
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. VIII (Mar-Apr. 2014), PP 35-44

www.iosrjournals.org

www.iosrjournals.org 35 | Page

Performance Analysis of NodeLock Licensing Methodology with

RMPRSA Cryptography

Cuddapah Anitha
1
, Prof.M.Padmavathamma

2

1
(Department of MCA, C.R.Engineering College, Renigunta road, Tirupati-517506, Andhra Pradesh, INDIA.

2
(Department of Computer Science, S.V.University, Tirupati-517501, Andhra Pradesh, INDIA)

Abstract:There are many means of unauthorized access of software products being applied. To control this

access towards copying the software products on various systems, software developers generally define certain

restrictions by controlling its operation being used in a particular environment. Despite of this, it has become a

major challenge in the software industry and for the developers of the software products in protecting their

intellectual property rights. Hence, in an attempt to prevent piracy in the upholding environment, this paper

introduces a novel innovation against the piracy called NodeLock Licensing Methodology with RMPRSA

Cryptography.

Keywords:Decryption, Encryption, Key generation RSA, RMPRSA Cryptography.

I. Introduction
As there lies the fact that software can be copied from any source to any destination without involving

cost, people, and effort and since software development is costly with reference to resources, personnel, effort,

intellectual property, etc, software development companies do not allow people to copy their software setups

without license. So it is necessary to devise a mechanism to ensure that whosoever possesses license or paid

royalties alone should be able to access the software and that the license holders should also be legitimate users.

This will ensure that the licensed software should not be run on more number of systems than specified. There

are many means of gaining unauthorized access to software products being used. To control this access to

copying the software products on various systems, software developers adopt various control measures that

include:

1) placing a limit on the product being used in a particular environment,

2) making the product unusable after a predetermined period of time,

3) developing a mechanism so as to generate a key to complete its installation on user‘s site.

4) to generate a call automatically to the License Provider‘s site each time the product is run for its

installation.

To address this unauthorized access to software products everywhere outside connecting environments,

we propose NodeLock Licensing along with target security needs by extending RSA with multi prime support

called Multi Prime Rebalanced RSA and performance analysis results when compared to RSA with respect to

key generation, encryption and decryption. The present work consists of 5 sections. The first section talks about

the introduction, functionality, activity diagram in reference to the flow of information among various

components of the system. Section 2 talks about the innovation, the NodeLock Licensing Methodology

algorithm with RMPRSA cryptography and defines its key generation, encryption and decryption parameters.

Section 3 talks about the performance analysis of NodeLock Licensing Methodology algorithm with RMPRSA

cryptography over RSA, observations and averaging of key generation, encryption and decryption and their

comparison graphs. Section 4 talks about the conclusions and future scope.

 In particular the present RMPRSA algorithm is applied to a NodeLock License while generating the

keys for the installation of software on user‘s site These Node Lock Licenses are always specific to a particular

node or a system in which software is to be installed and operated. During the license generation process, it is

part of the installation procedure that the terms and conditions of the license should be agreed upon by the user

which is present in the license certificate in an encrypted form and managed by the License Provider Server.

This agreement between the software developer and the user of the software is permanent and is valid till the

expiry of license as indicated in the certificate. This even introduces a security issue that addresses the

duplication of the license information by copying it on another system and, hence, with the Node Lock License,

the entire installation process can be controlled and gets completed in regard to the validation of encrypted

hardware details as is in our algorithm. The users of the software licensed with Node Lock should be aware that

the License Provider monitors the usage of the software and that any unauthorized access to the software

installation procedure would not be entertained which is the main concern of the software development

organization providing node lock licenses. This fact enforces a constraint on the users of the software that

Performance Analysis Of NodeLock Licensing Methodology With RMPRSA Cryptography

www.iosrjournals.org 36 | Page

NodeLock Licensed software cannot be installed nor run on more than one system and any unpermitted access

to the software will automatically and strictly be monitored.

Definition. A NodeLocked License allows a single instance of an application to run on a specific machine.

NodeLocked Licenses are directly tied to the hardware of the machine on which the licensed application license

is installed. Node-locked licenses do not require a license server, because they are uncounted. It is also referred

to as local licensing or seat per machine licensing.

