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ABSTRACT: In this article, a number of posterior probabilistic based equations were introduced to detect the 

effect of controlling the correlation between variables on the behavior of feed forward neural network weights. 

In this paper it was proofed that, under certain assumptions, in a feed forward neural network with 

backprobagation learning algorithm, the correlation between the input variables on one side and the target 

variable on the other, is directly proportional to the values of the connection weights from the input layer to the 

output layer through the hidden layer. 
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I. INTRODUCTION 
Arribas, Cid-Sueiro and Alberola-Lopez [1] argue that “the neural network architectures that compute 

soft decisions can be used to estimate posterior class probabilities”. They believe that such approach “provides a 

confidence measure of the classifier decisions”. Rojas [5] introduced a short proof shows that “neural classifiers 

can learn to compute posterior probabilities of classes in input space, under the condition that the neural network 

must be perfectly trained and have enough plasticity”. Actually several proofs were provided to show that neural 

networks can learn to compute the posterior probability that an input   belongs to each possible class. Such 

proofs can be found in Bourland and Morgan [2], also in Richard and Lippmann [4]. In this article, those proofs 

are used to show how controlling the correlation between the input variables and the target variable would 

control the behavior of the connection weights in the neural classifier. In this context we provide a proof shows 

that, under certain assumptions, in a feed forward neural network the connection weights that connect an input 

variable to the target variable are directly proportional to the correlation between that input variable and the 

target variable. Hence; increasing the correlation between the input variable and the target variable, increases the 

connection weights that connect the input variable to the target variable and vice versa. 

This paper is organized as follows: In section 2 we introduce some basics to be used in the later parts. 

Section 3 contains two subsections to show the effect of correlation controlling on the input and hidden weights 

in a neural network. The paper ends with the conclusion. 

  

II. PRELIMINARIES 
In this section some basics of probability will be introduced to show how a logistic regression function 

can be used to compute the posterior probability between two variables. Moreover, we will show how a 

multilayer feed forward neural network learns the posterior probability between two variables. moreover we will 

show how a multilayer feed forward neural network learns the posterior estimation and satisfies the concept of 

Chain Rule.   

Multilayer feed forward neural networks with backprobagation learning algorithm uses the logistic 

regression function which has convenient mathematical properties for learning tasks. Russell and Norvig [8] 

believe that “the output of the logistic regression function, being a number between 0 and 1, can be interpreted 

as a probability” of belonging to a particular class. According to Duin and Tax [3] it is possible to write the 

logistic regression function with respect to the posterior probability as: 

                                                                   ( | )  
 

     
                                                 ( ) 

Where   is a multiple regression function. Duin and Tax [3] argue that equation ( ) “maximizes the likelihood 

of the classified training objects” by optimizing the weights in  . But equation ( ) expresses the case of single 

perceptron neural network. Hence; in the case of multilayer feed forward neural network there is a combination 

of a group of single perceptron. Multilayer feed forward neural network is based on the logistic regression to 

learn the posterior probability between the input variable and the target variable, taking into account that the 

input variable is connected to the target variable indirectly through the hidden variable (hidden layer). In order 

to illustrate the process of multilayer feed forward neural network we will assume a multilayer neural network 

with single input variable  , single hidden output  , and single actual output   (See Figure 1 Below). Also we 
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will assume that there is a single input weight    and a single hidden weight   . Hence; the input combination 

to produce the hidden output is:      , and the hidden combination to produce the actual output is:      . 

 
Figure 1: Single Input/Single Output Neural Network 

In this context, what happens in the multilayer neural network is that: the input combination   is fed 

into the logistic regression process in the hidden layer to produce the hidden output  , which in turn is used to 

produce the hidden combination   to be used later to produce the actual output   of the neural network. 

However, in the sense of posterior probability concept, the variables  ,   and   are considered as three nested 

variables, which satisfy the definition of chain rule. 

Russell and Norvig (2003) found that, in probability, it is possible to use the chain rule to calculate the 

value of any member of a joint distribution. Thus:  

 (       )   (  |         )   (         ) 

                                                      (       )   (⋂   
 
   )  ∏  (  | ⋂   

   
   )

 
    

Applying the chain rule concept over the former variables:  ,   and   would make it easier to understand the 

relation between those variables and the weights of the neural network.  

