
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 4, Ver. II (Jul-Aug. 2014), PP 43-53
www.iosrjournals.org

www.iosrjournals.org 43 | Page

Precedence Constraint Task Scheduling for Multicore Multikernel

Architecture

Hitesh P. Daulani
1
, Dr. Radhakrishna Naik

2
, Pavan S. Wankhade

3

1(PG Student, CSE, MIT, Aurangabad, Maharashtra, India)
 2(Prof. and Head, CSE, MIT, Aurangabad, Maharashtra, India)

3(PG Student, CSE, MIT, Aurangabad, Maharashtra, India)

Abstract: In real-time systems tasks interact with each others to achieve common system goals, which develops

precedence relation among tasks. Each task contributes to the output of system in some manner so contribution

of each task should be taken into account. On the other hand processing platform market is booming with multi-

core processors and various techniques are coming upfront to utilize processing power of each core efficiently.

This paper presents the scheduling algorithm for real-time task set which respects precedence relationship

among tasks as well as takes contribution of each task into account while scheduling the task set. Moreover

paper targets the multi-core processing platform which has multikernel OS. Multikernel OS differs from single

kernel OS in terms of number of kernels, communication among the tasks etc. Proposed scheduling algorithm is

analyzed by simulating real-time task set on identical quad core processor and results are compared with PCD

scheduling algorithm.

Keywords: Admission Controller, Multicore, Multikernel OS, PCF (Performance Contribution Factor),

Precedence Constraint, Real-time scheduling

I. Introduction
In real-time systems it is expected that desired/correct results should be achieved within prescribed

deadline. Although now-a-days real-time systems are being more complex and higher accuracy of logical results

are expected. In real-time system numerous finite numbers of tasks interact within themselves to achieve

common system goals as a whole. This set of tasks collectively also known as task set, interact within

themselves to share common resource, intermediate results, which in turn develops precedence relations among

the tasks i.e. some task should precede others, so that intermediate results can be passed on to successor tasks
which use them and achieve common system goals.

Real-time scheduling concerns with determining the order of the tasks, by which tasks should be

executed and system’s goals are achieved that too within prescribed deadline. Scheduling policy must also

respect various constraints laid on the system.

Scheduling policies are also greatly affected by the processing platforms. Subsequently it can be noted

that the scheduling algorithm by Liu and Layland [1] namely Rate Monotonic, Earliest Deadline First are

optimal algorithms on uniprocessor processing platform but that is not the case when processing platform

changed to multiprocessor. Processing platforms have witnessed huge amount of changes. In early phase of

processing platform development which was represented by uniprocessor, have shifted towards multiprocessors,

distributed architecture and multi-core processing platform gradually. Recent trend revolves around multi-core

processing platform, which has multiple processing units mounted on single chip. Multi-core processor can also
be seen as combination of single chip and multiprocessor as multiple processing units are mounted on single

chip.

Heterogeneous core will boost the performance of multi-core processors [2]. To handle diversity

created by heterogeneity of cores, cores will heavily rely upon operating system. Scheduling policy must exploit

ample amount of processing power available with multi-core processors. To exploit the power of processing

units, operating system also must be well design. Andrew Baumann et al. [3] suggests new operating system

architecture which treats each core as independent and treats machine as network of independent cores. Results

by Rami Matarneh [4] proved that multikernel operating system utilizes the core better than single kernel

operating system.

In real-time systems, scheduling policy must utilize the processing capability of processing platform

and this paper argues contribution of each task in task set should be taken into account during schedulability of

whole task set. Less significant tasks must have less priority compare to higher significant tasks. Performance
Contribution is the factor which indicates amount of contribution task makes to achieve common system goal.

Accomplishment level must be taken into account if task executes partially. Contribution of task can be

calculated whether it executes partially or completely in MSS.