1.1. Working Of Node Locked License Management System
The diagram below illustrates the functionality and steps involved in NodeLocked License Methodology.

C
O

N
C

EP
T

&
 S

TEP
S

License Generator - Server

Computer B

How it works?

Request file (contains hardware
serial numbers)

Encrypted Request

Decrypted Request

License

Encrypted
License

Decrypted
License

Verify
License

1

2

3

4

5

6

7

Fig 1: NodeLock License Management System

Working procedure of the node Lock License can be seen from the following steps.

1. Consider a computer B requesting for a node locked licensed software. A Request file is generated for

its request that includes the hardware serial numbers of the computer B.

2. The request file is encrypted using the extended RSA algorithm called the Multi Prime Rebalanced

RSA and sent to the License Provider‘s site for the license generation to install the node lock licensed

software.

3. On the receipt of the encrypted request file at the License Generator Server side, it is decrypted using

its private key.

4. Now the license file is generated for the software with the hardware details of the computer B.

5. The license file that has been generated by the server is encrypted using the public key and sent to the

client‘s machine.

6. It is then decrypted at the client‘s site using the private key of the client.

7. Now the license generated by the Server is compared and verified with the local license generated from

hardware details. If the local license is similar to the license sent by the Server, then the software could

be installed on computer B else an exception is raised.

The corresponding Activity diagram of NodeLock License methodology:

Performance Analysis Of NodeLock Licensing Methodology With RMPRSA Cryptography

www.iosrjournals.org 37 | Page

Request File

Client Environment

Start

Collect License Details

Is License available?

Run Software

Do you want to
generate License now?

Stop

Yes

No

No

Generate Request file

Yes

Do you want to browse
License File?

NoBrowse License File

Yes

Install Lincese

Get the License

License Generator/Provider

License File

Start

Extract License Details

Get License Key Details

Generate Node lock
License

Distribute License File

Stop

Fig 2. The Activity diagram for NodeLock License Methodology

II. Rebalanced Multi Prime RSA
ABOUT REBALANCED MULTI PRIME RSA

RMP RSA involves a public key and a private key same as basic RSA. The public key can be known

by everyone and is used for encrypting messages. Messages encrypted with the public key can only be

decrypted in a reasonable amount of time using the private key.

The keys for the RMP RSA algorithm are generated the following way:

Choose two distinct set of prime numbers p and q, where p is a product of first set of prime numbers

(p1….pn), and q is a product of second set of prime numbers (q1…qm).

For security purposes, the prime product p1..pn and q1..qm should be chosen at random, and should be of

similar bit-length. Prime integers can be efficiently found using a primality test.

Here is the unique computation of RMPRSA to strengthen the security:

P = (4p+1) and Q = (4q+1)

Now, perform the prime factor adjustments for P and Q as follows:

P =~P and Q =~Q,

where ~P represents process of adjusting the integer P to next immediate possible prime number and in the same

way Q.

Now, rest of the process remains same as basic RSA key generation.

Compute n = PQ.

n is used as the modulus for both the public and private keys. Its length, usually expressed in bits, is the key

length.

Compute φ(n) = φ(p)φ(q) = (P − 1)(Q − 1), where φ is Euler's totient function.

Choose an integer e such that 1 < e <φ(n) and gcd(e, φ(n)) = 1; i.e. e and φ(n) are co-prime.

e is released as the public key exponent. e having a short bit-length and small Hamming weight results in more

efficient encryption – most commonly 216 + 1 = 65,537. However, much smaller values of e (such as 3) have

been shown to be less secure in some settings. Determine d as d−1 ≡ e (mod φ(n)), i.e., d is the multiplicative

inverse of e (modulo φ(n)). This is more clearly stated as: solve for d given d⋅e ≡ 1 (mod φ(n)). Also, this is

often computed using the extended Euclidean algorithm. d is kept as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of

the modulus n and the private (or decryption) exponent d, which must be kept secret. p, q, and φ(n) must also be

kept secret because they can be used to calculate d.

