
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 3, Ver. VIII (May-Jun. 2014), PP 16-23

www.iosrjournals.org

www.iosrjournals.org 16 | Page

Test Exude: Approach for Test Case Reduction

Vaibhav Chaurasia
1
, Thirunavukkarasu K.

2

1
Student - School of Computing Science and Engineering, Galgotias University, India

2
Asst. Professor – School of Computing Science and Engineering, Galgotias University, India

Abstract : Software development is a planned and structured process includes research, new development,

modification, re-engineering results in software products. The structure of development of software is SDLC. It

contains various process and activities to accomplish the task of the software product. In SDLC, testing is the

most expensive phase. It is used to validate the software with all possible combinations. Exhaustive testing is

impossible task in software testing, as, it is impractical with large software products. Now, automation is

applied to generate the test cases for various applications, but the selection and reduction of test cases by

automation is the main problem. This target only be achieved, when test cases is contained in large test suites.

The technique we propose for test case reduction, called TestExude. It is a technique which gives test cases

needed and discard other test cases from the Test Suite. It reduces the redundant test cases and its

corresponding elements. This technique works on frequency of test cases in test suite and accepts largest

frequency occurred in test suites and discard test cases on the base of frequency selected. Storage is well

managed in this technique by reducing the test cases drastically in test suite. Test Suites size, user time,

organization cost, storage cost are reduce efficiently. Ultimately, it improves and generate effective test case.

This technique is more advantageous than any other techniques as it reduces the cost and time to its minimum

extent.

Keywords: Delegate Set, SDLC, Test Case, Test Case Reduction, TestExude, Test Suite

I. Introduction
Software Development has seven phases to develop software. In SDLC (Software Development Life

Cycle) Development phase and Testing phase takes maximum time and cost, both phases are equivalent to each

other. Instead of equivalence Software Testing phase is most expensive phase due to the varieties of testing in

the current scenario (for e.g., Regression Testing, Unit Testing, Alpha-testing and so on).

The area of Software Testing is huge and sources are limited, so, instead of overall testing Software

Tester focus on Test Cases. According to the definition [3] “A test case, is a set of conditions or variables under

which a tester will determine whether an application, software system or one of its features is working as it was

originally established for it to do”.

Reduction of the Test Cases is most challenging than Generating a Test Case. Test Cases completely

depend on the length of the program. For instance, any Program contains 10000 Lines of Code, and then Test

Cases also in thousands of number and its cost vary from thousands to lakhs.

The cost of testing each Test Case cannot afford by an every organization, so, optimization is needed

over there. As, every phase of SDLC needs to be considered in development of software. To optimize the test

cases, Test Suite is formed instead of individual Test Cases. Test Suite is defined as [4] “a test suite, less

commonly known as a validation suite, is a collection of test cases that are intended to be used to test a software

program to show that it has some specified set of behaviors”. Each Test Suite contains thousands of Test Cases

and each Test Suite has its own goals and detailed information related to it.

Other than, optimization of Test Cases, effectiveness of test cases counts. Optimization be done on the

basis of the effectiveness of the Test Cases i.e., extract only those Test Cases which is useful from the Test

Suite.

Automated Test Case Generation are so developed that for any application or software, produce test

cases but the core problem regarding Automated Test Case Generation is that, Generation of test cases are not

effective one. It generates overall test cases, not according to the need by the Software Tester. So, tester needs

such technique with which useful Test Cases can be extracted.

Test suite contains large amount of test cases which is redundant i.e., same set of Test Cases repeating.

Our goal is to reduce redundancy and produce effective test case. It reduce the time and cost of the development

organization. Complexity is also reduces as compare to the traditional Test Case Reduction Techniques.

Automation is up to some level, but the skill of the Tester is the big issue. Crucial resource remains the

human factor [1]. Beyond the availability of advance technology, tester skill and commitment can make a big

difference between successful and ineffective generation of the test case [1].

The skill is attribute which is developed by the knowledge. Knowledge also is big aspect and plays

vital role. The definition of Knowledge in one aspect [5] “Knowledge is familiarity, awareness or understanding

Test Exude: Approach for Test Case Reduction

www.iosrjournals.org 17 | Page

of someone or something, such as facts, information, description, or skills, which is acquired through experience

or education by perceiving, discovering, or learning”. Testers need to have knowledge in each area i.e.,

development and testing. Knowledge is developed only by the experience, studies told us [2] “Practical

knowledge that is developed in direct observation or participation in activities”.

