
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. VIII (Mar-Apr. 2014), PP 88-96

www.iosrjournals.org

www.iosrjournals.org 88 | Page

Eclat Algorithm for FIM on CPU-GPU

co-operative & parallel environment

Sarika S.Kadam
1
 ,ME Scholar, Computer Engg. Dept.Sudarshan S.Deshmukh

2

,Asst. Professor. Computer Engg.Dept.
1
,
2
, PimpriChinchwad College of Engineering , Akurdi, Pune, Pune University.

Abstract: Extracting the frequent itemsets from a transactional database is a fundamental task in data mining

field because of its broad applications in mining association rules, time series, correlations etc. The Apriori or

Eclat approaches are the commonly used generate-and-check approach to obtain frequent itemsets from a

database with a given threshold value.

Implementations take advantage of the GPU's massively multi-threaded SIMD (Single Instruction,

Multiple Data) architecture which will employ a bitmap data structure to represent vertical transaction list ,to

exploit the GPU's SIMD parallelism , and to perform the support counting operation. The implementation runs

entirely on the GPU and eliminates intermediate data transfer between the GPU memory and the CPU memory,

which can reduce computation time and improve overall performance .OpenCL is a platform independent Open

Computing Language for GPU computation. Thus, the aim of our approach is to develop efficient parallel new

advanced Eclat strategy of Frequent Itemset Mining that utilize new-generation graphics processing units

(GPUs) to speed-up the process.

Keywords: Eclat, Apriori, frequent Itemset,GPU, Bitmap, SIMD, OpenCL.

I. INTRODUCTION
Frequent itemset mining (FIM)[4] aims at finding common and interesting patterns from databases.

Finding frequent item sets[16] in a set of transaction is a popular method for so-called market basket analysis,

which aims at finding regularities in the shopping behavior of customer of super market, mail- order companies,

online shop etc. Identification of item sets that are frequently bought together is tried. A FIM algorithm scans

the database, possibly multiple times, and finds item-sets that occur in transactions more frequently than a given

threshold. The frequency of items that present in a transaction is called support.

In this approach , we study whether we can adapt the existing CPU-based FIM algorithms to new-

generation graphics processing units (GPUs). GPUs are multi-threaded many-core processors on which,cores

are virtualized, and GPU threads are executed in SIMD (Single Instruction, Multiple Data) and are managed by

the hardware. Such a design simplifies GPU programming and improves program scalability and portability,

since programs are oblivious about physical cores and rely on hardware for thread management. The

Apriorialgorithm[4] is not only applied in frequent itemset mining or association mining, but also in other data

mining tasks, such as clustering , and functional dependency . FIM algorithms are optimized for the location of

the data in database. These characteristics may hurt the efficiency on the GPU since SIMD operations favor

aligned and sequential data accesses . Apriori or EClatimplementationon the GPU[1],[2],[3]is a quite

challengeable, a bitmap data structure is used to represent transactions in GPU-based FIM implementations.

Specifically, the bitmap stores the occurrences of items in transactions, and is efficient to be partitioned to

SIMD processors. Furthermore, here is utilization of a lookup table to facilitate support counting, which is

usually the most time consuming component in the FIM algorithm.

Let A be a set, called setof itemsor alphabet. Any subsetX∈ P(A)ofAiscalled an itemset. Let T ⊆ P(A) be a

multiset of item-sets, called transaction database, and its elements T ∈ T called transactions. For a given itemset

X ∈ P(A), the set of transactions that contain X

T (X) := {T ∈ T | X ⊆ T }

is called (transaction) cover of X in T and its cardinality

sup(X) := |T (X)|

T

(absolute) support of X inT. An(all) frequent item-set mining task is specified by a datasetTand a lowerbound

minsup∈ N on support, called minimum support, and asks for enumerating all itemsets with support at least

Parallel new Eclat Algorithm for Frequent Itemset Mining on CPU-GPU co-operative environment

www.iosrjournals.org 89 | Page

minsup, called frequent or (frequent) patterns.

A tremendous growth of data that needs to be processedin business applications and scientific research

areas. Extracting information from large amount of data is necessary in making correct and effective decisions.

Different methods have been developed to determine the characteristics and inter-relationships of data.

Association rule learning, classification, clustering, and regression commonly need to mine data. Let us fix

notations for the frequent itemset mining problem in the rest of this section.