Alice transmits her public key (n, e) to Bob and keeps the private key secret. Bob then wishes to send

message M to Alice. He first turns M into an integer m, such that 0 ≤ m < n by using an agreed-upon reversible

protocol known as a padding scheme. He then computes the ciphertext c corresponding to

http://en.wikipedia.org/wiki/Alice_and_Bob
http://en.wikipedia.org/wiki/Alice_and_Bob
http://en.wikipedia.org/wiki/RSA_(algorithm)#Padding_schemes

Performance Analysis Of NodeLock Licensing Methodology With RMPRSA Cryptography

www.iosrjournals.org 38 | Page

This can be done quickly using the method of exponentiation by squaring. Bob then transmits c to Alice.

Alice can recover m from c by using her private key exponent d via computing

Given m, she can recover the original message M by reversing the padding scheme.

RSA algorithm is considered to be much slower as compared to DES and other symmetric cryptosystems. There

is a lot of research work done to increase the speed of RSA algorithm. Here is one the approach known as Multi

Prime RSA algorithm which is being studied to improve the RSA decryption speed.The decryption speed of

RSA can be increased thanks to the Chinese remainder theorem. Instead of a modulus such as N = P Q, we can

use more primes. For example N =(4*(p1.p2….pn)+1)(4*(q1.q2…qm)+1). However, with a bit length of 1024,

it is not secure anymore to use a decomposition of more than three primes.

RMPRSA technique was introduced by Collins who modified the RSA algorithm so that it consists of k primes

p1, p2,……,pk instead of the traditional two primes p and q. Classically; an RSA modulus has been composed

from two primes. However, there are very practical reasons why using more than two primes might be preferred.

a) The primes are smaller and key generation takes less time despite there being more of them.

b) Private Key operations take less time if one uses the Chinese Remainder Theorem. Using three primes vs.

two primes gives a theoretical speedup of 9/4. A speedup of 1.8 to 2.0 has been achieved in practice.

The key generation, encryption and decryption algorithm are described as given below:

KEY GENERATION OF RMPRSA

The parameter k indicates the number of primes to be used in key generation algorithm. The public and private

key pairs can be generated as follows:

i) Select k primes at random, each of which is n/3 bits in length.

ii) Set n = (4*(p1*p2*………………*pn)+1)*(4*(q1*q2*q3*…qm)+1) and

φ (n) = ((4*(p1*p2*………………*pn)+1)-1)*((4*(q1*q2*q3*…qm)+1)-1)

iii) Pick randomly an odd integer, e (1 < e < φ), such that gcd (e, φ (n)) = 1.

iv) After that find an integer, d (1 < d < φ), such that d = e -1 mod φ (n). This is part of our private key and must

be kept secret.

v) Select an integer, e (1 < e < φ),

such that gcd (e, φ) = 1 and e and φ are relatively prime.

v) Find an integer, d (1 < d < φ), such that e * d = 1 (mod φ). This is part of our private key and must be kept

secret.

vi) The public key is e and n, or (e, n), and the private key is d and n, or (d, n).

ENCRYPTION OF RMPRSA

Once we have generated a public/private key pair, we can encrypt a message with the public key with

the following steps.

i) Take the message M to represent a piece of plaintext. In order for the algebra to work properly, the value of

m must be less than the modulus n, which was originally computed as p1 * p2 *…..* pk. Long messages must

therefore be broken into small enough pieces that each piece can be uniquely represented by an integer of this

bit size, and each piece is then individually encrypted.

ii) Calculate the cipher text C using the public key containing e and n. This is calculated using the equation C =

(M exp e) mod n.

DECRYPTION OF RMPRSA

Once we have generated a public/private key pair, we can encrypt a message with the public key with the

following steps.

Finally, we can perform the decryption procedure with the private key using the following steps.

i) The decipher first computes Mi for 1 ≤ i ≤ k such that Mi = Ci di mod pi where Ci = C mod pi

ii) Next the message M can be obtained as M = Cd mod n by applying Chinese Remainder Theorem.

 iii) Calculate the plain text M using the public key containing e and n. This is calculated using the

equation M = (C exp e) mod n.

RMP RSA – KEY LENGTHS

When we talk about the key length of an RMP RSA key, we are referring to the length of the modulus, n, in bits.

