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Abstract: In this paper, we present a numerical study of the  rheological behaviour effect of non-Newtonian, 

power-law fluids on the unsteady gravity flow through a porous medium. The governing equations are derived 

and similarity solutions are determined. The finite difference method is employed to obtain solution of the non-

linear problem. The results show the existence of traveling waves.  It is assumed that the viscosity is 

temperature dependent. We investigate the effects of velocity on the temperature field. We investigate the effect 

of the power-law viscosity index, and the results were discussed. 

Keywords: Unsteady gravity flow; Porous media; Non – Newtonian power- law fluids and Finite difference 

method. 

   

I. Introduction 
Accurate and comprehensive computational techniques such as finite difference method can be applied 

to solve partial differential equations that model the flow of a porous media. Particular difficulty of the flow in 

porous media is that it arises, often in subtly different forms, in several separate fields of natural science and in 

large number of branches of technology.  

        Some scientists have studied gravity flow of a power-law fluids through a porous                                

medium.  These include, Peter and Ayeni[1] presented a note on unsteady temperature equation for gravity flow 

of a power-law fluids through a porous medium. Cortell [2] considered a paper on unsteady gravity flows of a 

power-law fluid through a porous medium. Olajuwon and Ayeni [3] examined a note on the flow of a power-law 

fluid with memory past an infinite plate. Pascal and Pascal [4] studied similarity solution to some gravity flows 

of non-Newtonian fluids through a porous media. Peter and Ayeni [5]investigated on the analytical solution of 

unsteady gravity flow of a power-law fluid through a porous medium. Zueco [6] also considered the numerical 

solutions for unsteady rotating high-porosity medium. 
Singh[7] examined the effects of viscous dissipation and variable viscosity effects on MHD boundary layer flow 

in porous medium past a moving vertical plate with suction. Ogunsola and Ayeni [8] considered the temperature 

distribution of an Arrheniusly reacting unsteady flow through a porous medium with variable permeability. 

Szeri  and Rajagopal [9] studied the flow of a Non-Newtonian fluid between heated parallel plates. Howarth 

[10] numerically considered various aspect of the Blasius flat-plate  flow problem.  Sparrow and Cess [11] 

examined the effect of magnetic field on free convection heat transfer on isothermal vertical plate. Krishnendu 

et al [12] studied the similarity solution of mixed convective boundary layer slip flow over a vertical plate. 

Hayat et al [13] they examined the effect of joule heating and thermal radiation in flow of third grade fluid over 

a radiative surface. In this paper ,we present a numerical solution of unsteady gravity flow through a porous 

medium in order to see the effect of thermal conductivity expansion on the flow, proof the existence and 

uniqueness of the problem.  
 

II. Mathematical Formulation 
The governing equations are continuity, momentum equation as proposed by [2] and energy equations. 

Considering a two dimensional flow in the zx   plane where the free surface is a streamline at a point on the 

surface, we expressed the flow by a modified Darcy’s law. 

The unsteady equations are 

s

hk
v







         (Darcy’s law)       (2.1)                          

It is a single phase flow where 
s

h




 is the gradient in the flow direction and k  is independent of the 

nature of the fluid but depends on the geometry of the medium.  
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                       (Modified Darcy’s law)           (2.2)                                                                                     

 

Where S is measured along the streamline,                                                                                                                                            

since hz   on the free surface. The rheological parameter n  is the power-law exponent which 

represents shear-thinning, i.e.  1n  and shear-thickening  1n fluids, k  is the permeability,   is the 

density and ef  is the effective viscosity. The Dupuit’s approximation yields 
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For small gradients which converts the problem into a one – dimensional problem. This approximation 

permits to assume a horizontal flow with ),( txhh  (t being the time) and equation (3.12) becomes 
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Where rv  is the component of the velocity in the radial direction, whereas for radial axisymmetric flow 

 
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hvr
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


                                                                   (2.5) 

Where   being the porosity                                                                                         
  The flow can also be expressed by a modified energy equation 
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 where  Tkk    

Assume that   TekTk  0  
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 ,,  heat at constant pressure,   viscosity, k = thermal 

conductivity, 
Te is the thermal expansion,  is the coefficient of thermal expansion,   = density, rheological 

parameter n = power-law index and = apparent viscosity.                                                                           

Neglecting the dissipation term, then equation (2.6) becomes 
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  00, TrT 
                             

 

  0,,0 1  tTtT
 

   

                                                                                 

  0, TtT 
          

 (2.8) 

Let us introduce dimensionless variables (Non-dimensionalize) 
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                                                (2.9) 

Substituting (2.9) into Equation (2.7) together with boundary conditions (2.8)  we obtain 
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Transforming the boundary conditions, we have 

      0,,1,0,00,  ttr 
        (2.12)

 

Introducing  new variables  

           (2.13) 

 

 

Substituting equation (2.13) into (2.11) to get 

  gcgbgaeg
g 

   2

1

2 2       (2.14) 

  10 g                                                                       (2.15)   

    ,0,0 g                      (2.16) 

 

III. Method Of Solution 
In order to solve the problem and keep it tractable, the set of non-linear ordinary differential equations 

(2.14) with boundary conditions in (2.15)-(2.15)   have been solved  analytically and numerically by using finite 

difference method. The computations were done by  Maple 13. 

Case 1: Existence and uniqueness 
We prove existence and uniqueness theorem, the problem has a solution and the solution is unique. 

From equation(2.17) 

when  0  equation becomes 
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Let   
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Which satisfies 

  11 g                                                                                          (3.5) 

  0g             (3.6) 

      rtgttr  ,,
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  1.01 g                                                                                    (3.7) 

Problem (3.4)-(3.7) has a unique solution 

Proof: 

Let 
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The system of equations can be written in vector form using 

1x , gx 2 , gx 3  
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Hence  3,2,1,, 



ji

x

f

j

i
  are Lipchitz continuous and are bounded in D for every bounded 

.21 xandx Therefore; problem (3.4)-(3.7) has a unique solution. This completes the proof. 

 

Case 2 

From equation(2.17) 

Let   1  to get 
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Case 3 

From equation(3.2) 
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From equation (3.27) together with the boundary conditions (3.21)-(3.22) we obtain 
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IV. Results 
Numerical  solutions of equations(3.28) together with the boundary conditions (3.21)-(3.22) were 

provided for various  parameters  in the flow equations.   

                                      
  

  

Figure 1: Graph of the temperature  function g  against the similarity variable    6.1,4.0  bc  

                                                 
  

  

           Figure 2: Graph of the temperature  function g  against the similarity variable     0.2,5.0  bc  

                                                   
  

  
  

Figure 3: Graph of the temperature  function g  against the similarity variable    1.0,5.0  bc  
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Figure 4: Graph of the temperature  function g  against the similarity variable    001.0,05.0  bc  

 

V. Conclusion 
A set of non-linear coupled differential equations governing the fluid temperature is solved analytically 

and numerically. A comprehensive set of graphical results for temperature is presented and discussed. We show 

that the problem has a solution and the solution is unique. On the other hand, we also see that the parameter b  

affects  both the flow characteristics and the accuracy of the approximate solutions significantly. 
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