A. General Purpose GPU Computing

A GPU,[1,5,6] is a coprocessor to process an image, for games and to support the CPU for graphics

processing applications such as matrix multiplication , databases[7] , and distributed computing projects

including Folding@home and Seti@home.. There are thousands of computing units in a GPU, each unit is a

simplified core of CPU. The number of GPU cores is more than that of CPU cores, so GPU is suitable for

parallel computing.General-purpose computing on graphics processing units (GPGPU) was proposed to provide

non-graphic computing capabilities to CPU. The current GPGPU technologies include OpenCL[5,6] and

CUDA[1,2,3] (Compute Unified Device Architecture).

GPU is a high-performance computing device which does not only reduce the deployment cost but also

saves on maintenance. GPU programming strategies can be classified according to either graphic APIs or GPU

programming language. It is difficult for developers to use the graphic APIs since they need understand the

graphic hardware and encode their data to graphic vectors. NVIDIA and ATI have been proposed as GPU

programming language by CUDA and Stream respectively. CUDA can only be used on NVIDIA's GPU.

Therefore, OpenCL was proposed in 2009 to deal with platform heterogenity. The program design with OpenCL

not only can be executed on different brand GPU device but also on multi-core CPUs.

While GPGPU programming frameworks greatly reduce the complexity of GPGPU computing,

developers must carefully design and implement their algorithms in order to fully utilize the GPU architectural

features. Furthermore, as a co-processor, the GPU relies on the CPU for memory allocation.

Fig. 1. The many-core architecture model of the GPU

B.OpenCL:

The GPU programming language[5,6] can be classified as graphic APIs (DirectX, OpenGL, etc.),

GPU programming language (NVIDIA CUDA [9], ATI Stream [10], OpenCL [11], etc). Previously, GPU

programming required developers with in-depth knowledge of graphics programming and hardware. In order to

utilize the computation resources on GPU, developers

had to encode data to a graphic vector, and then use the DirectX or OpenGL functions to perform rendering.

After that, the rendered data had to be decoded. This procedure not only required graphic programming

knowledge, but also depended on different GPUs. Recently, CUDA and Stream have been proposed by NVIDIA

and ATI. Both of them provide C interface and allow developers to adapt the hardware, e.g., number of

processing units, size of local and global memory. However, previous frameworks could only be used with the

respective GPUs, e.g., CUDA could only be executed on NVIDIA's GPUs.

In order to solve this situation, the Khronnos Group and many industry-leading companies created the

OpenCL. OpenCL is an open and cross-platform parallel heterogeneous

programming system. It provides a uniform programming environment for developers to write efficient and

portable codes using a diverse mix of multi-core CPUs, GPUs, and other processors.

The preliminary work of OpenCL(Open Computing Language) was finished by AMD, IBM, Intel,

and NVIDIA while it was initially developed by Apple Inc. OpenCL is a framework which allows C program

development in heterogeneous platforms; that is, the framework can be applied in any system which is

composed of different CPUs, GPUs, and other computing platforms. It is able to perform in different operating

systems as long as the OpenCL library is installed. The CPU and GPU can then communicate with each other

and work together by applying the appropriate C++ file for CPU and Kernel file for OpenCL on GPUs to

perform parallel computation with GPU.

Parallel new Eclat Algorithm for Frequent Itemset Mining on CPU-GPU co-operative environment

www.iosrjournals.org 90 | Page

C.Representing the data in Layouts

There are two layouts that algorithms usually employ to represent transaction databases: 1. horizontal layout

2. vertical layout.In the vertical layout, each item in the item base is represented as () and the initial

transaction database consists of all items in the item base.

Fig. 2. Layouts for illustration of the data

D.Eclat Algorithm
 Eclat is a depth-first search algorithm which refers set intersection. Vertical database layout is referred

for illustration. i.e. all transactions are not listed explicitly but each item is stored together with its cover and

uses the intersection based approach to compute the support of an itemset.The support of an itemsetAcan be

easily calculated by cover’s intersectionof any two subsets Y, Z ⊆ A, such that Y U Z = A. Candidate

generation of Eclat uses only the join step of Apriori , since the item sets necessary for the prune step are not

available.Candidate Generation and support counting for frequent itemset mining using Eclat algorithm are

entirely performed on GPU so as to increase the speed of process and enhance the performance.

