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Abstract: Biological networks are the networks which are used to represent different biological entities and 

relationship between the different entities. But due to the ongoing growth of knowledge in the life science their 

size and complexity is steadily increasing. For understanding biological networks several algorithms for lying 

out and graphically representing networks and network analysis results have been developed. However, current 

algorithms are specialized to particular layout styles and therefore various algorithms are required for 

representing different types of networks. This paper present a novel algorithm to visualize different biological 

networks and network analysis results in meaningful ways depending on network types and analysis outcome. 

 

I. Background 
Networks play a crucial role in biological analysis of organisms. They are used to represent processes 

existing in biological systems and to represent  interactions and dependencies between biological entities such as 

genes, transcripts, proteins and metabolites. One large application area for network-centered analysis and 

visualization is Systems Biology, an increasingly important research field which aims at a comprehensive 

understanding and remodeling of the processes in living beings [1,2]. Due to the steady growth of knowledge in 

the life sciences such networks are increasingly large and complex. To tackle this complexity and help in 

analyzing and interpreting the complicated web of interactions meaningful visualizations of biological networks 

are crucial. 

Since last few years methods for automatic network visualization have gained increased attention from 

the research community over recent years and various layout algorithms have been developed, e. g. [3-11]. 

Often standard layout methods such as force directed [12,13], layered [14,15] and circular [16] approaches are 

used to draw these networks. However, the direct use of standard layout methods is somewhat unsatisfactory 

since biological networks often have specialized layout requirements reflecting the drawing conventions 

historically used in manually laid out diagrams (which have been developed to better emphasize relevant 

biological relationships and concepts). This has led to the development of network- and application-specific 

layout algorithms, for example, for signal transduction maps [17,18], protein interaction networks [3,6], 

metabolic pathways [4,10,19] and protein-domain interaction networks [20]. Advanced solutions combine 

different layout styles (such as linear, circular and branching layouts) for sub-networks or use specific layouts 

styles for particular network parts such as cycles [7,10,21]. 

However, current approaches for the automatic visualization of biological networks have four major 

drawbacks resulting from the specialized nature of these algorithms: 

1. Different kinds of biological networks (e. g. protein interaction or metabolic networks) have different layout 

conventions and this requires the implementation and sometimes development of specialized layout algorithms 

for each convention. 

2. It is not easy to combine networks with different layout conventions in the one drawing since the layout 

algorithms use quite different approaches and so cannot be easily combined. 

3. The user cannot tailor the standard layout algorithms for their particular need or task by e. g. emphasizing the 

pathways of interest by making them straight. 

4. The algorithms do not sufficiently support interactive network exploration. Usually with these algorithms 

small modifications in the network structure and re-layout of the network results in very different pictures. 

 

However, such sudden and large changes destroy the user's mental map (i. e. the user's understanding 

of the network based on the previous view) and therefore hinder interactive understanding of the network. 

Here I present a new algorithm for layout of biological networks that overcomes these limitations. It is based on 

a powerful new graph drawing technique, constrained graph layout [22]. Like force-directed layout [12,13] 

constrained graph layout works by minimizing an objective function that measures the quality of the layout. 

However it extends force-directed layout by allowing minimization of the objective to be done subject to 

placement constraints on the objects in the network. This is achieved by using mathematically rigorous 

optimization techniques based on gradient projection [23]. Efficient implementation is made possible by 

restricting the placement constraints to be separation constraints of the form u + g ≤ (=) v, enforcing a minimum 

(or precise) gap g between the positions u and v of pairs of objects in either the x or y dimensions of the 

drawing. 
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The presented approach provides a generic, universal algorithm for layout of biological networks: 

1. It greatly simplifies the implementation of layout methods for life sciences, systems and synthetic biology 

tools, which have previously had to utilize very different layout algorithms for different types of biological 

networks (or different layout requirements). 

2. It allows the use of different layout styles for different parts of one large network. 

3. It allows the user to customize the layout by adding separation constraints. 

4. It lends itself to mental-map-preserving dynamic layout in interactive systems, thereby supporting interactive 

exploration of large and complex networks. 

 

Introduction 

A network is defined as a set of elements called vertices or nodes having connections among them 

called edges. Internet, the world wide web, Social networks(connection among individuals),networks of 

business relations, neural networks, food webs are examples of network. 