The technique we propose a technique for test case reduction, called TestExude. This technique,

calculate the frequency of the Test Cases occur in the Test Suit. It selects the highest frequency from the test

suite and discards all the test conditions corresponding to it. Then, it calculates the new frequency of the test

cases. The procedure continues till all the test conditions will discard. In case tie between the tests cases

frequency, test case will select randomly.

In the field of reduction of test cases many algorithms are there which is effective but complex equally

and creates confusion in the mind of the developer such as Dynamic Domain Reduction [8][9], Common Test

Case Generator [10][11], Handling Constructs with Exceptions [12]. This algorithm based on statement

coverage, covers all the statement from header files till the end of the source code.

As, we know very thoroughly that at the time of development, client change its requirement

accordingly. In this case, developer has to do changes in their code. It is very dark side of the development and

quality is also affected by changing the requirement again and again. So, TestExude handles or solve the

problem of changing requirement in development scenario.

In the remaining part of paper, in Section II, we discuss Existing Technique for the same and

limitations in that method. Section III contains, Proposed Algorithm, TestExude. Section IV contains the portion

of the Experimental Study for the specific and result related to an algorithm. Section V contains the part of the

Conclusion last part VI contains Future work of this technique.

II. Existing Technique
Filtration technique helps us to find effective test cases at the maintenance level of SDLC. It yields

equivalent coverage with respect to some criteria [7].

The algorithm is as follows [6]:-

Algorithm

1) Inputs: Set of Requirements (SR): SR = {Reqi| i ϵ N, i ≤ m}

Set of Test Cases (STC): each test case completely satisfies one or more requirements. STC = {tci| i ϵ

N, i ≤ n}

Set of Test Suite (STS): STS = {TSi| i ϵ N, i ≤ m}

Test Case (TSk): It means that each test in the test suite satisfies the requirement Reqk

2) Output: Representative Set (RS).

3) Steps: The following steps in the algorithm are :-

 In Step 1 Weighted Set has been calculated of the test cases.

 Select the test case having highest weight. In case of tie, choose random between the two or more.

 Move tchto Representative Set, and mark the entire test suite from Set of Test Suite (STS). When all test

suite is marked, then exit else repeat the steps until set suite marked.

1.1 Advantage and Disadvantage

This technique is more advantageous than any other techniques as it reduces the cost and time to its

minimum extent. It also reduces the redundant and its corresponding elements. Storage is well managed in this

technique and reduces the test suites drastically.

Instead of all the advantages, technique has limitation that, it works only on the Input given and

Expected Output taken. In simple words, when user gives some input then, output is expected from the program

and this technique work on the same.

In programming, there are the cases in which Input is not given by any user or there is no interference

of any user. In these codes, input is generated automatically by the compiler. In that case, TestFilter [7]

technique fails to reduce the test cases.

So, we have proposed a new technique which overcomes these limitations. In propose technique, these

types of cases in code is handled successfully.

III. Proposed Technique
Limitation of the existing technique is that, it only works on the given set of exhaustive inputs given by

the user. If, inputs taken dynamically by the system then, this technique not work appropriately.

For this purpose, new technique is proposed. This technique works on the frequency of the test cases

(occurrence of test cases under certain test conditions).

Test Exude: Approach for Test Case Reduction

www.iosrjournals.org 18 | Page

TestExude is a technique which gives us test cases needed and discards other test cases from the Test

Suite. The procedure of TestExude is as follows:-

Inputs:-

 Set of Requirements

 Set of Test Cases

 Set of Test Conditions

 Associated Test Cases

Outputs:-

 Delegate Set(DS)

Step 1:- Develop Initial Source Code according to the given requirement.

Step 2:- If requirement changes, then review the requirement, and do changes in the Source Code

accordingly.

Step 3:- Decide the Requirements (Reqf) in the source code

Step 4:- According to the requirement (Reqf) and Test condition (TCv), derive the associated test cases

(tcm)

Step 5:- Calculate the frequency of the test cases.

Frequency is the number of test condition occurred as follows :

 () ∑

(()) ()

TCv is a test condition, m is varies from 1 to n.

Step 6:- Select the first test case has highest Frequency, if frequencies are the same of all test cases

then, use random selection method.

Step 7:- Put every selected test case in the Delegate Set (DS) and discard other test cases and their

relevant test cases.

Step 8:- Verify, the test case fulfills our requirement or not.