Most frequent itemset mining algorithms as Apriori and Eclatuse a total order on the items A of the alphabet

and the itemsets P(A) to prevent that the same itemset, called candidate, is checked twice for frequency. Items

or-derings ≤ are in one-to-one-correspondence with item codings, i.e., bijective mapso:A→ {1, . . . , n}via

naturalordering on N. – For itemsets X, Y ∈ P(A) one defines their prefix as

prefix (X, Y) :={{x ∈ X | x ≤ z} | maximal z ∈ X ∩ Y :

{x ∈ X | x ≤ z} = {y ∈ Y | y ≤ z}}

Any order on A uniquely determines a total order on P(A), called lexicographic order, by

X < Y :⇔ min(X\prefix (X, Y)) < min(Y \prefix (X, Y))

For an itemset X ∈ P(A) an itemset Y ∈ P(A) with

X ⊂ Y and X < Y is called an extension of X. An extension Yof X with Y = X ∪ {y} (and thus y > max X) is

called an 1-item-extension of X. The extension rela-tion organizes all itemsets in a tree, called extension tree

or search tree.

Eclat starts with the empty prefix and the item-transaction incidence matrix C∅ , shortly called

incidencematrixin the following, and stored sparsely as list of itemcovers: C∅ := {(x, T ({x})) | x ∈ A}. The

incidence matrix is filtered to only contain frequent items by

freq(C) := {(x, Tx) | (x, Tx) ∈ C, |Tx| ≥ minsup}.

that represent frequent 1-item-extensions of the prefix. For any prefix p ∈ P(A) and incidence matrix C of

frequent 1-item-extensions of p one can compute the incidence matrix Cx of 1-item-extensions of p ∪ {x} by

intersection rows:

Cx := {(y, Tx ∩ Ty) | (y, Ty) ∈ C, y > x}

where (x, Tx) ∈ C is the row representing p ∪ {x}. Cx has to be filtered to get all frequent 1-item-extensions of

p ∪ {x} and then this procedure is recursively iterated until the resulting incidence matrix Cx is empty,

signaling that there are no further frequent 1-item-extensions of the prefix.

The algorithm is shown below:

Input: D, K, i ⊆I
Output: F[I](D, K)
1: F[I] :={}

2: for all i I occurring in D do

3: F[I] := F[I] ∪{I ∪{i}}
4: // Create Di
5: Di: = {}

6: for all j I occurring in D such that j>I do

7: C := cover({i}) ∩ cover({j})
8: if |C| >= K then
9: Di: = Di ∪ {(j, C)}
10: end if

Parallel new Eclat Algorithm for Frequent Itemset Mining on CPU-GPU co-operative environment

www.iosrjournals.org 91 | Page

11: end for
12: //Depth-first recursion
13: Compute F[I ∪ {i}](Di, K)
14: F[I] := F[I] ∪ F[I ∪ {i}]
15: end for

In this algorithm each frequent item is added in the output set. After that, for every such frequent item

i, the i-projected database Di is created. This is done by first finding every item j that frequently occurs together

with i. The support of this set {i, j} is computed by intersecting the covers of both items. If {i, j} is frequent,

then j is inserted into Di together with its cover. Thereordering is performed at every recursion step of the

algorithm between line 10 and line 11. Then the algorithm is called recursively to find all frequent itemsets in

the new database Di.

II.Literature Survey

 Best known FIM algorithms are Apriori [4,8] &Eclat [4]. Apriori&Eclat iteratively generates K sized

frequent item sets by joining frequent K-1 sized item sets. This step is called candidate generation. After

generating each new set of candidates, algorithm scans the transaction database to count the no. of occurrences

of each candidate. This step is called support counting. The primary difference between Apriori&Eclat is the

way they represent candidate & transaction data & the order that they scan the tree structure that stores the

candidates.

A. Sequential Implementation:

 There has been much recent interest in implementing FIM algorithms. FerencBodon implemented Apriori

using trie-based data structure & candidate hashing[10], Christian Borgelt implemented Apriori in his work[16]

using recursion pruning. The BorgeltGelat is capable of detecting dataset characteristics & automatically

choosing the best corresponding data representation (including Tidset, Bitset, Diffset..).

Eclat[16] traverses the prefix tree in depth first order. It extends an item set prefix until it reaches the boundary

between frequent & infrequent item sets and then backtracks to work on the next prefix. Eclat determines the

support of an item set by constructing the list of identifiers of transactions that contain the item set. It does so by

intersecting 2 lists of transaction identifiers of 2 item sets that differ only by one item & together form the item

set currently processed.

B.Message passing parallel implementation:

 Ye et al. demonstrated a parallel Apriori Algorithm based on a revised Bodon implementation that

achieved a 2x speedup with 8 processors[15]. Craus developed on MPI-based parallel Apriori algorithm that

distributed the transaction among computing nodes[17] .Another trie-based MPI implementation based on

Bodon’s algorithm was developed by Ansari et al[18].

