. C. Kissinger, B. P. Brunk, J. Crabtree, M. J. Fraunholz, B. Gajria, A. J. Milgram, D. S. Pearson, J. Schug, A. Bahl, S. J. Diskin, H.

Ginsburg, G. R. Grant, D. Gupta, P. Labo, L. Li, M. D. Mailman, S. K. McWeeney, P. Whetzel, C. J. Stoeckert, and J. . D. S. Roos. The

plasmodium genome database: Designing and mining a eukaryotic genomics resource. Nature, 419:490–492, 2002.

[23]. C. Li, N. Yan, S. B. Roy, L. Lisham, and G. Das. Facetedpedia: dynamic generation of query-dependent faceted interfaces for wikipedia.

In Proceedings of WWW, pages 651–660, Raleigh, North Carolina, USA, April 2010.

[24]. B. Liu and H. V. Jagadish. Using trees to depict a forest. PVLDB, 2(1):133–144, 2009.

[25]. P. Mork, R. Shaker, A. Halevy, and P. Tarczy-Hornoch. Pql: a declarative query language over dynamic biological schemata. In In

Proceedings of American Medical Informatics Association Fall Symposium, pages 533–537, San Antonio, Texas, 2007.

[26]. A. Nandi and H. V. Jagadish. Assisted querying using instantresponse interfaces. In Proceedings of ACM SIGMOD, pages 1156–1158,

2007.

[27]. J. Nielsen. Usability Engineering. Morgan Kaufmann, San Francisco, 1993.

[28]. D. Rafiei, K. Bharat, and A. Shukla. Diversifying web search results. In Proceedings of WWW, pages 781–790, Raleigh, North

Carolina, USA, April 2010.

[29]. S. B. Roy, H. Wang, U. Nambiar, G. Das, and M. K. Mohania. Dynacet: Building dynamic faceted search systems over databases. In

Proceedings of ICDE, pages 1463–1466, Shanghai, China, March 2009.

[30]. G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1984.J. Crank, The Mathematics of Diffusion,

Clarendon Press, Oxford, 1975.

