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Abstract: Background: The accurate prediction of where faults are likely to occur in code can help direct test 

effort, reduce costs and improve the quality of software. Objective of this paper is We investigate how the 

context of models, the independent variables used and the modeling techniques applied, influence the 

performance of fault prediction models. Method on We used a systematic literature review to identify 208 fault 

prediction studies published from January 2000 to December 2012. We synthesise the quantitative and 

qualitative results of 36 studies which report sufficient contextual and methodological information according to 

the criteria we develop and apply. Combinations of independent variables have been used by models that 

perform well. Feature selection has been applied to these combinations when models are performing 

particularly well. 

Conclusion: The methodology used to build models seems to be influential to predictive performance. Although 

there are a set of fault 
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I. Introduction 

The prediction of fault-proneness has been studied extensively. In a stable development environment, 

metrics can be used to predict modules that are likely to Critical faults. Some researchers en dorse to use of 

product metrics, such as Halstead complexity McCabe's cyclomatic complexity, and various code size measures 

to predict fault-prone modules while others are believe of such simplistic approaches V&V textbooks, for 

example, recommend using static code metrics to decide whether modules are worthy of manual inspections. 

NASA software Independent Verification and Validation facility and with several large government software 

contractors is that they won't review software modules unless tools like McCabe predict that they are fault 

prone. The use of such measures is controversial. Fenton offers an example where the same program 

functionality is achieved using different programming language constructs resulting in different static 
measurements for that module. 

Machine learning, a branch of artificial intelligence, concerns the construction and study of systems 

that can learn from data. For example, a machine learning system could be trained on email messages to learn to 

distinguish between Fault and non-Fault modules after learning; it can then be used to classify new email 

messages into Fault and non-Fault modules. 

The core of machine learning deals with representation and generalization. Representation of data 

instances and functions evaluated on these instances are part of all machine learning systems. Generalization is 

the property that the system will perform well on unseen data instances; the conditions under which this can be 

guaranteed are a key object of study in the subfield of computational learning theory. 

Fenton uses this example to argue the uselessness of static code attributes. Fenton & Pfleeger note that 

the main McCabe's attribute (cyclomatic complexity, or v(g)) is highly correlated with lines of code. Also, 

Shepperd&Ince remark that for a large class of software cyclomatic complexity is no more than a proxy for, and 
in many cases out performed by, lines of code. Therefore, they argue against the use of single features to predict 

for defects. Further, they reject other commonly used indicators since they are all highly correlated and, so they 

argue, just as uninformative. 

When individual features fail, combinations can succeed. This paper argues that combinations of static 

features ex-tracted from requirements and code can be exceptionally good predictors for modules that actually 

harbor defects. We do not intend to propose yet another classification algorithm. Our overall goal is to explore 

whether prediction of fault prone modules can be achieved using the information available in the early phases of 

software development. 

As software systems are increasingly deployed in mission critical applications, it has become 

imperative that they operate reliably and in accordance with the requirements.  

Experts to concentrate their attention and resources at problem areas of the system under development. 
Thus, applying software quality models early in the software life cycle con- tributes to efficient defect removal 

and results in delivering more reliable software products. The basic hypothesis of software quality prediction is 
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that a module currently under development is likely to be fault prone, if a module with the similar product or 

process metrics in an earlier project (or release) was fault prone. Therefore, the information from the previous 

project can be used in making a prediction for the current project, if the development environment is stable. This 

methodology is very useful for large-scale projects or projects with multiple releases. Many modeling 

techniques have been developed and applied to software quality prediction. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig 1: Machine Learning Approach 

 

II. Related Work 

Parvinder S. Sandhu, et.al [1] have proposed the Genetic Algorithm based software fault prediction  models 

with Object-Oriented metrics. It has used Metric values of JEdit open source software for generation of the 

rules for the classification of source software modules in the categories validation is performed. Result shows 

that  Genetic algorithm approach can be used for finding the fault proneness in object oriented software 

components. Fault-proneness of software modules is the probability that the module contains faults. 