The study of networks in the form of mathematical graph theory ,is one of the fundamental pillars of discrete 

mathematics .Euler‟s celebrated 1735 solution of the Konisberg bridge problem is cited as the first true proof in 

theory of  netwoks. 

 

Types of Networks 

There are many ways of categorizing the network. Such as a network can have more than one type of 

different vertex or more than one different type of edge .If we take the example of social network of people, 

vertices may be men or women. People of different nationalities ,locations ,ages ,incomeset .Edges may 

represent friendship, animosity or geographical proximity. 

They can carry weights ,representing how well two people know each other.They can also be directed 

,pointing in only one direction .Graphs composed of directed edges are themselves called directed graphs or 

sometimes digraphs. 

A graph representing telephone calls or email messages between individuals would be directed, Since 

each message goes in only one direction .Directed graphs can be cyclic or acyclic. 

One can also have hyperedges-edges that join more than two vertices together. Graphs containing such edges are 

called hypergraphs .for example in social network-n individuals connect to each other by virtue of belonging to 

the same family can be represented by n-edge joining them. 

 

Glossary of terms 

Vertices- The fundamental unit of a network also called a site(physics), a node (Computer Science),or 

an actor(Sociology). 

Edge-The line connecting two vertices . Also called a bond(physics),a link(Computer Science) or a 

tie(Sociology). 

Directed/Undirected-An edge is directed if it runs in only one direction and undirected if it runs in both 

directions. 

Degree-The number of edges connected to a vertex .A directed graph has both an in-degree and an out-

degree for each vertex ,which are the numbers of incoming and outgoing edges. 

Component-The component to which a vertex belongs is that set of vertices that can be reached from. 

In a directed graph a vertex has both an in-component(set of vertices from which the vertex can be 

reached) and out-component(set of vertices which can be reached from it).Geodesic paths-Shortest path through 

the network from one vertex to another.Diameter-Length (number of edges) of the longest geodesic path 

between any two vertices.Social Network- 

A Social network is a social structure  made up of a set of social actors (such as individuals or 

organizations) and a set of dyadic ties between these actors. The social network perspective provides a set of 

methods for analyzing the structure of whole social entities as well as a variety of theories explaining the 

patterns observed in these structures .the study of these structures uses social network analysis to identify local 

and global patterns, locate influential entities and examine network dynamics.A social network is a set of people 

or groups of people with some pattern of contacts or interactions between them. The patterns of friendships 

between individuals, business relationships between companies, and intermarriages between families. 

 

Information networks 

Information networks sometimes called as knowledge networks. The classic example of an information 

network is the network of citations between academic papers. These citations form a network in which the 

vertices are articles and a directed edge from article A to article B indicates that A cites B. Citation networks are 

acyclic  because papers can only cite other papers that have already been written, not those that have to be 

written. 
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Technological Networks 

The man-made networks designed typically for distribution of resources such as electricity or 

Information for example electric power grid or Internet or telephone network. 

 

Biological Networks 

Biological processes are often represented in the form of networks such as protein-proteininteraction networks 

and metabolic pathways 

 

II. Basic Network features 
The Small World Effect 

A node‟s degree or connectivity ,giving the number of links k the node has ,is the most elementary 

network measure. For example in following fig. nodes and I j have exactly three links(k=3).The overall graph is 

characterized by average degree <k>,which has the value <k>=2.6. 

As in most networks, there are multiple paths between any two nodes i and j .A useful distance measure 

is the length of the shortest path  l ij. The mean path length defined as  

  N 

<l>=    2/N(N-1)∑  l ij 
 I=1 

number of steps is often referred to display the „small world‟ property .first illustrated on social 

networks ,indicating that two randomly chosen individuals can be connected by only six intermediate 

acquaintances. 

      

Transitivity or Clustering 

In many networks it is found that if  it is found that if vertex A  is connected to vertex and vertex B to 

vertex C,t hen there is a probability that vertex A will also be connected to vertex C. 

In terms of network topology, transitivity means the  presence of a number of triangles in the network sets of 

three vertices each of which is connected to each of which is connected to each of the others .It can be 

quantified by defining a clustering coefficient C thus: 

C=   3* number of triangles in the network 

number of connected triples of vertices 

Where a “Connected triple” means a single vertex with edges running to an unordered pair of others. 

In effect, C measures the fraction of triples that have their third edge filled in to complete the triangle. 

