
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. VIII (Mar-Apr. 2014), PP 59-62

www.iosrjournals.org

www.iosrjournals.org 59 | Page

Ranking of Cloud Services Using Dynamic Qos

Priyanka V
#1

, Sabari venkatesh G
#1

, Prithiviraj S
#1,

 Christopher Paul A
#2

#1

UG Scholar, Department of CSE, SNS College of Technology,Coimbatore, India
#2

Asst. Professor, Department of CSE, SNS College of Technology,Coimbatore, India.

Abstract: Cloud computing is an internet based computing and is becoming popular. QoS rankings provide

valuable information for making optimal cloud service selection from a set of functionally equivalent service

candidates. To obtain QoS values, real-world invocations on the service candidates are usually required. To

avoid the time-consuming and expensive real-world service invocation QoS ranking prediction framework is

used. This framework requires no additional invocations of cloud services when making QoS ranking

prediction. Two personalized QoS ranking prediction approaches are used to predict the QoS rankings directly.

Comprehensive experiments are conducted employing real-world QoS data, including 300 distributed users and

500 real-world web services all over the world. The proposed uses modernized ranking approach which uses

different QoS parameters to predict the ranking more accurately. Different QoS parameters like latency,

availability, failure probability can be used to improve the ranking.

Keyword: Quality-of-service, cloud service, ranking prediction, personalization

I. Introduction
 Cloud computing is Internet-based computing, whereby shared configurable resources (e.g.,

infrastructure, platform, and software) are provided to computers and other devices as services. Strongly

promoted by the leading industrial companies (e.g., Amazon, Google, Microsoft, IBM, etc.), cloud computing is

quickly becoming popular in recent years. Applications deployed in the cloud environment are typically large

scale and complex. With the rising popularity of cloud computing, how to build high-quality cloud applications

becomes an urgently required research problem. Similar to traditional component-based systems, cloud

applications typically involve multiple cloud components communicating with each other over application

programming interfaces, such as through web services. On-functional performance of cloud services is usually

described by quality-of-service (QoS). QoS is an important research topic in cloud computing. When making

optimal cloud service selection from a set of functionally equivalent services, QoS values of cloud services

provide valuable information to assist decision making. In traditional component-based systems, software

components are invoked locally, while in cloud applications, cloud services are invoked remotely by Internet

connections.

 Client-side performance of cloud services is thus greatly influenced by the unpredictable Internet

connections. Therefore, different cloud applications may receive different levels of quality for the same cloud

service. In other words, the QoS ranking of cloud services for a user cannot be transferred directly to another

user since the locations of the cloud applications are quite different. Personalized cloud service QoS ranking is

thus required for different cloud applications. The most straightforward approach of personalized cloud service

QoS ranking is to evaluate all the candidate services at the user-side and rank the services based on the observed

QoS values. However, this approach is impractical in reality, since invocations of cloud services may be

charged. Even if the invocations are free, executing a large number of service invocations is time consuming and

resource consuming, and some service invocations may produce irreversible effects in the real world. Moreover,

when the number of candidate services is large, it is difficult for the cloud application designers to evaluate all

the cloud services efficiently. To attack this critical challenge, we propose a personalized ranking prediction

framework, named Cloud Rank, to predict the QoS ranking of a set of cloud services without requiring

additional real-world service invocations from the intended users. Our approach takes advantage of the past

usage experiences of other users for making personalized ranking prediction for the current user. Extended from

its preliminary conference version, the contribution of this paper is twofold: This paper identifies the critical

problem of personalized QoS ranking for cloud services and proposes a QoS ranking prediction framework to

address the problem. To the best of our knowledge, Cloud Rank is the first personalized QoS ranking prediction

framework for cloud services. Extensive real-world experiments are conducted to study the ranking prediction

accuracy of our ranking prediction algorithms compared with other competing ranking algorithms. The

experimental results show the effectiveness of our approach. We publicly release our service QoS data set1 for

future research, which makes our experiments reproducible.

Quality-of-service can be measured at the server side or at the client side. While server-side QoS

properties provide good indications of the cloud service capacities, client-side QoS properties provide more

realistic measurements of the user usage experience. The commonly used client-side QoS properties include

Ranking Of Cloud Services Using Dynamic Qos

www.iosrjournals.org 60 | Page

response time, throughput, failure probability, etc. This paper mainly focuses on ranking prediction of client-

side QoS properties, which likely have different values for different users (or user applications) of the same

cloud service. Fig. 1 shows the system architecture of our Cloud Rank framework, which provides personalized

QoS ranking prediction for cloud services. The target users of the Cloud Rank framework are the cloud

applications, which need personalized cloud service ranking for making optimal service selection. A user is

called active user if he/ she is requesting ranking prediction from the Cloud Rank framework. As shown in Fig.

1, a user can obtain service ranking prediction of all available cloud services from the Cloud Rank frame- work

by providing observed QoS values of some cloud services.