C.GPU related implementations:

 Fang developed a GPU implementation of Apriori [1]. In this case, two versions of their GPU

implementation, one based on the “pure bitmap” representation & another based on the “trie-based bitmap”

representation were described. In their approach the candidates & vertical transactions are coded into bitmaps &

manipulated on the GPU. They used an NVIDIA Getforce GTX 280 GPU to test their algorithm. Their method

achieved a speedup of 2x-10x as compared with a CPU-based serial Apriori implementation.

 Fan Zhang developed GPApriori, a GPU implementation of frequent itemset mining(FIM)[2].In order to

map Apriori algorithm onto the SIMD execution model ,”Static bitset” memory data structure have been

designed to represent input database, which improves upon traditional approach of vertical data layout. Support

counting is performed parallely on GPU. GPApriori performs better than CPU-based Apriori implementation.

 Fan zhang Developed new parallel frequent itemset mining algorithm called “Frontier Expansion”[3].

High performance on a heterogeneous platformis achieved which consists of a shared memory multiprocessor

and multiple GPU coprocessors.Frontier expansion is an improved data parallel algorithm derived from Eclat

method. In this approach 4 NVIDIA Tesla GPUs are used to achieve 6-30x speedup relative to sequential Eclat

implementation executed on a multicore CPU.

III. Implementation Details
A.ProjectedAlgorithm :GPU-Eclat

--
Input: A database D and a minimum threshold value.

Output: a complete set of frequent itemsets .

Parallel new Eclat Algorithm for Frequent Itemset Mining on CPU-GPU co-operative environment

www.iosrjournals.org 92 | Page

--
1. Start the CL program to be executed by the GPU.

2. Load D from disk.

3. Generate vertical Tidlist via scanning D and store it on CPU memory.

4. Allocate memory space in GPU for Tidlist

5. Stores array Tidlist into GPU memory

6. Sort Tidlists according to bits position

7. Split Tidlist according to sorted bitmap

8. Generate trie containing the k-suffix of all the bitsets starting with that bit

9. Join all tries to generate candidate set

10. Store candidate patterns in GPU

11. Allocate memory space in GPU to save the results

12. Perform launch kernel of CL Prog (on GPU)

 a. Each processing unit (PU) of GPU allocated a set of candidate itemsets (CIs)

 b. for each CI in CIs

 i. PU compute the support of CI .

 ii. If support of Candidate item set is greater than or equal to given threshold , then set “it is frequent” , else

“it is not frequent”.

13. Wait until GPU finishes its program execution.

14.Retrieve the results from GPU and save them in CPU memory

15. Repeat the process from step 8 to 14 until all the same level candidate patterns are done.

16. Move to next level candidate set generation and perform Steps 8-15 until all candidates are generated and

verified.

--

Candidate Generation:
Input : Database D

Output: Candidate itemsets

Step1 :Scan the database D and convert it into vertical transaction list.

Step 3: Di: = {}

occurring in D such that j>I do

Step 5: C := cover({i}) ∩ cover({j})

--
Freq-Itemset Generation (Support Counting)

--
Input: Candidate trie, min. threshold

Output: Frequent Itemset

--
1://u represents a node at depth K ¡ 1 in the trie.

2: for each u at depth K ¡ 1 do

3: for each w that is a right sibling of u do

4: //Join

5: Union on the two (K - 1)-itemsets represented by

u and w to obtain a candidate K-itemeset

6: //Pruning

7: (K - 1)-subset test on the candidate K-itemset by

following the path of the trie with the same prefix

8: end for

9: end for

--
B.Steps for implementation of current approach:

 1.Data preprocessing :Before initialization data preprocessing is necessary to execute.It takes 3steps to

preprocess the dataset for the purpose of reducing memory usage.Transactions , stored in horizontal format , are

read from disk and converted to vertical format using the (item, bitvector) representation. Because infrequent

items will not appear in any frequent itemset, they can safelybe removed from the dataset without altering the

FIM results. In the second step,the frequency of each item is counted and the infrequent items and their

Parallel new Eclat Algorithm for Frequent Itemset Mining on CPU-GPU co-operative environment

www.iosrjournals.org 93 | Page

correspondingvertical lists are deleted from the vertical list.The remaining items will be sorted by frequency

from low to high and remappedto build a better balanced expansion search space.Then the candidate generation

step is executed by using the mentioned algorithm and then support counting is done with selecting frequent

itemsets .