Precedence Constraint Task Scheduling for Multicore Multikernel Architecture

www.iosrjournals.org 44 | Page

In this paper, proposed scheduling policy will schedule the task set taking contribution factor and

precedence relation into consideration. Contribution factor means, a task can execute whole of its instruction or

few of instructions. Probability of each state is calculated and accomplishment level of each state is assumed so
as to get cumulative performance of each task. Priorities are assigned on two factors instead of rate, deadline,

laxity as one factor, two factors such as contribution of task in given structure and preceded tasks are considered

as parameter for priority. Moreover proposed algorithm deals with identical multi-core platform managed by

multikernel. Algorithm has two major phases as

1. Admission Controller

In this phase Admission Controller does analysis of tasks belonging task set and subsequently tasks are

classified into different classes on the basis of their contribution to the output of system and preceded tasks. This

phase is static as the classification is done pre-runtime.

2. Scheduling Strategy
In this phase tasks are assigned to processing unit for their execution. This phase is dynamic as

decision regarding assignment of task to eligible core is taken while task set is executing depending upon PCF

and preceded tasks if any.

The number of kernels is equal to number of cores. One kernel acts as master kernel which manages

core0 and rest of kernels act as slave kernels. One kernel manages one core [4]. As mention above proposed

algorithm has two phases, admission controlling and scheduling strategy. Admission controller does

classification which does all the related computations on core0. Therefore no task is scheduled at core0. In the

end of paper performance is evaluated by simulating proposed algorithm on identical quad core processor and

comparing results with PCD algorithm [5] which also considers contribution of each task and respects the

precedence constraints.

II. Related Work
 Real-time systems have prime constraint of deadline on them, which differs them from general

purpose system. Therefore there must be proper order in which tasks execute so as to respect the deadline

constraints. Lot of work has been done by researchers and academicians right from the first result publish in

context of real-time scheduling by Liu and Layland [1] in the year 1973. Optimal fixed priority algorithm has

been described in which one algorithm statically assigns priorities on the basis of rate known as Rate Monotonic

algorithm, whereas another algorithm assigns priorities dynamically on the basis of deadline known as Earliest

Deadline First [1]. It can be noted in fixed priority non-preemptive scheduling algorithms, assignments of
priorities are assigned on the basis of certain parameter.

2.1 Multi-core Processor as Processing Platform

Since the first microprocessor which was 4 bit by Intel in 1971[6, 7], Paradigms in processing

platforms have been shifted over time. Uniprocessors gave place to multiprocessors, distributed processors

subsequently. Recent trends revolve around multi-core processors. If Moore’s law is to believed performance

will grow every 18 months since transistors on chips will double every 18 months [8]. As multi-core processors

are in trend in market, manufactures are focusing on boosting the performance by the various factors like speed

of processing units, mounting more number of processing units known as core on single chip. 100-core

processor, TILE-Gx100 has been announced by Tilera [9].

2.2 Multikernel OS for Multi-core Processing Platform
Multikernel OS is new approach that has more than one kernel managing the functionality of OS.

Architecture model by Rami Matarneh [4] elaborates the multikernel OS having kernels equal to number of

cores; therefore each core will have one dedicated kernel. One kernel among the kernel will act as master kernel

and rest of kernel will act as slave kernel. Master kernel is evoked first and it creates the slave kernels. Master

kernel is only authorize to deal with system resources and if slave kernel needs the system resource it can use it

via master kernel i.e. it requests the master kernel for using system resources. Also the inter task communication

among the tasks executing on different cores needs intervention of master kernel. Tasks executing on same core

does not need intervention of master kernel. Results proves that performance of multikernel OS is better than

single kernel OS.

Architecture model by Andrew Baumann et al. [3] elaborates that OS architecture treats machine as

network of independent cores. The architecture is built on perception that system can also be model as
distributed system. Inter task communications among tasks is done by message passing. Result indicates

message passing is better than other approaches such as share memory etc.

Barrelfish is experimental OS built upon architecture of operating system having multikernels [10].