The  factor of three in the numerator accounts for the fact each triangle contributes to three triples and ensures 

that C lies in the range 0<=C<=1.In simple terms, C is the mean probability that two vertices that are network 

neighbors of the same other vertex will themselves be neighbors. It can also be written in the form. 

C=6*number of triangles in the network/number of paths of length two. 

Where a path of length two refers two refers to a directed path starting form a specified vertex. 

Degree distributions 

The degree of a vertex in a network is the number of edges incident on (i.e. connected) to that vertex. 

We define Pk to be the fraction of vertices in the network that have degree k .equivalently , Pk is the probability 

that a vertex chosen uniformly at random has degree k. If a network is directed, meaning that edges point in one 

direction from one node to another node, then nodes have two different degrees, the in-degree which is the 

number of incoming edges, and the out – degree which is the number of outgoing edges. 

The degree distribution p(k) of a network is then defined to b the fraction of nodes in the network with 

degree k, Thus if there are n nodes in total in a network and nk of them have degree k ,we have p(k)=n k/n. 

The degree distribution is very important in studying both real networks, such as the Internet and social 

networks , and theoretical networks .The simplest network model ,for example, the(Bernoulli) random graph ,in 

which each of n nodes is connected (or not) with independent probability p(or 1-p) , has a binomial distribution 

of degree k.(or Poisson in the limit of large n).Most networks in the real world ,however have degree 

distributions very different from this. Most are highly right skewed , meaning that a large majority of nodes 

have low degree but a small number ,known as “hubs” have high degree. 

 

Biological Networks 

Biological processes are often represented in the form of networks such as protein-proteininteraction 

networks and metabolic pathways. The study of biological networks , their modeling,analysis, and visualization 

are important tasks in life science today. An understandingof these networks is essential to make biological 

sense of much of the complex data that isnow being generated. This increasing importance of biological 

networks is also evidencedby the rapid increase in publications about network-related topics and the growing 
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numberof research groups dealing with this area. Most biological networks are still far from being complete and 

they are usually difficult to interpret due to the complexity of the relationshipsand the peculiarities of the data. 

Network visualization is a fundamental method that helpsscientists in understanding biological networks and in 

uncovering important properties ofthe underlying biochemical processes. This chapter therefore deals with 

major biologicalnetworks, their visualization requirements and useful layout methods. We start with somebasic 

biology and important biological networks 

Molecular Biological FoundationsA cell consists of many different (bio-) chemical compounds. A 

crucial macromolecule inorganisms is DNA (deoxyribonucleic acid), which is the carrier of genetic information. 

ButDNA itself is not able to provide the structure of a cell, to act as a catalyst for chemicalreactions or to sense 

changes in the cell‟s environment. Such functions are carried out byproteins, large molecules which are built 

according to information stored in DNA sequences. 

The central dogma of molecular biology deals with the information transfer from DNA toproteins. It 

states that proteins do not code for the production of other proteins, DNAor RNA (ribonucleic acid), i.e., that 

information cannot be transferred from one proteinto another protein directly or from a protein back to nucleic 

acid. Instead, the standardpathway of information flow is from DNA to RNA to protein. Genes represented by 

DNAsequences are transcribed into RNA sequences which are then translated into proteins, seeFigure 20.1. 

These proteins have different types such as structural components (whichgive cells their shape and help them 

move), transport proteins (which carry substancessuch as oxygen), enzymes (which catalyze most chemical 

processes in cells and help changemetabolites into each other) and regulatory proteins (which regulate the 

expression of othergenes). Crick summarized the standard pathway of information flow as “DNA makes 

RNA,RNA makes protein and proteins make us” [Kel00]. 

 

 
Fig:The Standard Pathway of Information Flow 

 

Signal Transduction and Gene Regulatory Networks 

A key issue in biology is the response of a cell to internal and external stimuli and thesubsequent 

regulation of its genetic activity. Signal transduction and gene regulatory pathwaysand networks describe 

processes to coordinate the cell‟s response to such stimuli. Herewe consider both networks together as the 

underlying mechanisms have many similarities,the networks share some common elements and both often result 

in the regulation of geneexpression. Consequently, similar visualization approaches are used for signal 

transductionand gene regulatory pathways and networks. 