C.Project Design

Experiments are conducted to verify the performance of the approach on GPU. The languages used are OpencL

and C++ on visual studio while the operating system is Microsoft Windows 7.
Table1.Hardware and Software Configurations:

D.SystemArchitecture :

........ Fig.3. System architecture

System architecture contains Database for storage ,data Cleaner for data preprocessing , Trie based

bitmap creator and Support counter on GPU and Frequent Itemset generator which will find the frequent

itemsets by using Trie based bitmap creator and Support counter result aggregation.

IV. Results:
A.Comparative Analysis:
 Data set: The dataset is obtained from the UCI repository of machine learning databases . The characteristics

of adult dataset selected for comparison of apriori and Eclat algorithm:

Table 2. Characteristics of adult dataset
File name No.of

records
No.of

Columns

Adult.D14.N48842.C2.num 48842 14

Table 3.Difference between Apriori and Eclat algorithm
Parameters Apriori Algorithm

Eclat Algorithm

Technique It uses a breadth-first
search approach and uses

apriori property (All

nonempty subsets of a
frequent itemsets must be

frequent) and join–prune

method

It uses a depth-first search
approach and uses

intersection of transaction ids

list for generating candidate
itemsets

Memory

Utilization

Due to large amount of

candidate are produced so

require large memory
space

Require less amount of

memory compare to apriori if

itemsets are small in number

Databases Suitable for sparse datasets

as well as dense dataset.

Suitable for medium and

dense datasets but not suitable

for small datasets.

Time Execution time is more as

time wasted in producing

candidates at every time.

Execution time is small than

apriori algorithm.

Item Description

CPU AMD A8-4500M 1.9GHz

Memory 4GB memory

GPU RADEON DUAL GRAPHICS HD
7640G+7470M and 1GB memory

OS Microsoft Windows 7

Compiler Microsoft Visual Studio C++ 2008

SDK OpenCL 1.1

Parallel new Eclat Algorithm for Frequent Itemset Mining on CPU-GPU co-operative environment

www.iosrjournals.org 94 | Page

Table 4. gives the total execution time of Apriori, Eclat algorithms with different support threshold using an

adult data set.The execution time is decreased when the support threshold increased. Experiment is done with

minimum support ranging from 30% to 70%.The Eclat algorithm outperforms Apriori algorithm.

Table 4. Total Execution time using Adult dataset
Support Total Execution Time in Seconds

 Apriori Eclat

30 9.85 0.54

40 6.72 0.49

50 4.51 0.45

60 2.69 0.44

70 1.7 0.4

Table 5. Three experimental datasets
Dataset #Item #Transactions Characteristics Data size

T40I10D100
K

1,000 100,000 Synthetic ~15 MB

Retail 16,46

9

88,162 Sparse/Real ~4 MB

Chess 75 3,196 Dense/Real ~335 KB

1.PBI Pure Bitmap Based Implementation: Processing entirely on GPU

Candidate Generation & Support Counting on GPU

Itemsets&Transactions: Bitmap data Structure

2.TBI Trie Based Implementation: CPU/GPU Coprocessing

Candidate Generation on CPU & Support Counting on GPU

Itemsets: Trie& Transactions: Bitmap Data Structure

3.GPU Eclat (Frontier Expansion) Implementation

Candidate Generation on CPU Using Stack & Support Counting on GPU

Bitset Representation for vertical transaction list

Table 6.Comparison of PBI-GPU AND TBI-GPU

B.ProposedEclat Result:

We evaluatd the visualization performance of Eclat with three different support thresholds 1%, 1.5%

and 2%, on the T40I10D100K transaction set.

Parallel new Eclat Algorithm for Frequent Itemset Mining on CPU-GPU co-operative environment

www.iosrjournals.org 95 | Page

Fig.4.Execution Time (sec) of three implementation of Eclat on datasetT10I4D100K

Fig.5. experiments on the dense dataset Chess

VI. Conclusion And Future Work
The GPU-based implementations of EClatalgorithm for frequent itemset mining has been presented

. The implementation employ a bitmap data structure to encode the transaction database on the GPU and utilize

the GPU's SIMD parallelism for support counting. The implementation stores the itemsets in a bitmap, and runs

entirely on the GPU. i.e. vertical transaction lists are represented using “bitset representation ,operated using

wide bitwise operations across multiple threads on a GPU. The previous evaluation results [1,2,3]show that both

of GPU- implementations are up to two orders of magnitude faster than optimized CPU-based implementations

, and compared with our current GPU Eclat approach which is a faster method than TBI- GPU,PBI-GPU , TBI

Eclat CPU and Eclat CPU.