Hence 

 (     )   ( |   ) ( | ) ( )            ( ) 
or: 

 (     )   ( |   ) ( | ) ( )           ( ) 
Both equations ( ) and ( ) are equivalent. What we need to show here is that: controlling the amount of  ( | ) 
would affect the amount  (     ) and consequently affects the weights of the neural network. But the amount 

 ( | ) is not available explicitly in equations ( )and ( ) above. Instead we have the amount  ( | ), which is 

exactly the same as  ( | ). In this context, we believe that:  ( | )   ( | ), and this is true as long as each 

value in variable   has only one corresponding value in  . Actually this condition holds because the function 

that maps feature   into the combination   (     ) is one-to-one function. It is possible to proof that by the 

following:                  :     . 
In the next section, equations ( ) and ( ) will be used to show how the amount  ( | ) affects the 

amount  (     ) and consequently the weights of the neural network. 

 

III. THE EFFECT OF CONTROLLING VARIABLES CORRELATION ON NEURAL 

NETWORK WEIGHTS  
As mentioned earlier in the introduction, Rojas [5] provided a short proof shows that a feed forward 

neural network learns the posterior probabilities of the classes in the target variable.  

In the next two subsections we will show how controlling the posterior probabilities affects the 

behavior of the weights in a neural classifier. 

 

(I) THE EFFECT OF CONTROLLING VARIABLES CORRELATION ON INPUT 

WEIGHTS 
In the analysis below we will show how the amount  (     ) is affected by controlling the amount 

 ( | ) and how this is reflected on the behavior of the input weights in the neural classifier. 

In this sense, by recalling equation ( ) 
                                                     (     )   ( |   ) ( | ) ( ) 

But, by using the general conditional probability [6], it is possible to rewrite the amount  ( |   ) as the 

following: 

 ( |   )  
 ( |   ) ( | )

 ( | )
            ( ) 
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Hence 

                                                             (     )  
 ( |   ) ( | )

 ( | )
 ( | ) ( ) 

Therefore, we have 

 (     )   ( | )                           ( ) 
where    ( |   ) ( ). As equation ( ) illustrates, the amounts  (     ) and  ( | ) are directly 

proportional to each other. 

In equation ( ) it is obvious that the probability of the nested events in a multilayer feed forward neural network 

depends mainly on two terms:  ( | ) and  . Hence; controlling those two terms implies controlling the amount 

 (     ). Even though it is possible to control the term  ( | )because the values of event   and input variable 

  (     ) are known in advance, this is not possible for amount   which depends on the value of the hidden 

combination  , because the values of the hidden output   (     ) are unknown in advance (i.e. before 

starting the training of the neural network), and they also change after each epoch. In this sense and because it is 

unknown for certain whether the amount   will decrease, increase or stay as is, we will assume that the amount 

  is constant for the remainder of this analysis.   

Now we need to show how the amount  (     ) affects the weights of the neural network. We will 

start by rewriting equation ( ) in the form of odds, as the following: 

 (     )

   (     )
 
 ( |   ) ( | ) ( )

   ( |   ) ( | ) ( )
 

By taking the natural log of the odds, we will end up with the logit form: 

   (
 (     )

   (     )
)     (

 ( |   ) ( | ) ( )

   ( |   ) ( | ) ( )
) 

    (
 ( |   ) ( | ) ( )

   ( |   ) ( | ) ( )
)     ( ( |   ) ( | ) ( ))     (   ( |   ) ( | ) ( ))     (6) 

By using the elementary properties of logarithmic function together with the use of the inequality    (   )  
       for all    , we obtain 

   ( ( |   ) ( | ) ( ))      ( |   )      ( | )      ( ) 

                                                                                ( | )      ( |   )      ( ) 

                                                                               ( | )    

                                                                              
 

     
   

                                                                               (     )    

                                                                                       

                                                                                  

Where      ( |   )     ( ). Therefore, we have 

   ( ( |   ) ( | ) ( ))                      ( ) 

On the other hand, By using the inequality    (   )         for   (   ) we obtain 

   (   ( |   ) ( | ) ( ))       ( ( |   ) ( | ) ( )) 

                                                                                      (    ( |   )      ( | )      ( )) 

                                                                                      (    ( | )   ) 

                                                                                      (   
 

     
  ) 

                                                                                      (    (     )   ) 
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where      ( ( |   )      ( )). Thus, it follows that 

   (   ( |   ) ( | ) ( ))                    ( ) 

Combining (6)- ( ), it can be seen that 

   (
 (     )

   (     )
)                                ( ) 

Hence, Inequality ( ) contains two cases 

Case ( ):    (
 (     )

   (     )
)            . This formula shows the logit in the form of linear combination 

which in turn shows that the input weights are directly proportional to the logit.  

Case ( ):    (
 (     )

   (     )
)            . This formula does not provide enough or certain information 

about the relation between the logit and the weights (i.e. whether the weights are directly or inversely 

proportional to the logit). 