 Definition 

Signal transduction is a communication process within a cell to coordinate its responses toan environmental 

change. The stimulus comes from the cell‟s environment, e.g., moleculessuch as hormones. The response is a 

reaction of the cell, e.g., the activation of a gene orthe production of energy. A signal transduction pathway is a 

directed network of chemicalreactions in a cell from a stimulus (an external molecule which binds to a receptor 

on thecell membrane) to the response (e.g., the activation of a gene). Here we focus on signaltransduction 

pathways that aim at transcription factors and thus alter the expression ofgenes in a cell. The signal transduction 

network of a cell is the complete network of allsignal transduction pathways. A signaling cascade is a process 

where signal transductioninvolves an increasing number of molecules in the steps from the stimulus to the 

response. 

Gene regulation is a general term for cellular control of the synthesis of proteins at thetranscription 

step. Gene regulation can also be seen as the response of a cell to an internalstimulus. Often one gene is 

regulated by another gene via the corresponding protein (calledtranscription factor), thus gene regulation is 

coordinated in a gene regulatory network. Thisnetwork directs the level of expression for each gene in the cell 

by controlling whether andhow often that gene will be transcribed into RNA. Similar to signaling cascades in 
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signaltransduction networks a gene can activate more genes in turn and an initial stimulus cantrigger the 

expression of large sets of genes. 

As mentioned above we study signal transduction and gene regulation together. Figure20.1 sketches 

both processes with signal transduction going from an external signal viaseveral steps to the activation of a gene 

as one possible response and gene regulation goingfrom a gene via a protein to another gene. 

Events of signal transduction and gene regulatory processes occur in different parts of acell (cellular 

compartments). To represent compartments these networks can be modeled asclustered graphs. A clustered 

graph C = (G, T) consists of a directed graph G = (V,E) anda rooted tree T, such that the leaves of T are exactly 

the nodes of G. The nodes v ∈V ofthe graph are chemical and biochemical compounds (ranging from ions, to 

small molecules,macromolecules and genes) and the edges e ∈E are biochemical events (e.g., binding, 

transportationand reaction). The occurrence of signal transduction and gene regulatory eventsin different cellular 

compartments can be modeled be the tree T. Each node t ∈T representsa cluster of nodes of G consisting of the 

leaves of the sub tree rooted at t. The modelingof such networks based on clustered graphs can be used for 

cluster-preserving layout algorithms 

[EH00]. However, as it is only partly known in which compartment an event occurs,signal transduction 

and gene regulatory processes are usually modeled by graphs. The pathwaysand networks can be derived from 

databases such as KEGG [KGKN02, KGH+06] and 

 
 

Gene Regulatory Network 

The entities are subdivided into 4 classes: 1)Protein or protein complex; 2) Gene; 3) RNA; 4) 

Nonproteinaceous Substance. Instances of eachclass are described in a separate table in the 

GeneNet database The components of a genenetwork are scattered throughout cellcompartments, cells 

Two types of relationships between the entitiesare considered: Reaction, that is, formation of anew entity or 

acquisition of a new property bythe entity, and Regulatory event, that is, theeffect of an entity onto a certain 

reaction. 

 

Protein Protein Interaction 

While traditional biochemical experiments had generated asmall set of data for individual protein–

protein interactions[34],the last three years have seen a rapid expansion of protein interactiondata due to the 

recent development of high-throughputinteraction detection methods such as yeast two-hybrid (Itoet al., 2000) 

and mass spectrometry techniques. The interactiondata is available either in text files or in databases. However, 

due to the volume of data, a graphical representationof protein interactions has proven to be much easier 

tounderstand than a long list of interacting proteins. Furthermore,a network of protein interactions provides us 

with aclear notion of protein function by showing a context withinwhich function can be interpreted. 

Protein–protein interactions are typically visualized as anundirected graph G = (V ,E), where x, y ∈V represent 

∗To whom correspondence should be addressedproteins and (x, y) ∈E represents an interaction 

betweenproteins x and y. Visualization of a graph is straightforwardwhen dealing with a small number of nodes 

and edges. Inpractice, protein–protein interaction networks often consistof thousands of nodes or more, which 

severely limit theusefulness of many graph drawing tools either because theyproduce cluttered drawings with 

many edge crossings or staticdrawings that are not easy to modify, they are too slowfor interactive analysis with 

large data sets, or because theyrequire input data to be in specific format rather than taking thedata directly from 

protein–protein interaction databases. Theultimate usefulness of a protein interaction network dependson the 

readability of the network, and therefore, a proteininteraction network should focus on conveying the 

interactioninformation quickly and clearly. 