The minimum recommended key length for a secure RMP RSA transmission is currently 1024 bits. A key

length of 512 bits is now no longer considered secure, although cracking it is still not a trivial task for the likes

http://en.wikipedia.org/wiki/Exponentiation_by_squaring

Performance Analysis Of NodeLock Licensing Methodology With RMPRSA Cryptography

www.iosrjournals.org 39 | Page

of you and me. The longer your information is needed to be kept secure, the longer the key you should use.

Keep up to date with the latest recommendations in the security journals.

There is small one area of confusion in defining the key length. One convention is that the key length is the

position of the most significant bit in n that has value '1', where the least significant bit is at position 1.

Equivalently, key length = ceiling(log2(n+1)). The other convention, sometimes used, is that the key length is

the number of bytes needed to store n multiplied by eight, i.e. ceiling(log256(n+1))*8.

The following table is taken from NIST's Recommendation for Key Management. It shows the recommended

comparable key sizes for symmetrical block ciphers (AES and Triple DES) and the RSA algorithm. That is, the

key length you would need to use to have comparable security.

NODELOCK LICENSE METHODOLOGY –ALGORITHM AND PROTOCOL

i. CLIENT: STEP1

1. Collect node specific (hardware) details and form a message by concatenating ids, serial numbers,

sequence numbers, etc.

Where h1,h2,h3,……….hn are hardware/device specific details and m is a message of current context of

hardware details, and StrFun() is a string manipulating function, which will accommodate hardware

details/notations in a single message context.

2. Compute C1(encrypted message) from m using multi-prime rebalanced RSA.

Let p1 be the product of n1 randomly chosen distinct primes p11, p12, …….p1n1 and q1 be the product of n2

randomly chosen distinct primes q11, q12, …….q1n2.

i.e, p1 = ∏
n1

i=1(p1i) and q1 = ∏
n2

i=1(q1i)

Let P1 = (4p1+1), Q1 = (4q1+1), and N1= P1Q1

Compute Euler‘s Totient function of N1.

Chose an integer e1, where 1<e1<Φ(N1), such that GCD(e1, Φ(N1)) = 1

The pair (N1, e1) is the public key1, this shall be distributed along with the software or program for which the

Node Lock license is required.

For this message m є ZN1, the cipher text is computed as

3. Compute C2(encrypted message) from m using multi-prime rebalanced RSA.

Let p2 be the product of n3 randomly chosen distinct primes p21, p22, …….p1n3 and q2 be the product of n4

randomly chosen distinct primes q21, q22, …….q2n4.

i.e, p2 = ∏
n3

i=1(p2i) and q2 = ∏
n4

i=1(q2i)

Let P2 = (4p2+1), Q2 = (4q2+1), and N2= P2Q2

Compute Euler‘s Totient function of N2.

Chose an integer e2, Where 1<e2<Φ(N2), such that GCD(e2, Φ(N2)) = 1

The pair (N2, e2) is the public key2, this also shall be distributed along with the software or program for which

the Node Lock license is required.

For this message m є ZN2, the cipher text is computed as

m=StrFun (h1, h2, h3, h4,………hn)

Now Φ(N1)= (P1-1)(Q1-1)

C1=me1 mod N1

Now Φ(N2)= (P2-1)(Q2-1)

C2=me2 mod N2

Performance Analysis Of NodeLock Licensing Methodology With RMPRSA Cryptography

www.iosrjournals.org 40 | Page

4. Create a Request file/content by combining the results of step2 and step3.

req = length of C1 +C1 + length of C2 + C2

Here is the simple protocol to merge the contents of encrypted hardware details C1 and C2

ii. SERVER: STEP2

5. After receiving the Request file at server(license generator) side, extract the contents of C1 and C2

req = length of C1 +C1 + length of C2 + C2

6. Compute d1 = e1
-1

 mod Φ(N1), the private key1 is the pair (N1, d1)

For the encrypted message C1 є ZN1 ,the plaintext is recovered by computing m1= C1
d1

 mod N1.

7. Compute d2 = e2
-1

 mod Φ(N2), the private key2 is the pair (N2, d2)

For the encrypted message C2 є ZN2 ,the plaintext is recovered by computing m2= C2
d2

 mod N2.

