
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. VI (Mar-Apr. 2014), PP 49-53

www.iosrjournals.org

www.iosrjournals.org 49 | Page

Performance Evaluation of High Speed TCP Variants in

Dumbbell Network

1
Subramanya P,

2
Vinayaka K S,

3
Gururaj H L,

4
Ramesh B

1, 2
Department of CS&E, Malnad College of Engineering, Hassan, India.

3
Assistant Professor Department of CS&E, Malnad College of Engineering, Hassan, India

4
Professor, Department of CS&E, Malnad College of Engineering, Hassan, India

Abstract: Dumbbell topology evolved as a key topology for a large variety of applications ranging from home

networking to transportation systems, campus network and medical systems. TCP is one of the core protocols of

the internet protocol suite, reliability is the main constraint for the traffic flows in TCP. Even though congestion

control mechanisms are implemented, packet losses are encountered which leads to performance degradation.

In this paper, the congestion control algorithms are implemented and corresponding results are analyzed in

Dumbbell topology, it is typically used to analyze the TCP traffic flows. Fairness of throughput is evaluated for

different TCP variants using network simulator.

 Index Terms: Acknowledgement, Congestion Window, Dumbbell Topology, Slow-start Threshold.

I. Introduction
Dumbbell network has become popular in recent years due to the high demand for continuous network

connectivity. Dumbbell network topology has emerged as a promising wired technology for a large variety of

applications, Applications of dumbbell topology range from home networking to transportation systems and

medical systems. In other words, dumbbell topology has evolved as a key network to evaluate the traffic flows

in TCP variants.

 TCP is a connection oriented end-to-end protocol. It has been widely adopted as a reliable transfer

protocol for most of the communication network. TCP performs a 3way handshake for the connection

establishment. TCPs‟ primary goal is to provide a connection oriented reliable data transfer service between

different applications to be able to provide these services on top of unreliable communication systems. TCP

needs to consider data transfer, reliability flow control, and multiplexing and congestion control.

A Network is said to be congested when the traffic offered to it exceeds the available bandwidth capacity. Van

Jacobson proposed a new principle called as “conservation of packets”, which means that anew packet is not

injected into the network until an old packet leaves the network [3].The network is not perfect anda small

percentage of packets are lost, either due to network error or due to the fact that there is congestion in the

network and the routers are dropping packets. We shall assume that packet losses due to network loss are

minimal and most of the packet losses are due to buffer overflows at the router [19]. Thus it becomes

increasingly important for TCP to react to a packet loss and take action to reduce congestion.TCP ensures

reliability by starting a timer whenever it sends a segment. If it does not receive an acknowledgement from the

receiver within the „time-out‟ interval then it retransmits the segment.

Van Jacobson [3] proposed three algorithms for congestion avoidance and control: Slow-Start,

Congestion Avoidance and Fast Retransmit. Slow-Start algorithm is designed to start the Self-Clocking

mechanism. This algorithm quickly fills the empty pipeline (network is viewed as a pipeline) at the beginning of

transmission or after a retransmission timeout to bring the connection towards its equilibrium (a connection is

said to be in equilibrium if it is running stably with a full window of data in transit). Congestion Avoidance

algorithm, also known as Additive Increase/Multiplicative Decrease (AIMD) algorithm, closely obeys the

“Conservation of Packets” principle once the connection is in equilibrium. Fast Retransmit algorithm considers

duplicate acknowledgements [5] as a sign of packet loss in the network and retransmits the lost packet without

waiting for a retransmission timer to expire.

 Initially by taking a brief look at each of the congestion avoidance algorithms and noting how they

differ from each other in the Dumbbell network. In the end we evaluate the performance of TCP variants in

dumbbell network. The performance is measured in terms of overall network throughput.

The remainder of the paper is organized as follows. In Section II we discuss the congestion control mechanisms

of each TCP variant. Section III presents different simulation environment designed for Dumbbell networks and

describes the performance metrics in detail. Section V discusses the simulation results. Section VI gives

conclusion and possible future directions.

Performance Evaluation of High Speed TCP Variants in Dumbbell Network

www.iosrjournals.org 50 | Page

II. Tcp Variants
A. TCP Reno

TCP Reno retains the basic principles of TCP such as slow start. However it adds some intelligence

over it so that lost packets are detected earlier and the network is not emptied every time a packet is lost.