Force-directed layout algorithms have been the mostpopular methods for visualizing an undirected 

graph, whichproduce an optimal layout based on a force model. A simpleimplementation of a force-directed 

algorithm encounters realdifficulties when drawing graphs of more than a few hundrednodes. These difficulties 

originate from two sources. First,layout adjustment involves computation of force betweenevery pair of nodes at 

each step of the optimization process.Second, for large graphs the optimization process needs toomany iterations 

for transforming the initial random layout intoan optimal layout.Previously we developed a force-directed layout 
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program called InterViewer (Juet al., 2003). In this paper, I present a new program that efficiently produces a 

protein interaction network of good quality without computingforce between every pair of nodes. This 

improveson  InterViewer in many ways: (1) while Interviewer produces 

a drawing by computing force between every pair of nodesin each iteration of the optimization process, 

This produces a more pleasant drawing without computing forcebetween every pair of nodes, (2) This is faster 

than InterViewer, (3) This provides several abstractionoperations to reduce complex networks into simpler ones 

and(4) multiple protein interaction networks can be comparedfor common proteins and their interactions shared 

by all orpart of the networks.  

Algorithm for protein interaction networks 

 
Mid nodes (v5–v11) on three paths between a pair of enclosing Cutvertices (c1 and c2). Since the multiple paths 

have different lengths, mid nodes on the paths are grouped into two groups: mid node group 1 = {v5, v6, v8, 

v9}, mid node group 2 = {v7, v10, v11}. 

 

III. Definitions 
The degree of a node v is the number of its edges and is denotedby deg(v). A cutvertex (also called an 

articulation point) in 

a graph G is a node whose removal disconnects G. A path in a graph G is a sequence (v1, v2, . . . ,vn) of distinct 

nodes 

ofG, such that (vi , vi+1) ∈E for 1 ≤ i ≤ n − 1. A graphG_ = (V _,E_), such that V _ ⊆V and E_ ⊆E ∩ (V _ ×V 

_), is 

asubgraphof graph G = (V , E). 

When multiple paths exist between a pair of cutvertices, wecall the nodes on the paths mid nodes. In 

Figure  there are mid nodes (shown in yellow) on three paths between a pair of enclosing cut vertices (shown in 

blue). If the multiple pathsbetween a pair of cutvertices have different lengths, mid nodes on the paths of same 

length are grouped together. 

What we call pivot nodes are the key nodes in the layout of agraph. In order to produce a layout of high 

quality efficiently,we select pivot nodes that are almost uniformly distributedin each connected component (see 

Fig. 2 for examples). Thenumber of pivot nodes and distance between them are determinedbased on the number 

of nodes and edges, and the diameterof a connected component (a diameter of a connected componentis the 

maximum distance between two nodes in thecomponent). In general, more pivot nodes are selected for 

aconnected component with a large diameter compared to thenumber of nodes than for a connected component 

with a smalldiameter compared to the number of nodes. For a small connectedcomponent with 100 nodes or 

fewer, we select morepivot nodes so that the distance between them may be 3 orless. However, each connected 

component can have at most100 pivot nodes in any case for the efficiency of the algorithm. 

A detailed method for selecting pivot nodes and for computingthe distance between them is described 

in Algorithms 2and 3 later. 

 

IV. The Algorithm 
A common problem with many force-directed layoutalgorithms is that they become very slow when 

dealing with large graphs because layout adjustment at each step typicallyinvolves computation of force 

between every pair of nodes.Since a protein interaction network tends to be a disconnectedgraph with several 

connected components, we first computea layout of connected components and then compute a layoutof nodes 

within a connected component. Our experience is that this approach produces much better drawings in a 

shortertime than computing a layout of all nodes from the beginning.Our algorithm uses a multilevel technique 

to draw a graph.It is composed of two steps at the top level: grouping and layout. 

In the grouping step, the algorithm first groups nodes ofa disconnected graph into connected 

components, and finds mid nodes and pivot nodes in each connected component. Inthe layout step, the coarsest 

graph is an initial layout of connectedcomponents based on their pivot nodes only. The layoutof each connected 
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component is then refined locally within theconnected component based on its mid nodes and neighbors of each 

node. Each step of the algorithm can be summarizedas follows. 

1. Grouping 

(a) Identify all connected components of an entirenetwork. 