If

fulfill, then Extract all the elements of corresponding test case.

tcm ϵTCv

Now, extract all the elements belong to TCn

TCv→{tc1.........tcn}

else

Goto Step 6 and again follow same procedure.

IV. Experimental Study
In this part, study and analysis of the technique proposed is done. From this we conclude our final

result. Mainly our concern is to reduce test cases for some special cases not the overall test cases.

Sometime, testing is to be done on special Data Sets and its output. In that case, we have to extract

useful test cases from the Test Suite according to the given condition., for e.g. Only Prime numbers from the test

suite given be or Even numbers from the given test suite. In this, only prime numbers are needed in a specific

range. So, accordingly source code is written.

Now, the technique is proposed in this paper, we, evaluate them by a simple example.

2.1 Source Code

At first site, we have the different code :-

#include <stdio.h>

int main()

{ intn,j;

 printf("Numbers between 1 to 100\n");

 for(n= 1;n<= 100;n++)

 { for(j=2;j<= 100;j++)

Test Exude: Approach for Test Case Reduction

www.iosrjournals.org 19 | Page

 { if(n%j==0)

 break;

 }

 if(j==n)

 { printf("Prime Number :- %d \n",n);

 }

 }

 return 0;

}

In the program, Data Set is given in which Data Set contains even, odd and prime numbers as the

requirement has been changed by third party. So, according to the test suite we have to modify our source code

slightly according to the test suite Data Set. In this we have to extract theelements which is prime by nature. We

have large number of Data Set contains in which it is difficult to give input for each and every element to check

its status. So, simply we apply loop accordingly and extract all output in one go. Problem is that input is taken

dynamically by the system. Although, code gives Even and Odd numbers due to the exhaustive testing by the

user included in test suite. So, the modified source code is as follows :-

#include <stdio.h>

int main()

{ intn,j;

 printf("Numbers between 1 to 100\n");

 for(n= 1;n<= 100;n++)

 { for(j=2;j<= 100;j++)

 { if(n%j==0)

 break;

 }

 if(j==n)

 { printf("Prime Number :- %d \n",n);

 }

 else if(n%2==0)

 { printf("Even Number :- %d \n",n);

 }

 else if(n%2==1)

 { printf("Odd Number :- %d \n",n);

 }

 }

 return 0;

}

2.2 Test Cases

In this technique, test cases generated according to requirement given i.e., test suite is provided and we

have to extract the test cases according to the need of the user given in Table I

TABLE I

TEST CASES FOR PRIME, EVEN OR ODD
Test

Cases

Data(Given) Output

Expected

tc1 100 Even number

tc2 23 Prime number

tc3 27 Odd number

tc4 89 Prime number

tc5 11 Prime number

tc6 46 Even number

tc7 94 Even number

tc8 94 Even number

tc9 77 Odd number

tc10 79 Prime number

tc11 56 Even number

tc12 68 Even number

tc13 91 Odd number

tc14 52 Even number

tc15 47 Prime number

Test Exude: Approach for Test Case Reduction

www.iosrjournals.org 20 | Page

tc16 98 Even number

tc17 43 Prime number

tc18 73 Prime number

tc19 37 Prime number

tc20 39 Odd number

tc21 73 Prime number

tc22 53 Prime number

tc23 91 Odd number

tc24 95 Odd number

tc25 66 Even number

tc26 55 Odd number

tc27 59 Prime number

tc28 13 Prime number

tc29 31 Prime number

tc30 50 Even number

Initially we resume that Delegate Set is empty. Frequency of the test case is calculated and on the basis

of number of elements occurred in the test conditions.

2.3 Statements Covered and Associated Tests

Now, from the source code, statement to be covered decided by the user. In this all the statement not

included. Only the condition part in the source code is included in the requirement. In this Test Condition is

also defined and the test case associated with the different Test Conditions given in Table II

TABLE II

REQUIREMENTS AND ASSOCIATED TEST CASES
Requirement

(Reqf)

Statement

Covered

Test

Condition

(TCv)

Test Associated

(tcm)

Req1 for(n= 1;n<=

100;n++)

TC1 tc1-tc30

Req2 for(j=2;j<=
100;j++)

TC2 tc1-tc30

Req3 if(n%j==0) TC3 tc1-tc30

Req4 if(j==n) TC4 tc1-tc30

Req5 printf("Prime
Number :- %d

\n",n);