Precedence Constraint Task Scheduling for Multicore Multikernel Architecture

www.iosrjournals.org 45 | Page

2.3 Real-time Scheduling on Multi-core Processor Platform

Multi-core processor can be seen as multiprocessor on chip. Scheduling algorithms for multi-core

processing platforms are classified into heterogeneous and identical categories on the grounds of the cores used
in multi-core system [11]. Algorithms can again be classified under global scheduling algorithm and partition

scheduling algorithm. In global scheduling algorithm single ready queue is maintained and task can be migrated

or if needed can be scheduled on single core [11]. Even if task is preempted on one core can resume its

execution on other core. On the other hand in partition scheduling algorithms tasks are partitioned into various

partitions based on certain parameter and assigned to particular core. In partition scheduling algorithms once

task assigned to core migration to another core is forbidden. Although another category can be consider for

algorithm which falls between global scheduling algorithm and partition scheduling algorithm, which inherits

some characteristics of global scheduling algorithms and some characteristics of partition scheduling algorithms.

Different approaches for scheduling on multi-core have been followed to achieve goals along with

respecting the constraints on system such as reducing the power consumption, increasing processor utilization,

fairness. Various parameters can be focused to design scheduling policy such as cache miss, context switch [12]
to accomplishing goals.

2.4 Performance Contribution of Task

In some real-time systems, each task contributes to the final logical results. In MSS it may happen that

some task may not perform to their fullest, but contributes up to certain extent. So contribution of task must be

taken into account. In [5] contribution of each task with respect to other tasks in task set has been taken into

account. Tasks are classified into four categories based on two parameter namely PCF and deadline. Tasks are

again divided into two sections of mandatory which represent the compulsory executable part of task and other

is optional which represents optional part of task. Task set is scheduled by PCD algorithm on basis of PCF

which respects precedence constraints and deadlines imposed on task.

PCF of each task is calculated as

0

k

G k k

k

E p G

 (1)

Where,

 EG = Expected MSS performance.

Gk = Performance rate at state k of MSS

pk= Probability of system being in state k.

The probability that system reaches particular state is calculated by

in
k

t

L
p

L

(2)

Where,

Lin = Total number of messages task receives from other tasks.

Lt= Total of number messages associated with task.

Consider if task has one preceded task, then the task become dependable on preceded task for its

execution. Probability of task execution having one preceded task depends upon execution of preceded task and

accomplishment level of preceded task. For example if task t2 is preceded by task t1, then probability of

execution of task t2 depends on execution of task t1, same can be calculated by using conditional probability as

 2 1
2 1

1

()
(|)

()

n t t
p t t

n t

(3)

Equation (3) can be read as probability of execution of task t2 given that task t1 executes.

Consider if more than one tasks precedes certain task then the probability of execution depends upon

all the tasks which precedes the certain task. Then the probability of execution of certain task which depends on

more than one of tasks is calculated by Bayes rule. For example consider that task t1, task t2 precedes task t3

then probability of execution of task t3 can be calculated by Bayes rule as

 3 1 3 1 2 3 2(((|)))) |) ((p t p t p t t p t p t t (4)

Accomplishment level of system at state k is represented by
kG in equation (1) is assumed based on GkLin .

Putting the values of kp and 𝐺𝑘 in equation (1) gives the performance factor in the MSS.

Precedence Constraint Task Scheduling for Multicore Multikernel Architecture

www.iosrjournals.org 46 | Page

2.5 Modeling Real-time systems
Modeling is important part of system engineering. Modeling helps to understand complex problem and

their solution [13]. As the popular proverb says “Stitch in time saves nine”. Modeling the system in design
phase saves the extra time spent in changes in actual system which is engineered instead of modeling the system

[14]. Systems are modeled before actual development of the system, to verify that system fulfils requirements

for which, system is to be engineered. Therefore modeling real-time system can greatly help to visualize

whether system satisfies the requirement in timely manner. Modeling real-time system can be focused on two

parameter correctness and efficiency when processing platform like multi-core, provides parallelism [15].

Modeling inter-task communication mechanisms also have been studied in literature [16]. Systems engineered

by modeling the system in design phase refer to model-driven-engineering. MDE was introduced by Kent [17].

Different approaches to model real-time systems such as component based model, timed based model can be

followed [14]. In context of scheduling, component level based real-time systems have been proposed which

have component as set of real-time task and real-time scheduler whereas components communicate via RPC

[18]. Various tools can be used to design system model and verification like uppaal, smulinks etc.

