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Abstract: As the Internet is growing – so is the vulnerability of the network. Companies now days are spending 

huge amount of money to protect their sensitive data from different attacks that they face. DoS or Denial Of 

Service attacks are one of such kind of attacks. In this paper, we at first recognize different kinds of DoS attacks 

and then propose a new methodology to simulate those.  
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I. Introduction 
DoS attacks today are part of every Internet user’s life. They are happening all the time, and all the 

Internet users, as a community, have some part in creating them, suffering from them or even loosing time and 

money because of them. DoS attacks do not have anything to do with breaking into computers, taking control 

over remote hosts on the Internet or stealing privileged information like credit card numbers.  

In computing, a denial-of-service attack (DoS attack) or distributed denial-of-service attack (DDoS 

attack) is an attempt to make a machine or network resource unavailable to its intended users. The intent of a 

denial-of-service (DoS) attack is to overwhelm the targeted victim with a tremendous amount of bogus traffic so 

that the victim becomes so preoccupied processing the bogus traffic that legitimate traffic cannot be processed. 

The target can be the firewall, the network resources to which the firewall controls access, or the specific 

hardware platform or operating system of an individual host. 

If a DoS attack originates from multiple source addresses, it is known as a distributed denial-of-service 

(DDoS) attack. Typically, the source address of a DoS attack is spoofed. The source addresses in a DDoS attack 

might be spoofing, or the actual addresses of compromised hosts used as “zombie agents” to launch the attack. 

This way, an attacker can be anyone with a certain knowledge and access privilege with the master host. All he 

has to do is to enter a few commands, and the whole zombie army would wake up and mount a massive attack 

against the victim of his choice. 

 

 
Figure 1 Description of a DDoS attack 

 

Actually, the majorities of denial of service attacks are of distributed type, and have as basis flooding 

of large quantities of packets. Moreover, used packets might be changed to increase the harmfulness of the 

attack.  

The DoS attacks can be roughly divided into OS-related attacks and networking-related attacks. For 

OS-related attacks are vulnerable, but most vendors of operating systems have fixed the problem in their latest 

versions. The vendors also provide patches for their vulnerable OS. Bonk / boink / newtear / teardrop2 is an 

attack resulting in blue screen freeze and crash. Ping of Death is an attack taking advantage of a known bug in 

TCP/IP implementation. The attacker uses the ping system utility to make up an IP packet that exceeds the 

maximum 65,536 bytes of data allowed by the IP specification. Systems may crash or reboot when they received 
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such an oversized packet. Teardrop is an attack exploiting a weakness in the reassembly of IP packet fragments. 

The attacker creates a sequence of IP fragments with overlapping offset fields. Some systems will crash or 

reboot when they are trying to reassemble the malformed fragments. SYN flooding is an attack exploiting the 

three-way handshaking of TCP. The attacker sends the targeted system a flood of SYN packets with spoofed 

source address, until the targeted system uses up all slots in its backlog queue. Land is very similar to SYN 

flooding. The adversary floods SYN packets into the network with a spoofed source IP address of the targeted 

system. Smurf is a new kind of DoS attack. A smurf attacker cripples your router with ICMP echo request 

packets. Snork is an attack against Windows NT RPC service. It allows an adversary with minimal resources to 

cause a remote NT system to consume 100% CPU Usage for an indefinite period of time. 

After the introduction in section 1, we describe related works in section 2. We propose the architecture 

in section 3.  Section 4 describes Simulation environment and the simulation results we have obtained. The 

paper is concluded in section 5 with some highlights on future works. 
 

II. Background Work 

Some researchers have employed the use of a software simulation tool the DDoSSim which has been 

developed for comprehensive study of internet DDoS attacks, they reiterated that the DDoSSim enables one to 

deeply investigate different forms of attacks and protection schemes; the tool has the ability to provide useful 

recommendations on selecting best protection methods. They make use of the agent-based approach; 

furthermore, they conducted experiments for protection against DDoS attacks in order to demonstrate some 

potentials of the DDoSSim. Moreover, they considered the different phases of defence operations, which include 

the learning, decision making and protection. They further investigated into the adaptation of these protection 

methods to the actions of the attacker(s).[2] 

They suggested a common approach and simulation environment for finding adequate defence methods 

against DDoS attacks, Attack and defence methods they used include: the attacker which could be a Daemon or 

a Master, on the other hand, the defence agents are categorized into: initial information processing (sensor), 

secondary information processing (sampler), attack detection (detector), filtering (filter), and finally the 

investigation (investigator). 