TC5 tc2,tc4,tc5,tc10,tc15,
tc17,tc18,tc19,tc21,tc

22, tc27,tc28,tc29

Req6 else if(n%2==0) TC6 tc1-tc30

Req7 printf("Even
Number :- %d

\n",n);

TC7 tc1,tc6,tc7,tc8,
tc11,tc12,tc14,tc16,tc

25,tc30

Req8 else if(n%2==1) TC8 tc1-tc30

Req9 printf("Odd
Number :- %d

\n",n);

TC9 tc3,tc9,tc13,
tc20,,tc23,tc24,

tc18,tc26

2.4 Frequency Calculation

Frequency is calculated by counting the associate test case occurred in particular test condition. Then,

test case having highest frequency is selected. If the frequencies are same then, choose it randomly shown in

Table III

Test Exude: Approach for Test Case Reduction

www.iosrjournals.org 21 | Page

TABLE III

FREQUENCY CALCULATION
Associated

Test Cases

(tcm)

Test Condition

(TSv)

Frequency

tc1 TC1,TC2,TC3,

TC4,TC6, TC7, TC8

7

tc2 TC1,TC2,TC3,
TC4,TC5,TC6, TC8

7

tc3 TC1,TC2,TC3,

TC4,TC6,TC8, TC9

7

tc4 TC1,TC2,TC3,

TC4,TC5,TC6, TC8

7

tc5 TC1,TC2,TC3,

TC4,TC5,TC6, TC8

7

tc6 TC1,TC2,TC3,

TC4,TC6, TC7, TC8

7

tc7 TC1,TC2,TC3,

TC4,TC6, TC7, TC8

7

tc8 TC1,TC2,TC3,

TC4,TC6, TC7, TC8

7

tc9 TC1,TC2,TC3,

TC4,TC6,TC8, TC9

7

tc10 TC1,TC2,TC3,

TC4,TC5,TC6, TC8

7

tc11 TC1,TC2,TC3,

TC4,TC6, TC7, TC8

7

tc12 TC1,TC2,TC3,

TC4,TC6, TC7, TC8

7

tc13 TC1,TC2,TC3,

TC4,TC6,TC8, TC9

7

tc14 TC1,TC2,TC3,

TC4,TC6, TC7, TC8

7

tc15 TC1,TC2,TC3,

TC4,TC5,TC6, TC8

7

tc16 TC1,TC2,TC3,

TC4,TC6, TC7, TC8

7

tc17 TC1,TC2,TC3,
TC4,TC5,TC6, TC8

7

tc18 TC1,TC2,TC3,

TC4,TC5,TC6, TC8

7

tc19 TC1,TC2,TC3,
TC4,TC5,TC6, TC8

7

tc20 TC1,TC2,TC3,

TC4,TC6,TC8, TC9

7

tc21 TC1,TC2,TC3,
TC4,TC5,TC6, TC8

7

tc22 TC1,TC2,TC3,

TC4,TC5,TC6, TC8

7

tc23 TC1,TC2,TC3,
TC4,TC6,TC8, TC9

7

tc24 TC1,TC2,TC3,

TC4,TC6,TC8, TC9

7

tc25 TC1,TC2,TC3,
TC4,TC6, TC7, TC8

7

tc26 TC1,TC2,TC3,

TC4,TC6,TC8, TC9

7

tc27 TC1,TC2,TC3,
TC4,TC5,TC6, TC8

7

tc28 TC1,TC2,TC3,

TC4,TC5,TC6, TC8

7

tc29 TC1,TC2,TC3,
TC4,TC5,TC6, TC8

7

tc30 TC1,TC2,TC3,

TC4,TC6, TC7, TC8

7

Now, take randomly any test case, as we have now same Frequency of all test cases.

So, let us take tc6 in the Delegate Set, the corresponding Test Condition satisfied are:-TC1,TC2,TC3,

TC4,TC6, TC7, TC8. So, we discard all the Test Conditions.

Test Exude: Approach for Test Case Reduction

www.iosrjournals.org 22 | Page

Now, check whether tc6, fulfil our requirement or not, as tc6 belongs to other set not the requirement

needed. It does not belong to satisfied condition.

New Frequency, now been calculated:-

tc2 – tc5 = 7 – 6 = 1

tc9 – tc10 = 7 – 6 = 1

tc13 = 7 – 6 = 1

tc15 = 7 – 6 = 1

tc17 – tc24 = 7 – 6 = 1

tc26 – tc29 = 7 – 6 = 1

Now, again the frequency are same, So, we take any test case randomly.

tc2 has been taken in Delegate Set

DS – {tc2, tc6}

Corresponding elements of tc2 is TC5

Now, tc2fulfill our requirement and the Test Condition associated with it, test cases in the Delegate Set

other than tc2 will be discarded. As. rest of test cases we not needed.