More accurate ranking prediction results can be achieved by providing QoS values on more cloud

services, since the characteristic of the active user can be mined from the provided data. Within the Cloud Rank

framework, there are several modules. First, based on the user-provided QoS values, similarities between the

active user and training users can be calculated. Second, based on the similarity values, a set of similar users can

be identified. After that, two algorithms are proposed (i.e., Cloud Rank1 and Cloud Rank2) to make

personalized service ranking by taking advantages of the past service usage experiences of similar users. Finally,

the ranking prediction results are provided to the active user. The training data in the Cloud Rank framework

can be obtained from: 1.

 The QoS values provided by other users 2. The QoS values collected by monitoring cloud services. In

our previous work, a user-collaborative mechanism is proposed for collecting client-side QoS values of web

services from different service users. The observed web service QoS values can be contributed by users by

running a client-side web service evaluation application. Different from service-oriented applications, the usage

experiences of cloud services are much easier to be obtained in the cloud environment. The cloud applications

can invoke and record the client-side QoS performance of the invoked cloud services easily by using monitoring

infrastructure services provided by the cloud platform. The cloud provider can collect these client-side QoS

values from different cloud applications easily with approval of application owners. The framework can be used

at both design time and runtime. At runtime, the cloud application may obtain new QoS values on some cloud

services. By providing these values to our Cloud Rank server, new QoS ranking prediction can be obtained.

Based on the service QoS ranking, optimal system reconfiguration can be achieved.

II. System Architecture

Fig.1 System architecture of cloud Rank

III. Qos RANKING PREDICTION

This section presents our Cloud Rank QoS ranking prediction framework for cloud services. Section

3.1 calculates the similarity of the active user with training users based on their rankings on the commonly

invoked cloud services identifies a set of similar users presents two QoS ranking prediction algorithms, named

Cloud Rank1 and Cloud Rank2, respectively analyses the computational complexity.

3.1Similarity Computation
Ranking similarity computations compare users QoS rankings on the commonly invoked services.

Suppose we have a set of three cloud services, on which two users have observed response-times (seconds) of

{1, 2, 4} and {2, 4, 5}, respectively. The response-time values on these services observed by the two users are

clearly different nevertheless; their rankings are very close as the services are ordered in the same way. Given

two rankings on the same set of services, the Kendall Rank Correlation Coefficient (KRCC) evaluates the

degree of similarity by considering the number of inversions of service pairs which would be needed to

transform one rank order into the other. The KRCC value of user’s u and v can be calculated by

Where N is the number of services, C is the number of concordant pairs between two lists, D is the number of

discordant pairs, and there are totally N (N-1)/2 pairs for N cloud services. Since C=N (N-1)/2-D, (1) is equal to

Ranking Of Cloud Services Using Dynamic Qos

www.iosrjournals.org 61 | Page

Sim (u, v) =1-(4D/N (N-1)).Employing KRCC, the similarity between two service rankings can be calculated

by,

Where Iu Iv is the subset of cloud services commonly invoked by users u and v, qu,i is the QoS value (e.g.,

response time, throughput, etc.) of service i observed by user u, and I(x) is an indicator function

3.2 Find Similar Users
By calculating similarity values between the current active user with other training users, the similar

users can be identified. Previous approaches usually employ information of all the users for making ranking

prediction of the current user, which may include dissimilar users. However, employing QoS values of

dissimilar users will greatly influence the prediction accuracy.

 3.3 QoS Ranking Prediction
Rating-oriented collaborative filtering approaches first predict the missing QoS values before making

QoS ranking. The target of rating-oriented approaches is to predict QoS values as accurate as possible.

However, accurate QoS value prediction may not lead to accurate QoS ranking prediction. For example, assume

the expected response times of three services are 2, 3, and 5 seconds, respectively. There are two predictions

using rating-oriented approaches: (3, 2, 4) and (1, 2, 3). Since rating-oriented approaches try to predict the QoS

value as accurate as possible, Prediction 1 is better than Prediction 2, since it has a smaller MAE value.

However, from the ranking-oriented perspective, Prediction1 is worse than Prediction 2 since the former leads to

incorrect ranking based on the predicted QoS values. To address this problem, we propose two ranking- oriented

approaches, named as Cloud Rank1 and CloudRank2, in the following. Our ranking-oriented approaches predict

the QoS ranking directly without predicting the corresponding QoS values.

3.4 Cloud Rank1
 A user’s preference on a pair of services can be modelled in the form of ,where

means that quality of service I is better than j and is thus more preferable for the active user. The value of the

preference function indicates the strength of preference and a value of zero means that there is no

preference between two services.

Algorithm 1 includes the following steps:

 Step 1 (lines 1-6). Rank the employed cloud services in E based on the observed QoS values. stores

the ranking, where t is a cloud service and the function returns the corresponding order of this

service. The values of are in the range of [1,|E|], where a smaller value indicates higher quality.