8. Compare the plaintexts of m1 and m2 and verify whether the request file/ content is valid.

Isvalidrequestfile = (m1 equals to m2)

 Or

 If (m1 = m2) then isvalidrequestfile = true;

 elseisvalidrequestfile = false;

 i.e., m = m1 = m2

 9. Compute the license key / content/ file from original message m.

 License = f(m)

 Here f(m) is defined, such that no two hardware messages give the same license

 i.e., If (m1 ≠ m2) then If f(m1) ≠ f(m2)

This is Node Lock License concept.

 In other terms, for any two hardware details m1 and m2, f(m1) ≠ f(m2).

10. Compute C3(encrypted cipher text from message f(m), using multi prime re-balanced RSA.

Let p3 be the product of n5 randomly chosen distinct primes p31, p32, …….p3n5 and q2 be the product of n6

randomly chosen distinct primes q31, q32, …….q3n6.

i.e, p3 = ∏
n5

i=1(p3i) and q3 = ∏
n6

i=1(q3i)

Let P3 = (4p3+1), Q3 = (4q3+1), and N3= P3Q3

Compute Euler‘s Totient function of N3.

Chose an integer e3, Where 1<e3<Φ(N3), such that GCD(e3, Φ(N3)) = 1

The pair (N3, e3) is the public key 3, this also shall be distributed along with the software or program for which

the Node Lock license is required.

For this message m є ZN3, the cipher text is computed as

iii. CLIENT: STEP3

11. After receiving the license key at the client (license validator) side, decode the contents of cipher text

C3.

License key = f(m) = C3
d3

 mod N3 (this is license key decoding)

12. Define function g such that f(m) identically equal to g(m).

i.e., f(m1) and g(m1) shall always give similar output

and for m1 and m2, f(m1) identically equal to g(m2)

13. Get the hardware details or device properties (h) and see whether license is valid

Isv3alidlicense = (f(m) identically equal to g(m))

 Or

If f(m) identically equal to g(m) then

Isvalidlicense = true

Else isvalidlicense = false

14. Register the product on successful validation of Node Lock License key.

Now Φ(N3)= (P3-1)(Q3-1)

C3=f(m)e3 mod N3

Performance Analysis Of NodeLock Licensing Methodology With RMPRSA Cryptography

www.iosrjournals.org 41 | Page

III. Performance Analysis Of NodeLock License Methodology Algorithm With RMPRSA

Cryptography And RSA
Here we come across the performance measures of RSA and RMPRSA and the time required for the key

generation, encryption and decryption.

a. OBSERVATIONS AND AVERAGING

In colloquial language average usually refers to the sum of a list of numbers divided by the size of the list, in

other words the arithmetic mean. However, the word "average" can confusingly be used to refer to the median,

the mode, or some other central or typical value. In statistics, these are all known as measures of central

tendency. Thus the concept of an average can be extended in various ways in mathematics.

i. KEY GENERATION: OBSERVATIONS AND AVERAGING

To improve the security levels, randomization techniques have been applied in co-prime computation process,

so it makes sense to take multiple observations, and take an average of each process step.

 Following table shows the various observations taken for Key generation process of both Sample RSA

and RMPRSA and last Column shows the average values.

Key Gene Ob1 Ob2 Ob3 Ob4 Ob5 Average

128
Simple RSA 0.6279 0.2723 0.4874 0.383 0.7367 0.50146

RMP RSA 696.0648 146.6199 201.9249 221.2803 352.5945 323.6969

256
Simple RSA 0.3127 0.9729 0.8728 0.9041 0.7694 0.76638

RMP RSA 74.5695 1055.932 791.0222 415.6621 1087.56 684.9491

512
Simple RSA 0.6693 1.279 0.6645 1.4296 0.8608 0.98064

RMP RSA 465.2311 1186.79 999.986 1479.969 952.5758 1016.91

1024
Simple RSA 2.6682 2.3708 2.8077 2.5103 2.2572 2.52284

RMP RSA 1102.666 1167.503 951.7881 981.1397 472.9549 935.2104

Table 1. Average values for Key Generation Process of RSA and RMPRSA

ii. ENCRYPTION: OBSERVATIONS AND AVERAGING

Following table shows the various observations taken for Encryption process of both Sample RSA and

RMPRSA and last Column shows the average values.