(b) For each connected component, determine its mid nodes and pivot nodes. 

(c) Compute the distance of every node from the pivotnodes of the connected component to which the 

nodebelongs. 

2. Layout 

(a) Find a layout of connected components of an entirenetwork (layout between connected components). 

(b) For each connected component find a layout ofnodes with respect to the pivot nodes of the 

connectedcomponent (global layout within a connectedcomponent). 

(c) Refine the layout of each connected component by relocating the mid nodes adjacent to cut vertices with 

respect to the cut vertices and the cut vertices‟ direct neighbors (local layout of mid nodes within connected 

component). 

(d) Refine the layout of each connected component byrelocating all nodes with respect to their neighborswithin 

distance 2 (local layout of all nodes within aconnected component). 

Step 1(a) is straightforward, and Algorithm 1 describesstep 1(b). In Algorithm 1, a group represents a 

connectedcomponent. Since step 1(a) and Algorithm 1 are performed onnodes with at least one edge, nodes with 

no edge are positionedafter the connected components of size ≥2 are positioned instep 2(a). For a graph with |V| 

= n nodes, the time complexity 

of step 1(a) is O(n), and the time complexity of Algorithm 1 

Fig. 2.(a) Pivot nodes (shown in green) selected from a mesh. (b) Pivot nodes (shown in green) selected from a 

protein interaction network. 

Algorithm 1 Distance(v ,w) 

1: DLast.Add(v, 0) 

{Add v and its distance (= 0) from v to DLast} 

2: DLast.First {Get the first node of DLst} 

3: repeat 

4: DLast.GetCurrent(v_, currentDist) 

{Get the current node v_ and its distance from v} 

5: for all neighbor u of v_ do 

6: if u _∈DLastthen 

7: if w = u then 

8: return currentDist+1{distance between v and u} 

9: end if 

10: DLast.Add(u, currentDist+1) 

{Add u and its distance from v to DLast} 

11: end if 

12: end for 

13: DLast.Next {Get the next node of DLast} 

14: until DLst.Eof {until no more nodes exist in DLast}Selecting pivot nodes from each connected component 

instep 1(c) is done by Algorithms 2 and 3. When selectingpivot nodes, distances of the pivot nodes from all 

other nodesare also computed. Algorithms 2 and 3 take O(n) time for asingle pivot node, and therefore, the total 

time complexity forselecting all pivot nodes is O(|PvN| · n). Algorithm 3 examineswhether the current node v is 

already a pivot node; ifnot, it determines the possibility of including the node to the pivot node set PvN 

depending on the distance from existingpivot nodes, the structure of the connected component (i.e.diameter, 

number of nodes and edges of the connected component). 

The current node v can be selected as a pivot node if 

Algorithm 2 SelectPivotNodes 

1: MaxDist←1 

2: PvN.Add(V[0], DistTable.Create(V[0], 0)) 

{first node in a group} 

3: PvN.First {Get the first node of PvN} 

4: repeat 

5: DLast.Clear {Initialize DLst as an empty list} 

6: DLast.Add(PvN.CurrentPivotNode, 0) 

{Add the current pivot node and its distance} 

7: DLast.First {Get the first node of DLast} 

8: repeat {distance from pivot nodes} 
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9: ChkDistance(DLast, PvN.CurrentDistTable, 

MaxDist) 

10: DLast.Next {Get the next node of DLast} 

11: until DLast.Eof {until no more nodes exist in DLast} 

12: PvN.Next {Get the next node of PvN} 

13: until PvN.Eof {until no more nodes exist in PvN} 

it satisfies the following rules (function ChkPvN(v)in step 16 

of Algorithm 3). 

1. In a connected component with <40 nodes, the distanceof v from all existing pivot nodes should be at least 2. 

2. In a connected component with ≥40 and <100 nodes,the distance of v from all existing pivot nodes should be 

at least 3. 

3. In a connected component with ≥100 nodes, 

(a) if the diameter (d) of the connected component is<7, 

degree(v) should be ≥3. 

(b) if 7 ≤ d <15, degree(v) should be ≥4. 

(c) if 15 ≤ d <20, degree(v) should be ≥5. 