It is a challenging to investigate the data compression techniques & development of a buffering

mechanism between the GPU memory and the CPU memory . Future work will be to explore other mining

algorithms with GPU acceleration, for instance, FP-growth and classification.

References
[1] WenbinFang ,Mian Lu ,QiongLuo, Xiangye Xiao Frequent Itemset Mining on Graphics processors [proceedings of the fifth

International workshop on data management 2009]
[2] Fan Zhang, Yan Zhang ,Jason D. BakosGPApriori : GPU –Accelerated Frequent Itemset Mining [2011 IEEE International

Conference on Cluster Computing]

[3] Fan Zhang, Yan Zhang ,Jason D. Bakos Accelerating frequent itemset mining on graphics processing units[2013 Springer Science+
Business Media New York]

[4] Pramod S. ,O.P.Vyas Survey on Frequent Item set Mining Algorithms [International Journal of Computer Applications (0975-

8887)vol. 1-No.15
[5] Jiayi Zhou, Kun-Ming Yu, Bin-Chang Wu Parallel frequent Patterns Mining Algorithm on GPU[2010 IEEE National Science

Council]

[6] Che-Yu Lin, Kun-Ming Yu ,WenOuyang, Jiayi Zhou An OpenCL Candidate Slicing Frequent Pattern Mining Algorithm on
Graphic Processing Units[2011 IEEE National Science Council]

[7] RakeshAgrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between sets of items in large databases. SIGMOD,

1993.

[8] RakeshAgrawal and RamakrishnanSrikant.Fast algorithms for mining association rules.VLDB, 1994.

[9] Lamine M. Aouad, Nhien-An Le-Khac, and Tahar M. Kechadi. Distributed frequent itemsets mining in heterogeneous platforms.

Journal of Engineering,Computing and Architecture, 2007.
[10] FerencBodon. A fast apriori implementation.FIMI, 2003.

0

0.5

1

1.5

2

2.5

3

GPU-Eclat PBI-GPU TBI-GPU

ti
m

e
 in

 s
e

c

60%

65%

70%

Parallel new Eclat Algorithm for Frequent Itemset Mining on CPU-GPU co-operative environment

www.iosrjournals.org 96 | Page

[11] ShuaiChe, Michael Boyer, JiayuanMeng, David Tarjan, Jeremy W. Shea®er, and Kevin Skadron.A performance study of general-

purpose applications on graphics processors using cuda.Journal of parallel andDistributed Computing, 2008.

[12] http://fimi.cs.helsinki.fi/. FIMI repository.
[13] http://www.adrem.ua.ac.be/goethals/software/files/apriori.tgz. Aprioriimplementation from Bart Goethals.]

[14] ShubhabrataSengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan primitives for gpu computing. In Graphics Hardware,

2007.
[15] Yanbin Ye and Chia-Chu Chiang. A parallel apriori algorithm for frequent itemsets mining.SERA, 2006.

[16] Christian Borgelt Efficient Implementation of Apriori and Eclat [Dept. of Knowledge Processing]

[17] Craus M [2008] A new parallel algorithm for the frequent itemset mining problem In:International Symposium on parallel &
distributed computing, 2008, ISPDC ’08, PP 165-170

[18] Ansari G, DastghaiGifardG(2008) Distributed FrequentItemset mining using trir data structure. Int J Computer Sci.35(3): 377-381

Sarika S. Kadamgraduated in Computer Engineering from the V.T.U. University of Belgaon

(India) in 2008. She is pursuing her Master of engineering in Computer Engineering from the

University of Pune (India).She is currently research scholar student in Computer Department,

PimpriChichwad College of Engineering; Pune (India).Her research interests include wireless

networking, Parallel computing and Distributed System.

SudarshanS. Deshmukh graduated in Computer Engineering from the University of Shivaji

(India) in 2004. He received his Masters in Computer Engineering from the Bharati University in

2009. He is currently working as an assistant professor, Computer Engg, at PCCOE, University of

Pune since 2009. He is a member of the Technical Committee of Parallel Processing (TCPP),

IEEE communication society, IAENG etc. Received Nomination for IEEE Technical Committee

on Parallel Processing Outstanding Service Award for 2011.Associate Editor of International

Journal of Cloud Applications and Computing, also serving as reviewer to several journals and conferences His

research interests include distributed systems, resource sharing, load balancingetc.