Encryption Ob1 Ob2 Ob3 Ob4 Ob5 Average

128
Simple RSA 7.8973 8.107 8.5627 7.8429 8.1739 8.11676

RMP RSA 8.5022 8.9048 5.4619 6.7631 8.7485 7.6761

256
Simple RSA 15.5854 16.1727 15.641 14.873 13.4838 15.15118

RMP RSA 15.6311 13.8779 13.2091 11.2121 10.3994 12.86592

512
Simple RSA 28.57 31.0088 25.4308 31.0126 30.1239 29.22922

RMP RSA 17.8682 19.4078 15.8503 15.7093 17.0822 17.18356

1024
Simple RSA 57.141 54.1771 46.8991 45.5109 44.8252 49.71066

RMP RSA 29.2374 30.4164 29.633 30.2389 30.5468 30.0145

Table 2. Average values for Encryption Process of RSA and RMPRSA

iii. DECRYPTION: OBSERVATIONS AND AVERAGING

Following table shows the various observations taken for Decryption process of both Sample RSA and

RMPRSA and last Column shows the average values.

Decryption Ob1 Ob2 Ob3 Ob4 Ob5 Average

128
Simple RSA 9.0503 9.6112 5.9932 7.4266 9.3211 8.28048

RMP RSA 1.9642 1.6408 1.5085 1.7221 0.78 1.52312

256
Simple RSA 16.2283 14.9231 14.2427 12.2063 10.8267 13.68542

RMP RSA 1.7299 1.789 2.1042 1.8164 0.895 1.6669

512
Simple RSA 18.6295 20.2763 16.6265 16.5832 19.3476 18.29262

RMP RSA 1.7039 2.0137 1.8083 1.802 1.7953 1.82464

1024
Simple RSA 30.0661 31.234 30.6878 31.3711 31.3831 30.94842

RMP RSA 1.9113 2.0469 1.5422 1.8862 1.9656 1.87044

Table 0. Average values for Decryption Process of RSA and RMPRSA

http://en.wikipedia.org/wiki/Colloquial
http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Mode_(statistics)
http://en.wikipedia.org/wiki/Measures_of_central_tendency
http://en.wikipedia.org/wiki/Measures_of_central_tendency

Performance Analysis Of NodeLock Licensing Methodology With RMPRSA Cryptography

www.iosrjournals.org 42 | Page

b. COMPARISON AND GRAPHS

i. COMPARISON AND GRAPHS – 128 BIT

Following table shows the comparison matrix of Simple RSA and RMP RSA for Key generation, Encryption,

Decryption process steps individually under 128 Bit mode.

128 Bit Mode Simple RSA RMP RSA

Key Generation 1 324

Encryption 8 8

Decryption 8 2

Table 4. Comparison matrix of Simple RSA and RMPRSA

And the inference is RMPRSA takes more time for key generation, almost same time for Encryption process

and very less time for decryption process.

Figure 3. Graphical inferences drawn on performance with 128 bit

ii. COMPARISON AND GRAPHS – 256 BIT

Following table shows the comparisonFigure0—1 matrix of Simple RSA and RMP RSA for Key generation,

Encryption, Decryption process steps individually under 256 Bit mode.

Table 5. Comparison matrix of RSA and RMPRSA with 256 bit

And the inference is RMPRSA takes more time for key generation, slightly less time than basic RSA for

Encryption process and very less time for decryption process.

Figure 4. Graphical inferences drawn on performance with 256 bit

0

100

200

300

400

Key Generation Encryption Decryption

1 8 8

324

8 2

Simple RSA RMP RSA

0

100

200

300

400

500

600

700

Key Generation Encryption Decryption

1 15 14

685

13 2

Simple RSA RMP RSA

256 Bit Mode Simple RSA RMP RSA

Key Generation 1 685

Encryption 15 13

Decryption 14 2

Performance Analysis Of NodeLock Licensing Methodology With RMPRSA Cryptography

www.iosrjournals.org 43 | Page

iii. COMPARISON AND GRAPHS – 512 BIT

Following table shows the comparison matrix of Simple RSA and RMP RSA for Key generation, Encryption,

Decryption process steps individually under 512 Bit mode.