Now,

tc2 ϵ TC5

Now, extract all the elements belong to TC5

TC5 →{tc2,tc4,tc5,tc10,,tc15,tc17,tc18,tc19,tc21,tc22, tc27,tc28,tc29}

All the elements, belongs to TC5 are useful to us as per the requirement. So, this technique helps us to

extract the useful elements and another advantage that it solves a problem of a program taking dynamic input.

V. Conclusion And Future Scope
Finally, we conclude that the Proposed algorithm is better in aspects of Existing algorithm. As,

Existing one has the limitation of taking input at the run time of the program and fails over there.

The Proposed algorithm TestExude works on the limitations of previous algorithm and gives the better

result compare. In addition, this work extract the special test cases, which is required for testing.

It takes little more space, but at the cost of little space it drastically reduce the test cases and time of the

user to check manually even after extracting overall test cases.

Test Suites size, user time, organization cost, storage cost all are reduce efficiently. Ultimately, it

improves and generate effective test case.

It shows the better result due to the Delegate Sets. In Delegate Sets, discard criteria is applied. No need

to keep those test cases which is not useful to us. So, this effective technique prove to be superior.

It prove to be good technique in current scenario. As, it reduces the test case drastically. In future, lot of

work has to be done on this technique. In future, make this technique fully automated and compatible with other

tools. It has certain limitations i.e., in maximum program frequency of the requirements is same, so we try to

find other parameters to overcome this.

Acknowledgements
This technique has been made by the hard work and support of my guide Mr. Thirunavukkarasu K.,

Assistant Professor, Galgotias University, Greater Noida, Uttar Pradesh I would like to thanks my friends to

give me unconditional support.

References
[1] Antonia Bertolino, Software Testing Research: Achievements, Challenges, Dreams Future of Software Engineering, IEEE, 2007,

0-7695-2829-5/07.

[2] Juha Itkonen, Nika V. Mantyla and Casper Lassenius, The Role of the Tester’s Knowledge in Exploratory Software Testing, IEEE
Computer Society, vol. 39, no. 5, 2013, 707-724.

[3] (2014) The Wikipedia website. [Online]. Available: http://en.wikipedia.org/wiki/Test_case.

[4] (2014) The Wikipedia website. [Online]. Available: http://en.wikipedia.org/wiki/Test_suite.
[5] (2014) The Wikipedia website. [Online]. Available:http://en.wikipedia.org/wiki/Knowledge.

[6] Saif-ur-Rehman Khan, Aamer Nadeem, TestFilter: A Statement-Coverage Based Test Case Reduction Technique, IEEE, 2006.

[7] S. McMaster, A.M. Memon, Call Stack Coverage for Test Suite Reduction, in Proceedings of the 21st IEEE International
Conference on Software Maintencance (ICSM’05), Budapest, pp. 539-548, Sept 2005.

[8] A. Jefferson Offutt, Zhenyi Jin and Jie Pan, The Dynamic Domain Reduction Procedure for Test Data Generation, Software Practice

and Experience, vol 29, no 2, 1999, pp. 167-193.

http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Test_suite

Test Exude: Approach for Test Case Reduction

www.iosrjournals.org 23 | Page

[9] A. Jefferson Offutt, Zhenyi Jin and Jie Pan, The Dynamic Domain Reduction Procedure for Test Data Generation: Design and

Algorithms*, ISSE Tech. Rep. ISSE-TR-94-110, George Mason University, Washington D.C., USA, 1994.
[10] Dr. R.P. Mahapatra, M. Mohan and A. Kulothungan, Effective Tool for Test Case Execution Time Reduction, In IACSIT, 2011,

International Symposium on Computing, Communication and Control (CSIT), Singapore.

[11] R.P. Mahapatra and Jitendra Singh, Improving the Effectiveness of Software Testing through Test Case Reduction, In World
Academy of Science, Engineering and Technology, 2008.

[12] Quingtan Wang, Shujuan Jiang and Yanmein Zhang, An Approach to Generate Basis Path for Programs with Exception-Handling

Constructs, In IACSIT Press, 2012, International Conference on Computer Science and Information Technology (ICCSIT),
Singapore.