Other researchers have re-emphasize the fact that in order to fight DDoS attacks there is the need for 

fully understanding the theoretical basis upon which we can protect systems against such attacks, they propose 

an agent based framework for simulating and modelling DDoS attacks. Furthermore, they presented of a formal 

specification of a representative spectrum of DDoS attacks; finally they implement an agent based software tool 

that has the potential of simulating DDoS attacks and responses of victim systems. [3] 

The other experiment conducted is to check the ability of the Attack simulator to simulate different 

forms of attacks. Moreover, they reiterated that the purpose of the simulation based exploration of the Attacker 

tools is for firstly to check the network security policy at conceptual design stage and then secondly to check 

security policy of real life attacks. 

The authors conducted experiments for various parameters of attack type specification and different 

victim configurations, also put into consideration is attackers intention as well as influence on input parameters 

such as; degree of protection given by the network and personal firewalls, victim of the attack, and the degree of 

the attackers knowledge of the network. Simulation results they obtained include parameters such as; number of 

terminal level attack options, percentage of attackers intention that are successful, percentage of effective 

network responses on attack actions, percentage of attack actions that were blocked by firewall, and percentage 

of ineffective results of attack actions. 

Other authors attempt to propose a systematic method for DDoS attack detection. They base their 

detection on unusual behaviour identification. Furthermore, they utilize energy distribution based on wavelets 

analysis to detect DDoS attacks, in addition, they mention that in attack free situations, the energy distribution 

will have limited variations while in attack situations, the traffic in the network will cause a significant energy 

distribution deviations in a short period of time. They performed experiments on typical internet traffic and 

results they obtained shows significant changes in energy distributions in DDoS attack situations. Moreover they 

suggest that this spike in energy distribution should be captured in the early stages of attack to prevent eventual 

congestion. They employed the use of Ns simulator, and results they obtain shows large differences in energy 

distribution in the traces with attack, as compared to traces without attacks, with a threshold of 0.01 their 

scheme is able to identify varieties of attack types.[4] 

 

III. Design of Proposed Architecture 

Designing neural network model follows a number of systematic procedures. In general there are five 

basic steps shown in figure 2. The functionalities of this step are briefly described below. 
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Figure 2 Basic flow of designing artificial neural network model 

 

1. Data Collection:  First raw data is collected from trusted source to process for further steps. Data is 

collected according to the demand of the proposed network and dataset format should be compatible with the 

supported data format of the proposed network .Otherwise data set cannot be processed by the network. 

 

2. Processing Data: This block takes the original data from the collected data source, extracts the 

required features, and converts the data set into Matlab compatible format. This basically performs the data 

cleaning procedure. 

 

3. Building Network: After the collection of desired data we have to create the proposed network model 

with the collected data set and some predefined useful parameter setting. The proposed network model 

parameters should be set by the user as per the required demand of the output feature. 

 

4. Training Network: Training the network is a very important feature of DoS attack simulation because 

here we make the network to behave the way as we proposed to  i.e. we predefine the proposed network 

behaviour as our requirement i.e. to train it with the user defined way for its desirable behaviour. 

 

5. Testing Network: After the training the network is tested with some sample input data set to obtain the 

desired out put data set and accordingly if fluctuation arises then we can determine that DoS attack is happened 

in the network resulting in successful DoS attack identification.  

 

IV. Simulation Environment and Experimental Results 

To access the effectiveness of the proposed Denial of Service attacks simulation approach, the 

following simulation was performed. Pentium® Dual-Core CPU E5200 @ 2.50GHz, having 2.98 GB of RAM 

was used. The operating system used was Microsoft Windows XP Professional with Service Pack 3. Simulation 

was performed using Matlab 2010a version 7.9.0.529. 

Figure 3 shows the experimental neural network setup for the proposed DoS attacks simulation model. 

 

 
Figure 3 Experimental Neural Network Setup 

 

The input layer of the experimental setup has 41 input neurons to describe 41 attributes in the KDD 

data set. For the hidden layer we used 12 numbers of neurons along with bias b and weight w that gave the 

optimal result as compared to using 20 and 10 neurons respectively for classifying the attacks. Since the 

network traffic is grouped into eight different classes of attacks, we have taken eight numbers of neurons in the 

output layer.  