 Step 2 (lines 7-9). For each service in the full service set I, calculate the sum of preference values with all

other services by . Since =0 including . in the calculation does not

influence the results. Larger value indicates more services are less preferred than i. In other words,

service i should be ranked in a higher position.

 Step 3 (lines 10-18). Services are ranked from the highest position to the lowest position by picking the

service t that has the maximum value. The selected service is assigned a rank equal to n -|I|+1 so

that it will be ranked above all the other remaining services in I. The ranks are in the range of [1,n],

where n is the number of services and a smaller value indicates higher quality. The selected service t is

then removed from I and the preference sum values of the remaining services are updated to remove

the effects of the selected service t.

 Step 4 (lines 19-24). Step 3 treats the employed services in E and the nonemployed service in I -E

identically which may incorrectly rank the employed services. In this step, the initial service ranking is

updated by correcting the rankings of the employed services in E. By replacing the ranking results in with

the corresponding correct ranking of , our approach makes sure that the employed services in E are

correctly ranked.

The preference values in the CloudRank1 algorithm can be obtained explicitly or implicitly. When the

active user has QoS values on both the services i and service j, the preference value is obtained explicitly. On

the other hand, the preference value is obtained implicitly when employing QoS information of similar users.

Assuming there are three cloud services a, b, and c. The active users have invoked service a and service b

previously. The list below shows how the preference values of can be obtained

explicitly or implicitly

Ranking Of Cloud Services Using Dynamic Qos

www.iosrjournals.org 62 | Page

 : obtained explicitly.

 : obtained implicitly by similar users with similarities of 0.1, 0.2, and 0.3.

 : obtained implicitly by similar users

 with similarities of 0.7, 0.8, and 0.9.

In the above example, we can see that different preference values have different confidence levels. It is

clear that C (a,b) >C (b,c) >C (a,c), where C represents the confidence values of different preference values. The

confidence value of is higher than , since the similar users of have higher similarities. In

the CloudRank1 algorithm, differences in preference values are treated equally, which may hurt the QoS ranking

prediction accuracy. By considering the confidence values of different preference values, we propose a QoS

ranking prediction algorithm, named CloudRank2, in which confidence values can be calculated by,

Where v is a similar user of the current active user u. wv makes sure that a similar user with higher similarity

value has greater.

IV. Conclusion And Future Work
Personalized QoS ranking prediction framework for cloud services, which requires no additional

service invocations when making QoS ranking. By taking advantage of the past usage experiences of other

users, our ranking approach identifies and aggregates the preferences between pairs of services to produce a

ranking of services. We propose two ranking prediction algorithms for computing the service ranking based on

the cloud application designer’s preferences. Experimental results show that our approaches outperform existing

rating-based approaches and the traditional greedy method.

For future work, like to improve the ranking accuracy of our approaches by exploiting additional

techniques (e.g., data smoothing, random walk, matrix factorization, utilizing content information, etc.). When a

user has multiple invocations of a cloud service at different time, we will explore time-aware QoS ranking

prediction approaches for cloud services by employing information of service users, cloud services, and time.

As our current approaches only rank different QoS properties independently, we will conduct more

investigations on the correlations and combinations of different QoS properties. We will also investigate the

combination of rating-based approaches and ranking-based approaches, so that the users can obtain QoS ranking

prediction as well as detailed QoS value prediction. Moreover, we will study how to detect and exclude

malicious QoS values provided by users.

References
[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M.

Zaharia, “Above the Clouds: A Berkeley View of Cloud Computing,” Technical Report EECS-2009-28, Univ. California, Berkeley,
2009.

[2] K.J. arvelin and J. Kekalainen, “Cumulated Gain-Based Evaluation of IR Techniques,” ACM Trans. Information Systems, vol. 20,

no. 4, pp. 422-446, 2002.
[3] P.A. Bonatti and P. Festa, “On Optimal Service Selection,” Proc. 14th Int’l Conf. World Wide Web (WWW ’05), pp. 530-538,

2005.

[4] J.S. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of Predictive Algorithms for Collaborative Filtering,” Proc. 14th
Ann. Conf. Uncertainty in Artificial Intelligence (UAI ’98), pp. 43-52, 1998.

[5] R. Burke, “Hybrid Recommender Systems: Survey and Experi- ments,” User Modeling and User-Adapted Interaction, vol. 12, no.

4, pp. 331-370, 2002.
[6] W.W. Cohen, R.E. Schapire, and Y. Singer, “Learning to order things,” J. Artificial Intelligent Research, vol. 10, no. 1, pp. 243-

270, 1999.

[7] M. Deshpande and G. Karypis, “Item-Based Top-n Recommenda- tion,” ACM Trans. Information System, vol. 22, no. 1, pp. 143-
177, 2004.