 

Algorithm for protein interaction networks 

Algorithm 3 ChkDistance(DLast, DistTable, MaxDist) 

1: DLast.GetCurrent(v, dist) 

{Get a node v and its distance from a pivot node} 

2: if (dist>MaxDist) then 

3: MaxDist←dist {Update the maximum distance} 

4: end if 

5: bAddPvN←true {potential pivot node} 

6: for all neighbor w of v do 

7: if w ∈DLstthen {distance of w from a pivot node ha snot been determined.} 

8: bAddPvN←false {w cannot be a pivot node} 

9: DLast.Add(w, dist+1) 

{Add w and its distance from v to DLast} 

10: DistTable(w)←dist+1{Store the distance of w from v in DistTable} 

11: end if 

12: end for 

13: if MaxDist/3 = dist then {The node is at a distance of one third of the maximum distance} 

14: bAddPvN←true {potential pivot node} 

15: end if 

16: if bAddPvN and ChkPvN(v) then 

17: PvN.Add(v, DistTable‟.Create(v, 0)) 

18: end if 

(d) else, letR be the ratio of the diameter of the connectedcomponent to the number of nodes of the 

connectedcomponent. 

(i) ifR <0.01, the distance of v from all existingpivot nodes should be at least 40. 

(ii) if 0.01 ≤ R <0.02, the distance of v from allexisting pivot nodes should be at least 17. If the 

total number of nodes>1000, adjust the distanceto 30. 

(iii) if 0.02 ≤ R <0.035, the distance of v from allexisting pivot nodes should be at least 13. If the 

total number of nodes>1000, adjust the distanceto 20. 

(iv) if 0.035 ≤ R <0.07, the distance of v from allexisting pivot nodes should be at least 10. 

(v) ifR ≥ 0.07, the distance of v from all existingpivot nodes should be at least 5. 

 

Algorithm 4 provides a concise description of all layoutsof step 2, including both global layout and 

local layout. Theposition of v is always determined with respect to a referenceset V _, which is a subset of V . In 

step 2(a), the referenceset V _ is a set of pivot nodes of other connected components,to which v does not belong. 

The maximum diameter of allconnected components is used as the value of Distance(u, v)in step 4 of Algorithm 

4, and therefore is constant for allnodes. In step 2(b), the reference set V _ is a set of pivot 

Algorithm 4 Layout(v, V _) 

1: D ← 0 {Initialize the position displacement D to 0} 

2: for all u ∈V _ do {V _: subset of V } 

3: _ ← pos[u] − pos[v] {pos[u]: position of node u} 

4: D ← D + _(1 − Distance(u, v)/_) 
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{_: norm of a vector _} 

5: end for 

6: D ← D/|V _| {|V _|: number of nodes in V _} 

7: pos[v] ← pos[v] + D 

{Update the position of v by adding D.}nodes of the connected component to which v belongs. The 

value of Distance(u, v) is available in the distance table, whichwas already computed by Algorithm 3 for each 

pivot node. 

Steps 2(b) and 2(c) are repeated until the maximum edgelength of the connected component ≤ a threshold value. 

In step 2(c), the reference set V _ of v is a set of its enclosingcutvertices and the cutvertices‟ direct neighbors, 

and v is a 

Mid node that is directly adjacent to a cutvertex. The distance between a mid node and any node of its reference 

set is computed 

by simple arithmetic. Suppose that node v5 of Figure 1is to be relocated in step 2(c) and that the path length 

between 

its enclosing cutvertices be p. The reference set V _ of nodev5 becomes {c1, c2, v1−v10}. Then, the distance 

from v5 to 

its near cutvertex c1 is 1, and that to c1_s neighbors v1, v2,v6, v7) is 2. The distance from v5 to its far cutvertex 

c2 is 

p−1, that from v5 to any of v3, v4 or v10 is p, and that fromv5 to any of v8 or v9 is p − 2. Therefore, the 

distance from 

a mid node to any node in its reference set is either 1, 2, pathlength (= p) of its enclosing cutvertices, p − 1, or p 

− 2. 

In step 2(d), the reference set V _ of a node v is the neighborsof v within distance of 2, and v is any node in the 

network. 

A single execution of Algorithm 4 takes O(|V _|) time, so thetotal time complexity of steps 2(a)–2(c) 

isO(n·|PvN|), where|PvN| is the number of pivot nodes. The worst time complexityof step 2(d) isO(n2) since the 

number of a node‟s neighbors 

within a distance of 2 can be as large as O(n). 