2.6 Conclusion from Related Work

Uniprocessor architecture issues are outdated upto some extent whereas multi-core processors are

booming in processor market. Efforts are taken to increase more and more performance of processor by

increasing core count, speed of individual cores etc. This architectures need to exploit to solve complex problem

like precedence constraints, contribution of each task into output of system. On the other hand numbers of

approaches have been design to utilize processing power of processors; one of such approach is using powerful

OS that has dedicated kernel for each core. Also scheduling policy must schedule the task set in proper way so

as all the constraints imposed on system must be respected. Real-time scheduling has the prime constraint of

deadline along with other constraint while scheduling task set. Tasks are scheduled based on certain parameters

such as Deadline, Rate of task, Processor Utilization etc. Performance Contribution of task to the performance

of system could be such parameter.

III. Related Terminology
 3.1 Hybrid Algorithm

Proposed scheduling algorithm is hybrid scheduling algorithm as it does not belong to global

scheduling algorithm category which can migrate task while execution i.e. task can be preempted on one

processing unit and resume on another processing unit. Proposed algorithm neither belongs to partition

scheduling algorithm category which statically divides the task set into different partition.

Fig. 1. Hybrid Scheduling Assignment

In proposed algorithm, ready tasks which can be executed, arrives at global queue which is also ready

queue of core0 which is managed by master kernel; Admission Controller classifies them on the basis of PCF

and precedence relation. At the run time depending upon preceded tasks decision is taken at which core the

particular task will be executed.

3.2 Constraints

 In real-time systems deadline is de facto constraint implied on scheduling algorithm. As tasks interact
among themselves to generate the logical result of system it imposes precedence relation constraints.

Precedence Constraint Task Scheduling for Multicore Multikernel Architecture

www.iosrjournals.org 47 | Page

Fig. 2. Precedence Relations among Tasks

Respecting precedence constraints among task set refers to successor tasks cannot be executed until

and unless their preceded tasks have been executed. Precedence among tasks can be represented by Directed

Acyclic Graph (DAG) as

(,)P V E

 (5)

Where,

P = DAG representing precedence relation among tasks

V = Set of vertex in graph representing task set.

E = Set of edges in graph representing the messages among tasks as well as precedence relations among tasks.

Edges towards the vertex represents the precedence on the task, whereas edges outwards from vertex

represents that vertex is predecessor for other tasks. Proposed algorithm schedules task set respecting deadline

as well as precedence constraints laid on task.

3.3 Intercommunication among Tasks
Rami Matarneh [4] describes design architecture of OS which makes master kernel manager of slave

kernel and only master kernel is authorized to deal with system resource which will certainly maintain system

integrity. Communication among tasks executing on different core requires intervention of master kernel.

Andrew Baumann et al. [3] describe design architecture of OS uses message passing for communication among

tasks. This paper suggests that message passing should be done through intervention of master kernel and master

kernel should only be authorized to deal with system resources to maintain system integrity. However proposed

work is kept restricted from dealing to other approaches of communication among tasks and assumes task

communications is done by message passing.

3.4 System Model

This paper focuses on periodic task represented by ti which belongs to task set such that ti ∈ T. Task ti

is characterized by (Pi, Di, Ci, Zi) where Pi represents the minimum time units after which task can be invoked

again. Di represents absolute deadline for task ti on or before which task should get executed, Ci is execution

time and Zi is number of preceded task for task ti. This paper considers (Pi = Di) and (Ci ≤ Di).

IV. Praposed Work
This paper propose scheduling algorithm for periodic tasks, which can be scheduled on homogeneous

multi-core processors having multikenel OS in non-preemptive manner. Proposed algorithm is hybrid algorithm
which classifies the tasks of task set in two classes and determines strategy for allocating task to eligible

processing unit i.e. core on multi-core processor . In the task set, tasks also have precedence constraints imposed

which means successor task is executed after its preceded tasks are executed. The general view of scheduling

policy is as follows

Precedence Constraint Task Scheduling for Multicore Multikernel Architecture

www.iosrjournals.org 48 | Page

Fig. 3. Block Diagram

The working of algorithm is as follows:

Step 1: System modeling is done in EVENT STUDIO and checked against requirement. The technique was used

for model checking in [5].