Initially the congestion window is set to 1 [3]. The congestion window size increases exponentially, i.e. the

congestion window size is incremented for every acknowledgement received.

 Cwnd cwnd + 1 (1)

The congestion window size increases exponentially until it encounters the ssthresh. Once it encounters the

ssthresh, the congestion window is incremented as follows.

 Cwnd cwnd+ 1 (2)

 cwnd

The logic behind Reno is we get duplicate acknowledgements if the next expected packet in the

sequence is delayed in the network, the segments reached there in out of order or that the packet is lost. If at all

we receive a number of duplicate acknowledgements, it means that the sufficient time has passed even if it takes

the longest path in the network, then the probability of the packet being lost is very high. [5] Reno detects

congestion as soon as it receives 3 duplicate acknowledgements. Without waiting for the time

Out, thus it retransmits the lost packet without emptying the network. The modification of TCP Reno is that it

retransmits the lost packet without setting the congestion window size to 1, which empties the network. It enters

into an algorithm which we call “Fast-Retransmit”. The basic algorithm is presented as

 Every 3 duplicate acknowledgements are taken to be a segment is lost and we retransmit the lost

segment immediately and enters the fast recovery phase.

 Ssthresh is set to half of the current window size and cwnd is also set to the same.i.e.

 Cwnd= ssthresh cwnd (3)

 2

For each duplicate acknowledgement received increase the cwnd by one. If the increased cwnd is greater than

the amount of data in the pipe then transmit a new segment else wait. Thus we don‟t empty the pipe, we just

reduce the flow. We continue with congestion avoidance phase of Tahoe after that.

Drawback - Reno performs very well over TCP when the packet losses are small. [19] If we have multiple

packet losses in a segment, Reno doesn‟t perform too well and the performance is as same as Tahoe. The reason

is if we have multiple packet drops, the information about packet loss comes only after we receive 3 duplicate

acknowledgements. But the information of the second packet loss comes only after the we receive the

acknowledgement of the re-transmitted packet i.e. one round trip time.

B. TCP New-Reno

New-Reno is a modification of Reno. TCP

New-Reno detects multiple packet losses, hence it is much more efficient than Reno in the context of multiple

packet losses. New-Reno also enters the fast-retransmit phase like Reno. However it doesn‟t exit the fast-

recovery phase until all the unacknowledged data in the pipeline which was outstanding at the moment it entered

the fast recovery phase is acknowledged. [5] Henceforth it overcomes the drawback of TCP Reno of reducing

the cwnd multiple times.

 The increase and decrease parameters in the congestion window size are same as in Reno which is

depicted in (1) and (2).

 The fast-retransmit phase is as same as in Reno, the difference comes in the fast recovery phase where

it allows the multiple retransmissions of the data. [19] When New-Reno enters the fast-recovery phase it makes

a note of the data which is outstanding. Then the fast recovery phase proceeds as in Reno. However when a

fresh acknowledgement is received, then there are 2 possibilities.

 If it acknowledges all the data which were outstanding when it entered the fast-recovery phase then it

exits fast recovery and sets the cwnd to ssthresh which is set to half of the current cwnd. And enters the

congestion avoidance phase and continues as in Reno and Tahoe which is depicted in (3).

If the acknowledgement is partial acknowledgement, then it deduces that the consecutive data in the

pipe was lost and re-transmits the unacknowledged data and sets the number of duplicate acknowledgements to

zero. Then it exits the fast-recovery and enters the congestion avoidance phase.

Performance Evaluation of High Speed TCP Variants in Dumbbell Network

www.iosrjournals.org 51 | Page

Drawback–New-Reno suffers from the fact that it has to wait for one round trip time to detect every single

packet loss. [5] When the acknowledgement of the re-transmitted data is received, only then we can deduce

which other segments of data was lost.