 

Yan  Ma, et.al[2] have proposed the a methodology for predicting fault prone modules using a modified 

random forests algorithm. Random forests improve classification accuracy by growing an ensemble of 

classification trees and letting them vote on the classification decision. We applied the methodology to five 
NASA public domain defect data sets. These data sets vary in size, but all typically contain a small number of 

defect samples in the learning set. If overall accuracy maximization is the goal, then learning from such data 

usually results in a biased classifier, i.e. the majority of samples would be classified into non-defect class. To 

obtain better prediction of fault-proneness, two strategies are investigated: proper sampling technique in 

constructing the tree classifiers, and threshold adjustment in determining the winning class. Both are found to be 

effective in accurate prediction of fault prone modules. In addition, the paper presents a thorough and 

statistically sound comparison of these methods against ten other classifiers frequently used in the literature. 

Accurate prediction of fault prone modules in software development process enables effective discovery and 

identification of the defects. 

 

 Lan Guo, et.al [3] have proposed a novel methodology for predicting fault prone modules, based on random 
forests. Random forests are an extension of decision tree learning. Instead of generating one decision tree, this 

methodology generates hundreds or even thousands of trees using subsets of the training data. Classification 

decision is obtained by voting. We applied random forests in five case studies based on NASA data sets. The 

prediction accuracy of the proposed methodology is generally higher than that achieved by logistic regression, 

discriminant analysis and the algorithms in two machine learning software packages, WEKA and See5. 

 

Rubinderjit Kaur, et.al[4] have proposed  that evaluation of the fault proneness of modules in open source 

software  

system using k-NN clustering algorithm based on Object-Oriented metrics. It has Metric values of JEdit open 

source software for generation of the rules for the classification of software modules and thereafter empirically 

validation is performed. Result show that the proposed approach can be used satisfactorily for finding the fault 
proneness in object oriented software components.  

 

Mattew Evett, et.al[5] have proposed the genetic programming (GP) based system for targeting software  

modules for reliability enhancement. The GP system ,and provides a case study using software quality data from 

two actual industrial projects. The system is shown to be robust enough for use in industrial domains. 

 

Marshima M. Rosli, et.al[6] have proposed the software development industry is to deliver an application with 
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100% defects free. However, this challenge is difficult to achieve by the software industries because it involve 

humans and is not an automated process done by applications, which having faults is a common things. Fault 

prediction is identified as one major area to predict the probability that the software contains faults. The 

objective of the fault prediction is to classify the software modules in the categories of faulty and non-faulty 

modules as early as possible in software development life cycle. Fault prediction model using object oriented 

metrics values from web application as input values to the genetic algorithm to predict the fault probability. The 

aim of the proposed design model is to develop an automated tool for software development group to discover 
the most likely software modules in web applications to be high problematic in the future. 

 

Manpreet Kaur, et.al[7] have proposed that fault-proneness of a software is the probability that the module 

contains faults. To predict fault proneness of modules different techniques have been proposed which includes 

statistical methods, machine learning techniques, neural network techniques and clustering techniques. This 

approach has been tested with real time defect C programming language datasets of NASA software projects. 

Result show that the fusion of requirement and code metric is the best prediction model for detecting the faults 

as compared with commonly used code based model. 

 

 Robert Hochman, et.al[8] have proposed the genetic algorithm is applied to developing optimal or near 

optimal back propagation neural networks for fault-prone/not fault-prone classification of software modules. 
The algorithm considers each network in population of neural networks as a potential solution to the optimal 

classification problem. Variables governing the learning and other parameters and network architecture are 

represented as substrings (genes) in a machine level bit string (chromosome). When the population undergoes 

simulated evolution using genetic operations selection based on a fitness function, crossover and mutation the 

average performance increases in successive generations. We found that. On the same data, compared with the 

best manually developed networks, evolved networks produced improved classifications in considerably less 

time, with no human effort, and with greater confidence in their optimality or near optimality. Strategies for 

devising a fitness function specific to the problem are explored and discussed.    

A. Discriminant Analysis 

Discriminant analysis is a very useful tool to determine which variables discriminate between two or more 

naturally occurring groups. It can also be used to classify cases into two or more groups. In our study, the 

DISCRIM procedure (linear discriminant function) in SAS [4], a commercial statistics software, was employed 
as a classifier on the five NASA data sets. 

 

B. Logistic Regression 

 

Logistic regression is useful to predict a dependent vari-able on the basis of independents (predictors). For 

comparison, the LOGISTIC procedure in SAS was used as a classifier to predict fault prone modules for the five 

NASA data sets. 