Step 2: Task collaboration diagram is generated, which is further evaluated and simplified.

Step 3: Task set arrives at the ready queue of core0 which is global queue and managed by master kernel.
Step 4: Admission Controller does analysis of tasks belonging to task set which includes PCF and number of

preceded task

Step 5: Admission controller classifies tasks of task set into two different classes on the basis of PCF and

precedence relations.

Step 6: Tasks from class c1 are executed as task do not have any precedence.

Step 7: Tasks from class c2 are executed if all preceded tasks of task have been executed.

i. If task has only one preceded task, then the core where preceded task had executed is checked and if it is

idle then, task is scheduled to be executed over the same core else it is scheduled to execute on another

core which is idle. This approach is used to minimize the communication delay, and utilize the result
which can be locally used on core where preceded task was executed.

ii. If task has more than one task preceding, then the core where preceded task that finishes its execution last

is checked whether it is idle or not, if it is idle then task is scheduled on the same core else task is

schedule to execute on another core that is idle.

Fig. 4. Logical View of Scheduling Policy

As shown in fig. 4 tasks set arrives at global ready queue which is managed by master kernel.

Admission Controller classifies task into different classes. Depending upon the strategy, master kernel allocates

task to the core managed by slave kernel for execution. Proposed algorithm has two major phases namely

Admission Controller and Scheduling Strategy.

4.1 Admission Controller

Admission Controller does classification of tasks statically which mean that it is done before run time.

Classification is done on the basis of two parameter PCF and precedence relation. This classifies the tasks into

two different categories depending on their PCF factor and preceded tasks.

Precedence Constraint Task Scheduling for Multicore Multikernel Architecture

www.iosrjournals.org 49 | Page

Let T be the task set having finite number of task and C be set of classes to classify the tasks.

T = {t1 , t2 , t3 … tn}

C = {c1 , c2}

i. Calculate the PCF for each task in the task set and check the precedence relation.

This is done using analysis of task interaction collaboration diagram which suggest that how many number of

message have been passed to succeeded task. Let N be the number of messages passed by preceded tasks. If one

of these messages is failed then accomplishment level is going to reduce. Very such state is taken into account

so as to calculate PCF

Classification of tasks can be done as follows

ii. ∀ task ti ∈ T

 1 { | . 0 . } i i ic t t PCF t preceded tasks NULL
 (6)

and

 2 { | . 0 . } i i ic t t PCF t preceded tasks NULL
 (7)

4.2 Scheduling strategy

Assignment of task to the core is done at run time depending upon precedence of task and availability

of processing unit i.e. core.

Assumptions, Notations and pseudo code

Assumptions

 Only one instance of each task is executed per period in non-preemptive manner.

 Task set can be represented by Directed Acyclic Graph regarding the precedence relation, which means
there is no precedence constraint by successor task on predecessor tasks.

 All cores are homogeneous i.e. identical.

 Intercommunication among tasks is done by message passing.

 Core0 is managed by master kernel and all the computations regarding classification by admission

controller, other systems arithmetic computations are done at core0. Therefore no task executes at core0.

 All the tasks are single threaded.

Notations

ti= ith Task in Class.

tn= Last Task in Class

corel= lth Core among all Cores.

pre = Number_of_preceded_task.

tk= Preceded Task.

setflag_cl = Boolean Value for lth Core whether Busy or Idle.

setpflag = Boolean Value for all Preceded Task Executed.