C. High Speed TCP(HSTCP)

High speed TCP was proposed to improve the performance of TCP connections by increasing the size

of congestion window. [9] HSTCP overcomes the current congestion control algorithms which limit the network

resource utilization by making minor modifications. [2] However TCPs‟ main aim is to transmit the data in an

efficient manner with respect to time and packet drops. HSTCP retains the basic principles such as slow-start

and time out with slight changes in it. High speed TCP introduces a relation between the packet drop rate and an

average congestion window. Whenever an acknowledgement is received, the congestion window is increased as

shown below.

 cwnd ← cwnd + 𝑎(𝑐𝑤𝑛𝑑) (4)

 𝑐𝑤𝑛𝑑

Whenever the congestion is detected, the cwnd is updated as shown below

 cwnd ← cwnd – b(cwnd)*cwnd (5)

HSTCP performs as same as the standard TCP when the congestion window is small, the values for a and b are

1 and 0.5 correspondingly. [3] Once the congestion window size is beyond certain threshold the window size a

increases more aggressively than the standard TCP, while the value of b dips to 0.1 from 0.5. [8] This behavior

helps HSTCP to be compatible with standard TCP flows in networks and also to quickly utilize the available

bandwidth in network with large bandwidth delay products.

Drawback–HSTCP in fact suffers from the round trip time unfairness and TCP unfairness problems. RTT

unfairness is defined as the ratio of cwndin terms of RTT ratio of multiple TCP connections [10]. Moreover, the

performance of regular TCP flows is largely affected by the aggressiveness of HSTCP. This is known as TCP-

unfairness. [15]

D. Scalable TCP(STCP)

Scalable TCP is similar to the HSTCP‟s aggressive increase and decrease algorithm. Scalable TCP

modifies the standard congestion control algorithms. [16] Instead of halving the congestion window size, every

data loss decreases the congestion window by a small fraction until the data loss stops. [3] Once the data loss

stops, the rate is ramped at a slow fixed rate. However, the increase and decrease rates in STCP are constant

rather than HSTCP‟s varying current window size. Whenever an acknowledgement is received, the cwnd is

updated as.

 cwnd← cwnd+ 𝑎 (6)

When congestion is detected, cwnd is updated as.

 cwnd← cwnd– (b*cwnd) (7)

The values of a and b are fixed to 0.01 and 0.125, the time taken by STCP to double its sending rate at the

source is 70 round trip time‟s for any rate and henceforth the algorithm is scalable. However, TCP-unfairness

and RTT-unfairness problems are the major drawbacks like HSTCP[10].

III. Simulation Setup And Methodology
The results in this paper are based on the simulations done on ns-2, a discrete event simulator [18]. We

have chosen dumbbell topology for the study.

Performance Evaluation of High Speed TCP Variants in Dumbbell Network

www.iosrjournals.org 52 | Page

Figure 3.1 Dumbbell Topology

A. Topology
A Dumbbell topology is modeled with the network simulator-2 consisting of 8 hosts and 2 switches.

This topology is easily scaled to different sizes. Different resources have their unique communication addresses,

so here assumed that all switches has attached processor core as resources therefore treated similarly except that

a traffic generator can be attached to resources. Switch, resource and link are three basic elements in the

topology. Assume that the each resources has infinite buffer size but finite in switches. It means that the packet

being dropped or lost cannot occur in resources but only take place in switches.

B. Communication Links
An inter-communication path between the switches is composed of links. Each node is connected with

point-to-point bidirectional links. The bandwidth and latency of the link is configurable. When any link down

between two nodes it implies that the packet cannot be travel between these nodes in any direction. Because

bidirectional links are actually implemented using a single wire.

C. Communication traffic
The traffic flow in the dumbbell network is simulated and analyzed using different TCP variants such

as: TCP Reno, TCP New Reno, HSTCP and STCP. The results and analysis are depicted in the next section.

IV. Results and Analysis
The traffic flow is determined using NS2 simulator. Table I shows the throughput (in Kbps) obtained

for each high-speed TCP variant in dumbbell network. Throughput decreases as we increase the number of hops

for all high-speed TCP variants as shown in the table. Our studies show that all high-speed TCP variants

consistently perform better with dumbbell network.

In this scenario simulation model uses the packet generation of traffic using file transfer protocol (FTP)

mechanism. FTP represents a bulk data transfer of large size where the packet size and interval of packet

generation are fixed. The following Tcl code shows the traffic configuration setting for FTP packet generation

set ftp0 [new Application/FTP]

$ftp0 set packet Size_ 1000

$ftp0 set interval_0.0625

In our simulation the packet size is set to 1000 in all the cases. The table 4.1 depicts the results.