512 Bit Mode Simple RSA RMP RSA

Key Generation 1 1017

Encryption 29 17

Decryption 18 2

Table 6. Comparison matrix with 512 bit sequence

And the inference is RMPRSA takes more time for key generation, less time than basic RSA for Encryption

process and very less time for decryption process.

Figure 5. Graphical inferences drawn on performance with 512 bit

iv. COMPARISON AND GRAPHS – 1024 BIT

Following table shows the comparison matrix of Simple RSA and RMP RSA for Key generation, Encryption,

Decryption process steps individually under 1024 Bit mode.

1024 Bit Mode Simple RSA RMP RSA

Key Generation 3 935

Encryption 50 30

Decryption 31 2

Table 7. Comparison matrix with 1024 bit sequence

And the inference is RMPRSA takes more time for key generation, less time than basic RSA for Encryption

process and very less time for decryption process.

IV. Conclusions
 In this paper, we have presented NodeLocked Licensing Methodology for protecting sensitive data

during NodeLock Licensed software installation. Generally sensitive data will be stored on disks in the form of

hidden files. The RMPRSA algorithm that is defined for protecting the sensitive data during the NodeLock

Licensed software installation is based on considering hardware attributes of the client‘s machine. Thus

sensitive data is encrypted and is stored in the License Providers‘ site and hence no copy of it is available on the

disk in user‘s site.

Acknowledgements
My sincere thanks to Mr. J. Lokanatha Reddy, one of the contributors of the innovation, towards his

continued support for the entire work to see its light today.

References
[1]. B.Persis Urbana Ivy, PurshotamMandiwa, Mukesh Kumar, ― A modified RSA cryptosystem based on ‗n‘ prime numbers‖,

International Journal of Engineering And Computer Science ISSN:2319-7242 Volume 1 Issue 2 Nov 2012 page No. 63-66.

0

200

400

600

800

1000

1200

Key Generation Encryption Decryption

1 29 18

1017

17 2

Simple RSA RMP RSA

Performance Analysis Of NodeLock Licensing Methodology With RMPRSA Cryptography

www.iosrjournals.org 44 | Page

[2]. Deepak Garg, SeemaVerma, ― Improvement over Public Key Cryptographic Algorithm‖, IEEE International Advance Computing

Conference.

[3]. G.A.V.Rama Chandra Rao, P.V.Lakshmi, and N.Ravi Shankar, ―A Novel Modular Mutiplication Algorithm and its Application to
RSA Decryption‖, IJCSI International Journal of Computer Science ssues, Vol 9, Issue 6, No 3, November 2012, ISSN (Online):

1694-0814.

[4]. Hung-Min Sun, Mu-En Wu, M.JasonHinek, Cheng-Ta Yang, Vincent S. Tseng, ―Trading Decryption for Speeding Encryption in
Rebalanced-RSA‖, The Journal of Systems and Software, Elsevier Inc.,0164

[5]. Klaus Hansen, TroelsLarsen and Kim Olsen, ― On the efficiency of Fast Variants in Modern Mobile Phones‖, IJCSIS, vol 6, no 3,

2009, ISSN 1947-5500.
[6]. Lalit Singh, Dr. R.K.Bharti, ― Comparative Performance analysis of Cryptographic Algorithms‖ International Journal of

Advanced Research in Computer Science and Kaminski, Mark Perry, ―Open Source Software Licensing Patterns‖, Computer

SciSoftware Engineering, Volume 3, Issue 11, November 2013, ISSN: 2277 128X
[7]. MayankJhalani, Piyush Singh, GauravShrivastava, ― Enhancement over Variant of Public Key Cryptography (PKC) Algorithm,

International Journal of Engineering Technology and Advanced Engineering, ISSN 2250-2459, ISO 9001:2008 Certified Journal,

volume 2, Issue 12, December 2012.
[8]. SushmaPardhan, Birendra Kumar Sharma, “An Efficient RSA Cryptosystem with BM-Prime Method”, ― International Journal of

Information & Network Security(IJINS), Vol 2, No 1, February 2013, pp. 103-108, ISSN: 2089-3299.

[9]. Wang Tao, ― Evaluation and Construction of Individual credit evaluation system Based on third party e-commerce transaction

platform‖, 2010 International Conference on E-business and E-Governance, IEEE DOI 10.1109/ICEE.2010.79.