Pseudo code

1. for task ti ∈ class c1

2. i=0 and l=1

3. for corel to coren

4. setflag_cl = 0

5. execute (ti → corel)

6. setflag_ cl = 1

7. endfor

8. if ti ≠ tn then

9. Repeat statement 3-7

10. endfor

11. for task ti ∈ class c2

12. i=k=0 and l=1

13. setpflag = 0

14. for k to pre

15. if all preceded tasks tk are execute1 then

16. setpflag = 1

17. endfor
18. if setpflag = 1 then

19. Check preceded task tk with highest response time and executed at corel

20. if setflag_cl = 0 and setpflag =1 then

Precedence Constraint Task Scheduling for Multicore Multikernel Architecture

www.iosrjournals.org 50 | Page

21. execute (ti → corel)

22. setfalg_cl = 1
23. endif

24. else

25. corel+1
26. Repeat statement 20-27

27. endelse

28. if ti ≠ tn then

29. Repeat statement 13-30

30. endfor

V. Performance Evaluation
Real-time systems should give correct results in prescribed time known as deadline. In context of

scheduling, task should execute on or before its deadline. If execution of tasks within task set has to be done on

or before deadline it is important that task should be assigned to processing unit in timely manner. Therefore it

can be noted that waiting time must be minimum. Also it is equally important that task should finish its

execution on or before deadline but not after deadline. Turnaround time parameter can be use to analyze that

how much time task takes to execute.

Waiting time: Amount of time task spent in ready queue, waiting for the resources allocation, I/O

manipulations and intercommunication with other tasks. For the sake of simplicity this paper assumes that task
spent negligible waiting time in resource allocation, I/O manipulations and intercommunication with other tasks.

Turnaround time: Turnaround time is the time gap between ready time to completion time. In non-

preemptive context turnaround time can also be measure as summation of waiting time and execution time of

task.

Simulations of proposed scheduling policy are done on identical quad-core. Core0 is managed by

master kernel as shown in fig. 4. All the computation regarding Admission Controller, system related arithmetic

computations are done at core0, so no task will execute at core0. All tasks in task set will be scheduled on

core1, core2, core3 depending upon their availability and scheduling policy.

Case study1:

Fig. 5. Task Set 1 along with Precedence Relations

 Fig. 6. Classifications of Tasks for Case Study 1

Precedence Constraint Task Scheduling for Multicore Multikernel Architecture

www.iosrjournals.org 51 | Page

Fig. 5 shows the tasks and the precedence relationships among them. Fig. 6 shows task set and

classification of the tasks on the basis of PCF and preceded task which is done statically.

Fig. 7. Task Allocation for Case Study 1

Fig. 7 shows task allocation for case study 1 which have task set comprising seven tasks. Each task is

allocated to processing unit according to scheduling strategy. Task is allocated in non-preemptive manner to

processing unit for the time units needed to get task executed. It can be seen that proposed algorithm respects

the constraints of precedence relation as well as deadline for each task.

Case study 2:

 Fig. 8. Task Set 2 along with Precedence Relations

Fig. 8 shows the precedence relation among task set for case study 2. Fig. 9 shows the tasks of task set
2 and classification of the tasks on the basis of PCF and Preceded tasks.

Fig. 9. Classification of Tasks for Case Study 2

Precedence Constraint Task Scheduling for Multicore Multikernel Architecture

www.iosrjournals.org 52 | Page

Fig. 10. Task Allocation for Case Study 2

Fig. 10 shows task allocation for case study 2 which have task set comprising seven tasks.

Fig. 11. Average Waiting Time Comparison

Fig. 12. Average Turnaround Time Comparison

As shown in fig. 11 and fig. 12 both average waiting time and average turnaround time of proposed

scheduling policy is less than PCD algorithm for both task sets.

VI. Future Scope
Although performance is increased for the task set respecting precedence constraints, more

performance could be gain if tasks can be executed in parallel manner provided more than one core is idle.

Moreover heterogeneity in cores should be taken into account and scheduling policy must be modified so that

tasks are assigned to different cores having different speeds, frequency. Depending upon performance
contribution of task in output of system and capacity of cores, scheduling policy must be designed. Another

Precedence Constraint Task Scheduling for Multicore Multikernel Architecture

www.iosrjournals.org 53 | Page

approach could be of designing scheduling policy targeted on the platform having clusters of core that means

each cluster having homogeneous cores but the clusters are heterogeneous.