Table 4.1 Comparative Analysis

TCP variants Packets sent
(%)

Packets Lost
(%)

If Multiple
packets Lost

Reno 53.69% 46.31% Worst

New-Reno 68.06% 31.94% Better

HSTCP 56.91% 43.09% Average

STCP 54.55% 45.45% Average

1

2

4

3

5

6

7

8

S1 S2

Performance Evaluation of High Speed TCP Variants in Dumbbell Network

www.iosrjournals.org 53 | Page

Figure 4.1 Congestion Graph

Later we simulated the High speed TCP variants: HSTCP and STCP. in HSTCP the throughput is low compared

to New-Reno, but the sending rate is high. At last we evaluated for STCP for dumbbell topology where the

increase and decrease parameters are constant which leads to a low throughput of data.

With these simulation results, the traffic flow of TCP using New-Reno in the dumbbell network out performs

compared to other TCP variants.

V. Conclusions
We evaluated the performance of high-speed TCP variants in terms of throughput using dumbbell

network. It is observed that the performance of TCP largely depends on the congestion in the network. From our

simulation results, TCP New-Reno performs better for congestion control. In this study we have not considered

other performance parameters such as Convergence speed, RTT fairness and TCP fairness. In future, we intend

to study the performance of high-speed TCP variants with above mentioned parameters to improve the

performance of TCP in Dumbbell network.

References
[1] Mohith P. Tahilaini “Comparative study of High Speed TCP variants in Multihop Wireless Networks,” IJCTE, Vol. 5, No. 5,Oct

2013

[2] I. F. Akylidiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,” Computer Networks, Elsevier, pp. 445-487, January

2005.
[3] T. Kelly, “Scalable TCP: Improving Performance in High Speed Wide Area Networks,” ACM SIGCOMM Computer

Communication Review, vol. 33, pp. 83-91, 2003.

[4] V. Jacobson, “Congestion avoidance and control,” Proceedings of SIGCOMM ‟88, ACM, Stanford, CA, Aug. 1988.
[5] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno, and SACK TCP,” ACM Computer Communication Review,

vol. 26, no. 3, pp. 5-21, 1996.

[6] S. Floyd and T. Henderson, “The newreno modification to TCP‟s fast recovery algorithm,” Request for Comments 2582,
Experimental, April1999.

[7] L. Brakmo and L. Peterson, “TCP Vegas: end-to-end congestionavoidance on a global internet,” IEEE Journal on Selected Areas in

Communication, vol. 13, pp. 1465-1480, Oct. 1995.
[8] K. T. J. Song, Q. Zhang, and M. Sridharan, “A compound TCP approach for high-speed and long distance networks,” in

Proceedings of PFLDNet, 2006.

[9] S. Floyd, “Highspeed TCP for Large Congestion Windows,” Request for Comments 3649, Experimental, 2003.
[10] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control for fast long-distance networks,” in Proceedings of IEEE

INFOCOM,Hong Kong, 2004.
[11] I. Rhee and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP variant,” Proceedings of the third PFLDNet Workshop, France,

2005.

[12] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: motivation, architecture, algorithms, performance,” in Proceedings of IEEE
INFOCOM, Hong Kong, 2004.

[13] TCP Evolution and Comparison, Which TCP will Scale to Meet the Demands of Today‟s Internet? Whitepaper, FastSoft, Pasadena,

2008.
[14] G. Holland and N. Vaidya, “Analysis of TCP Performance over Mobile Ad Hoc Networks,” ACM/IEEE MOBICOM ‟99, Seattle,

Washington,Aug. 1999.

[15] E. D. Souza and D. Agarwal, “A HighSpeed TCP Study: Characteristics and Deployment Issues,” LBNL Technical Report,
Berkeley, 2003.

[16] M. Gerla, K. Tang, and R. Bagrodia, “TCP Performance in Wireless Multi-hop Networks,” in Proceedings of IEEE WMCSA ‟99,

NewOrleans, LA, Feb. 1999.