In the analysis above, we showed how the amount  ( | ) affects the amount  (     ) and 

consequently affects the amounts of the input weights. 

(II) THE EFFECT OF CONTROLLING VARIABLES CORRELATION ON HIDDEN 

WEIGHTS 
In the next analysis we will show how the amount  ( | ) affects the amount  (     ) and 

consequently affects the amounts of the hidden weights. 

Recalling equation ( ) to show how the amount  ( | ) affects the amount  (     ).   
 (     )   ( |   ) ( | ) ( ) 

Hence, By using the general conditional probability Ross [6], it is possible to rewrite the amount  ( |   ) as 

the following: 

 ( |   )  
 ( |   ) ( | )

 ( | )
            (  ) 

Hence 

 (     )  
 ( |   ) ( | )

 ( | )
 ( | ) ( ) 

                                                        ( | )
 ( |   ) ( | ) ( )

 ( | )
 

Then we have 

 (     )   ( | )                           (  ) 

Where   
 ( |   ) ( | ) ( )

 ( | )
. 

As equation (  ) illustrates, the amounts  (     ) and  ( | ) are directly proportional to each other. 

Hence, controlling the amount  ( | ) controls the amount  (     ) as well. 

Equation (  ) illustrates that the probability of the nested events in a multilayer feed forward neural 

network depends mainly on two terms:  ( | ) and  . Hence, controlling those two terms implies controlling 

the amount  (     ). As mentioned earlier in this article, even though it is possible to control the term  ( | ) 
because the values of event   and candidate feature   (     ) are known in advance, this is not possible for 

the amount   which depends on the value of the hidden combination  , because the values of the hidden output 

  (     ) are unknown in advance (i.e. before starting the training of the neural network), and they also 

change after each epoch. In this sense and because it is unknown for certain whether the amount   will decrease, 

increase or stay as is, we will assume that amount   is constant for the remainder of this analysis. 



Controlling the Behavior of a Neural Network Weights Using Variables Correlation and Posterior  

www.iosrjournals.org                                                     40 | Page 

Now we need to show how the amount  (     ) affects the hidden weights of the neural network. We 

will start by rewriting equation ( ) in the form of odds: 

 (     )

   (     )
 
 ( |   ) ( | ) ( )

   ( |   ) ( | ) ( )
 

By taking the natural log of the odds, the logit will be produced: 

   (
 (     )

   (     )
)     (

 ( |   ) ( | ) ( )

   ( |   ) ( | ) ( )
) 

   (
 ( |   ) ( | ) ( )

   ( |   ) ( | ) ( )
)     ( ( |   ) ( | ) ( ))     (   ( |   ) ( | ) ( ))     (12) 

Using the same argument, we have  

   ( ( |   ) ( | ) ( ))      ( |   )      ( | )      ( ) 

                                                                                ( | )      ( |   )      ( ) 

                                                                               ( | )    

                                                                              
 

     
   

                                                                               (     )    

                                                                               (     )    

                                                                                       

       

Where       ( |   )     ( ). Then we obtain 

   ( ( |   ) ( | ) ( ))                      (  ) 

On the other hand, by using inequality    (   )         for   (   ), we have 

   (   ( |   ) ( | ) ( ))       ( ( |   ) ( | ) ( )) 

                                                                                       (    ( |   )      ( | )      ( )) 

                                                                                       (    ( | )   ) 

                                                                                       (   
 

     
  ) 

                                                                                       (    (     )   ) 

                     

Where   (    ( |   )      ( )). Moreover, we obtain: 

   (   ( |   )  ( | )  ( ))                  (  ) 

Combining the estimates obtained thus far, (12), (  ) and (  ) we have verified the following 

   (
 (     )

   (     )
)                        (  ) 

Hence, the feed forward neural network is supposed to learn inequality (  ), which contains two cases 
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Case ( ):    (
 (     )

   (     )
)            . The previous formula shows the logit in the form of 

linear combination which in turn shows that the hidden weights are directly proportional to the logit.  

Case ( ):    (
 (     )

   (     )
)            . This formula has the form of inequality, which does 

not provide enough or certain information about the relation between the logit and the weights (i.e. whether the 

weights are directly or inversely proportional to the logit). 

IV. CONCLUSION 
According to the analysis above and under certain assumptions, in a feed forward neural network with 

backprobagation learning algorithm, the correlation between the input variables on one side and the target 

variable on the other, is directly proportional to the values of the connection weights from the input layer to the 

output layer through the hidden layer. Hence; controlling the correlation between the input variables and the 

output variable affects the weights of the neural classifier. 
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