C. Random Forests 

A random forest is a classifier consisting of a collection of tree-structured classifiers. The random forest 

classifies a new object from an input vector by examining the input vector on each tree in the forest. Each tree 

casts a unit vote at the input vector by giving a classification. The forest selects the classification having the 
most votes over all the trees in the forest. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 2 Construction of a Random Forest 
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D. See5/C5 

        See5/C5 is a commercial machine learning software [5]. Its earlier version is called C4.5. There are 

three classifiers in See5: Decision Tree, Rule Set, and Boosting. When See5 is invoked with the default values 

of all options, it constructs a decision tree for classification. Decision trees can some-times be quite difficult to 

understand. An important feature of See5 is its ability to generate classifiers called Rule Sets that consist of 

unordered collections of (relatively) simple if-then rules, derived from the constructed decision trees. Another 

innovation incorporated in See5 is adaptive boosting. The idea is to generate several classifiers (either decision 
trees or rule sets) rather than just one. When a new case is to be classified, each classifier votes for its predicted 

class and the votes are counted to determine the final class. The three classifiers of See5 were used to predict 

fault prone modules for the five NASA data sets. 

 

E. Genetic Algorithm  

A genetic algorithm (GA) is a search technique used in computing to find exact or 

approximate solutions to optimization and search problems. Genetic algorithms are categorized as 

global search heuristics and a particular class of Evolutionary Algorithms that use techniques 

inspired     by evolutionary biology such as inheritance, mutation, selection, and crossover. With help 

of Genetic algorithm classification of the software components into faulty/fault-free systems is 

performed. The flowchart of the Genetic Algorithm based approach is shown in the following figure: 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 3 Flowchart of use of GA 

 

III. Experimental Database 
Data set describing project JM1 contains some missing values. These were removed prior to the statistical 

analysis. Each data set contains twenty-one software product metrics which describe product’s size, 
complexity and some structural characteristics. 

 

Table 1: Metric Descriptions of Five Data Sets 

 

Metric Type Metric Definition 

   

McCabe v(G) Cyclomatic Complexity 

 ev(G) Essential Complexity 

 iv(G) Design Complexity 

 LOC Lines of Code 

   

Derived N Length 

Halstead V Volume 

 L Level 

 D Difficulty 
 I Intelligent Count 

 E Effort 

 B Effort Estimate 

 T Programming Time 
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Line LOCode Lines of Code 

Count LOComment Lines of Comment 

 LOBlank Lines of Blank 

 LOCodeAndComment Lines of Code and Comment 

   

Basic UniqOp Unique Operators 

Halstead UniqOpnd Unique Operands 

 TotalOp Total Operators 

 TotalOpnd Total Operands 
   

Branch BranchCount Total Branch Count 

 
 

 

 

 

 

 

 

 

 

 

Fig 4: Confusion Matrix of Defect Prediction 

 
TP + TN 

                                                   ACC= 

TN + FP + FN + TP 

 

The True Negative Rate (TNR) is the proportion of correctly identified defect-free modules. It is calculated as: 

 

TN 

TNR =                                   = 1 – PF 

TN + FP 

 

The precision is proportion of correctly fault-prone modules, calculated as follows: 
 

TP 

                                                          Precision =  

                                                                                      TP + FP 

 

The number of fault-prone modules is much smaller than the number of non-defective modules. 

Therefore, the accuracy is a good measure of performance. The margin plot (please review Section 2 for the 

definition of “margin”) for projects PC1 and KC2 using the random forest algorithm (majority voting). Since 

maximizing overall accuracy is the goal when the traditional random forest algorithm is applied, a good overall 

accuracy measures ware obtained. However, a large proportion of fault-prone modules (cases belonging to 

minority class) were misclassified. The performance measures that take the “imbalance of data” into account 

when assessing classification success include geometric mean (G-mean) and F-measure, defined as follows: 
 

 

 G – mean 1 =          PD * Precision 

 

 

                                                                    G – mean 2 =          PD * TN 

                  

                                                                                    ( β2 + 1 ) * Precision * PD 

                                                     F – measure = 

                                                                                      β2 * Precision + PD 
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