After the data was cleaned, pre-processed and encoded it was fed to the neural network model of 

DDoS. The total time taken for completing the simulation was 3 hrs 2 min. approx. It took 243 iterations to train 

the particular network. 

              KDD 99 data set based on the DARPA intrusion detection programme, which is publicly accessible via 
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MIT Lincoln Lab is first of all collected at this block. This block takes the original data from the MIT Lincoln 

Lab, extracts the required features, and converts the data set into Matlab compatible format. This basically 

performs the data cleaning procedure. 

The attributes given in the data set are converted into double data type to make it compatible with the 

ANN Tool box of Matlab. The authors have converted the feature variables “protocol type” with values like 

tcp=0, udp=1, icmp=2; “error flag” with corresponding values S0=0, SF=1, S1=2, REJ=3, S2=4. The attacks in 

the data set have been categorized as normal=0, smurf=1, Neptune=2, bacl=3, teardrop=4, pod=5, land=6, 

snmpgetattack=7, saint=8, isweep=9, portsweep=10 nmap=11, warezclient=12, geoso-pasud=13, 

wareznader=14, ftpurele=15, and so on. 

The Neural network is trained with the given data set taken as source and target. Training parameters 

are taken as follows 

 

1. Epochs : 1000 

2. Goal : 0.000000000000001 

3. Max fail : 50 

 

The developed neural network model is tested with the predefined input and output data set to determine 

fluctuation and consequently the kind of attack. 

 

 
Figure 4 Structure of proposed neural network model 

 

The proposed model is tested with the predefined source and target dataset to obtain desired or 

fluctuation in result and also to determine the kind of predefined DoS attack.  

Figure 5 shows the performance of the system taking into account training, validation and level 1 

testing data. It shows that the best validation performance was 1.4138e-007 at epoch 33. 

 

 
Figure 5 System performance of the during training, validation and testing 

 

Figure 6 shows the neural network training state plot. It also shows validation check at epoch 33 and 

highlights that there is one validation failure at epoch 10. 

The graphical representation of the visual impression of the distribution of Errors (Targets- Outputs) is 

shown as the Error Histogram plot for the given data in figure 7. It consists of   tabular instances shown as 

adjacent rectangles erected over discrete bins. It shows that maximum error ~ -5e-005 
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 Figure 6 Neural Network Training State plots 

 

 
 Figure 7 Neural Network Error Histogram plot 

 

Figure 8 shows the Confusion Matrix i.e. Success Rate vs. Error Rate in all the stages like training, 

validation and level 1 testing. The results are enumerated in TABLE I. 

After the network was trained it was tested for level 2 testing with a new set of data. The dataset taken 

was of 100 plus records. The new confusion matrix showed a success rate of 54.5% and error rate of 45.5%. 

Then we tested for Level 3 with a new set of data. The new confusion matrix showed a success rate of 100%. 

We can keep on testing to level 4 and there is always a possibility the success rate may decrease depending upon 

the data taken. The receiver operating characteristics (ROC) was found to be as expected consisting mostly of 

true positives and fewer numbers of false positives. Figure 8, figure 9 and figure 10 show the details of 

confusion matrix and receiver operating characteristics respectively. Table I includes the success and error rates 

of level 2 and level 3 testing as well. It shows a higher error rate and lower success rate as compared to the level 

1 testing phase due to the presence of unclassified attacks outside the level 1 training environment. Increasing 

the training phase with more training data set may eventually lessen the error rate. 

  

Table I Success and failure rates of all the stages 

 

Phase Success Rate Failure Rate 

Training  85.6% 14.4% 

Validation  85.6% 14.4% 

Level 1 Testing  43.9% 56.1% 

Level 2 Testing  54.5% 45.5% 

Level 3 Testing *  100.0% 0.0% 

 



Simulation of Denial of Service (DoS) Attack using Matlab and Xilinx 

www.iosrjournals.org                                                             124 | Page 

 
Figure 8 Confusion Matrixes for Level 1 Testing 

 

 

Figure 9 Confusion Matrixes for Level 2 Testing 

V. Conclusion 

We have verified the proposed model using artificial neural network in matlab environment. The future 

scope will be to implement the proposed model in Spartan-3E FPGA and validate the performance with the 

simulation result. We have already simulated the same using iSim in Xilinx and our future work remains to 

download to the Spartan Kit 
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Figure 10 Confusion Matrix for Level 3 Testing 

 

. 
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