 

V. Abstraction Of Protein Interaction Networks 
Alarge number of edges and nodes of a complex protein interactionnetwork often reduces the 

readability of the networkdue to cluttered edges and nodes. In general there are twoways to analyze such a 

complex network. One is to extract smaller sub networks from the entire network and to analyze each of the sub 

networks one by one. Another is to abstract theentire network into a simpler one. InterViewer3 can extract a sub 

network in several ways. For example, it can extract a sub network of proteins within specified interacting 

distancefrom one or more target proteins or a sub network of proteins 

 

Metabolic Networks 

Metabolic reactions are fundamental to life processes, e.g., for the production of energyand the 

synthesis of substances. A huge number of reactions occur at any time in livingcells and the product of one 

reaction is usually used by another reaction, thus metabolicreactions are strongly interconnected and form 

metabolic pathways and networks. 

A metabolic reaction R is a transformation of chemical substances or metabolites (reactants) into other 

substances (products) usually catalyzed by enzymes. In general metabolicreactions are reversible, that is, they 

occur in both directions. Such reactions are characterizedby a steady state, i.e., if occurring isolated they reach a 

state where the amountof change in both directions is equal. A cell is in a constant exchange of substances 

withits environment. Furthermore, many reactions are regulated, i.e., they are suppressed orenhanced by other 

factors (allosteric control). This shifts the steady state and togetherwith the steady supply of substances from 

outside and their final use, e.g., by exportingthem from the cell, one can consider a main direction of a reaction. 

This is also expressedby the differentiation of substances into reactants and products. As already seen, 

metabolicreactions interact with each other, i.e., the product of one reaction is usually a reactant ofanother 

reaction. A metabolic path P = (R1, . . . ,Rn) is a sequence of metabolic reactionswhere for all 1 ≤ i < n at least 

one product of reaction Ri is a reactant of reaction Ri+1. 

The metabolic network or metabolism of a particular cell or an organism is the complete network of 

metabolic reactions of this cell or organism. A metabolic pathway is a connectedsub-network of the metabolic 

network either representing specific processes or defined byfunctional boundaries, e.g., the network between an 

initial and a final substance as shownin Figure 20.5. 

From a formal point of view a metabolic pathway is a hyper-graph. The nodes representthe substances 

and the hyper-edges represent the reactions. A hyper-edge connectsall substances of a reaction, is directed from 
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reactants to products and is labeled with theenzymes that catalyze the reaction. Hyper-graphs can be represented 

by bipartite graphs. 

Additionally to the nodes representing substances, the reactions are nodes (either labeledwith the 

enzymes or with further nodes for enzymes) and edges are binary relations connectingthe substances of a 

reaction with the corresponding reaction node. This is a commonmodeling of metabolic pathways, e.g., for their 

simulation using Petri-nets [HT98, RML93]. 

For the analysis and visualization of metabolic pathways substances are often divided intotwo types 

[MZ03]: main substances and co-substances. Co-substances are usually small orcurrent metabolites, e.g., ATP, 

ADP, H2O, NH3 and NADH. These substances normallytransfer electrons or functional groups such as 

phosphate and amino groups [NIS90]. Mainsubstances are all other metabolites. However, this is not a global 

property but is givenaccording to the reaction [MZ03], and a small metabolite such as ATP may be consideredas 

main substance in a particular reaction. For visualization purposes this distinction isimportant as main 

substances and co-substances are often differently visually represented. 

Here a metabolic pathway is modeled as directed bipartite graph G = (VS, VR,E) withnodes u1, . . . , 

un,w1, . . . ,wm ∈VS representing substances, nodes v ∈VR representing reactions(including the enzyme(s) 

catalyzing the reaction) and directed edges (u1, v), . . . , (un, v),(v,w1), . . . , (v,wm) ∈E representing the 

transformation of substances u1, . . . , un to substancesw1, . . . ,wm by the reaction v. A reversible reaction does 

not contain backwardedges as in some models for simulation purposes, instead this property of an reaction 

isrepresented by an attribute. Another attribute is used to mark main and co-substances. 

 

Types of Metabolic Networks 

 

• Simplified metabolic network : A network which contains reactions, enzymes andmain substances, but no co-

substances. 

• Metabolite network and simplified metabolite network: A network which consistsonly of substances 

(metabolites); in the simplified case only of main substances. 

• Enzyme network : A network which consists only of the enzymes catalyzing there actions.(a) 
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