VII. Conclusion
Problem of precedence constraint tasks can be solved more effectively with this approach. This paper

proposes new scheduling policy which addresses precedence constraint task scheduling considering precedence

relation and performance contribution of each task into output of the system on multikernel multi-core

processing platform which has more than one kernel. Scheduling policy is simulated for homogeneous quad

core of which one core is reserved for computations by admission controller. Rest three cores are being used for

scheduling the task set. However same problem of precedence constraint tasks has been addressed by PCD

algorithm which is indeed for uniprocessors architecture. Results are compared with PCD algorithm, it is

observed that average turnaround time has been improved further and average waiting time has been decreased
because of use of multi-core architecture.

References
[1] C. L. Liu and James W. Layland, “Scheduling algorithm for multiprogramming in a hard Real-time environment”, Journal of ACM

20, pp. 46-61, 1973

[2] Rakesh Kumar, Norman P.Jouppi and Parthasarathy Ranganathan “Heterogeneous Chip Multiprocessors”, IEEE Computer Society

pp32-38, .2005

[3] Andrew Baumann et al. “The Multikernel: A new OS architecture for scalable multicore systems”, SOSP ’09: 22nd ACM SIGOPS

Symposium on Operating systems principles, pp. 29–44, 2009.

[4] Rami Matarneh “Multi Microkernel Operating Systems for Multicore Processors”, Journal of Computer Science pp 493-500, 2009

[5] Radhakrishna Naik, R.R.Manthalkar, “Performance Contribution Based Scheduling Framework for Precedence Constraint tasks in

Real-time system”, International Journal of Computer Science and Engineering, Vol. 3 (2), 2011, 664-675, 2011

[6] B. Schauer, “Multicore processors-a necessity”, [Online] Available:http://www.csa.com/discoveryguides/multicore/review.pdf

[7] Pawel Gepner, Michal F. Kowalik “Multicore Processors: New Way to Achieve High System Performance”, Proceedings of the

International Symposium on Parallel Computing in Electrical Engineering, 2006

[8] Gordon E. Moore, “Cramming More Components onto Integrated Circuits” Proceedings of the IEEE, VOL. 86, NO. 1, pp 82-85,

January 1998

[9] Coming soon tile-gx100 the first 100 cores processors in the world, [Online].Available: http://internalcomputer.com/coming-soon

tilegx100-the-first-100-cores-rocessorin-the-world. Computer, Feb 2011

[10] Andrew Baumann, “Your computer is already a distributed system. Why isn’t your OS?”, 12th Workshop on Hot Topics in

Operating Systems, Monte Verità, Switzerland, 2009.

[11] Fan Ming, “Real-Time Scheduling of Embedded Applications on Multicore Platforms”, FIU Electronic Theses and Dissertations.

Paper 1243. 2014.

[12] Ajoy k. Datta, Rajesh Patel, “CPU Scheduling for Power/energy Management on Multicore Processors Using Cache Miss and

Context Switch Data”, IEEE Transactions on parallel and distributed systems volume.25 pp1190-1199,2014

[13] Bran Selic “The Pragmatics of Model-Driven Development The Pragmatics of Model-Driven Development”, IEEE Computer

Society IEEE software pp19-25, 2003.

[14] Joseph.Sitakis, “Modeling real time system-challenges and work direction”, proceeding of int. conference on embedded software

(EMSOFT 2001), Springer, LNOS 2211, 2001.

[15] Ahlem Triki, Jacques Combaz, “Model-Based Implementation of Parallel Real-Time Systems”, Verimag Research Report TR-2013-

11, 2013.

[16] N. Scaife and P. Caspi, “ Integrating model-based design and preemptive scheduling in mixed time and event-triggered systems”,

Verimag Technical Report TR-2004-12, 2004.

[17] Stuart Kent, “Model Driven Engineering”, in IFM 2002, volume 2335 of LNCS. Springer-Verlag, 2002.

[18] Jose L. Lorente, Giuseppe Lipari, Enrico Bini, “A Hierarchical Scheduling Model for Component-Based Real-Time Systems”,

IEEE, 2006.

