
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. V (Mar-Apr. 2014), PP 34-40

www.iosrjournals.org

www.iosrjournals.org 34 | Page

Utility Mining Algorithm for High Utility Item sets from

Transactional Databases

Arati W. Borkar
 1

1
Department of CSE, Pune University, India

Abstract: The discovery of item sets with high utility like profits is referred by mining high utility item sets from

a transactional database. Although in recent years a number of relevant algorithms have been proposed, for

high utility item sets the problem of producing a large number of candidate item sets is incurred. The mining

performance is degraded by such a large number of candidate item sets in terms of execution time and space

requirement. When the database contains lots of long transactions or long high utility item sets the situation

may become worse. Internet purchasing and transactions is increased in recent years, mining of high utility item

sets especially from the big transactional databases is required task to process many day to day operations in

quick time. There are many methods presented for mining the high utility item sets from large transactional

datasets are subjected to some serious limitations such as performance of this methods needs to be investigated

in low memory based systems for mining high utility itemsets from large transactional datasets and hence needs

to address further as well. Another limitation is these proposed methods cannot overcome the screenings as

well as overhead of null transactions; hence, performance degrades drastically. During this paper, we are

presenting the new approach to overcome these limitations. We presented distributed programming model for

mining business-oriented transactional datasets by using an improved Map Reduce framework on Hadoop,

which overcomes not only the single processor and main memory-based computing, but also highly scalable in

terms of increasing database size. We have used this approach with existing UP-Growth and UP-Growth+ with

aim of improving their performances further. In experimental studies we will compare the performances of

existing algorithms UP-Growth and UP-Growth+ against the improve UP-Growth and UP-Growth+ with

Hadoop.

Keywords: Dataset Mining, Hadoop, Itemsets, MapReduce Framework, Transactional Dataset, UP-Growth,

UP-Growth+.

I. Introduction
Data Mining refers to extracting or mining knowledge from large amounts of data. In large databases

finding of frequent patterns task is very important use full in many applications over the past few years. The

primary goal is to discover hidden patterns, unexpected trends in the data. Data mining is concerned with

analysis of large volumes of data to automatically discover interesting regularities or relationships which in turn

leads to better understanding of the underlying processes. Data mining activities uses combination of techniques

from database artificial intelligence, statistics, technologies machine learning . Utility Mining is one of the most

challenging data mining tasks is the mining of high utility itemsets efficiently. Identification of the itemsets with

high utilities is called as Utility Mining.

Association rules mining (ARM) [1] is one of the most widely used techniques in data

mining and knowledge discovery and has tremendous applications like business, science and other domains.

Make the decisions about marketing activities such as, e.g., promotional pricing or product placements. A high

utility itemset is defined as: A group of items in a transaction database is called itemset. This itemset in a

transaction database consists of two aspects: First one is itemset in a single transaction is called internal utility

and second one is itemset in different transaction database is called external utility. The transaction utility of an

itemset is defined as the multiplication of external utility by the internal utility. By transaction utility,

transaction weight utilizations (TWU) can be found. To call an itemset as high utility itemset only if its utility is

not less than a user specified minimum support threshold utility value; otherwise itemset is treated as low utility

itemset.

To generate these high utility itemsets mining recently in 2010, UP - Growth (Utility Pattern Growth)

algorithm [2] was proposed by Vincent S. Tseng et al. for discovering high utility itemsets and a tree based data

structure called UP - Tree (Utility Pattern tree) which efficiently maintains the information of transaction

database related to the utility patterns. Four strategies (DGU, DGN, DLU, and DLN) used for efficient

construction of UP - Tree and the processing in UP - Growth [11]. By applying these strategies, can not only

efficiently decrease the estimated utilities of the potential high utility itemsets (PHUI) but also effectively

reduce the number of candidates.

 But this algorithm takes more execution time for phase II (identify local utility itemsets) and I/O cost.

A

Utility Mining Algorithm for High Utility Item sets from Transactional Databases

www.iosrjournals.org 35 | Page

Efficient discovery of frequent itemsets in large datasets is a crucial task of data mining. In recent

years, several approaches have been proposed for generating high utility patterns; they arise the problems of

producing a large number of candidate itemsets for high utility itemsets and probably degrade mining

performance in terms of speed and space. Mining high utility itemsets from a transactional database refers to the

discovery of itemsets with high utility like profits. Although a number of relevant approaches have been

proposed in recent years, they incur the problem of producing a large number of candidate itemsets for high

utility itemsets. Such a large number of candidate itemsets degrades the mining performance in terms of

execution time and space requirement. The situation may become worse when the database contains lots of long

transactions or long high utility itemsets.

Existing studies applied overestimated methods to facilitate the performance of utility mining. In these

methods, potential high utility itemsets (PHUIs) are found first, and then an additional database scan is

performed for identifying their utilities. However, existing methods often generate a huge set of PHUIs and their

mining performance is degraded consequently. This situation may become worse when databases contain many

long transactions or low thresholds are set. The huge number of PHUIs forms a challenging problem to the

mining performance since the more PHUIs the algorithm generates, the higher processing time it consumes.

To provide the efficient solution to mine the large transactional datasets, recently improved methods

presented in [1]. In [1], authors presented propose two novel algorithms as well as a compact data structure for

efficiently discovering high utility itemsets from transactional databases. Experimental results show that UP-

Growth and UP-Growth+ outperform other algorithms substantially in terms of execution time. But these

algorithms further needs to be extend so that system with less memory will also able to handle large datasets

efficiently. The algorithms presented in [1] are practically implemented with memory 3.5 GB, but if memory

size is 2 GB or below, the performance will again degrade in case of time. In this project we are presenting new

approach which is extending these algorithms to overcome the limitations using the MapReduce framework on

Hadoop.

II. LITERATURE SURVEY
In this section we are presented the review of different methods presented for mining high utility

itemsets from the transactional datasets.

• R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” [3] as they discussed a

well-known algorithms for mining association rules is Apriori, which is the pioneer for efficiently mining

association rules from large databases.

 Cai et al. and Tao et al. first proposed the concept of weighted items and weighted association rules [5].

However, since the framework of weighted association rules does not have downward closure property, mining

performance cannot be improved. To address this problem, Tao et al. proposed the concept of weighted

downward closure property [12]. By using transaction weight, weighted support can not only reflect the

importance of an itemset but also maintain the downward closure property during the mining process.

• Liu et al. proposed an algorithm named Two- Phase [8] which is mainly composed of two mining

phases. In phase I, it employs an Apriori-based level-wise method to enumerate HTWUIs. Candidate itemsets

with length k are generated from length k-1 HTWUIs, and their TWUs are computed by scanning the database

once in each pass. After the above steps, the complete set of HTWUIs is collected in phase I. In phase II,

HTWUIs that are high utility itemsets are identified with an additional database scan. Ahmed et al. [13]

proposed a tree-based algorithm, named IHUP. A tree based structure called IHUP-Tree is used to maintain the

information about itemsets and their utilities.

Each node of an IHUP-Tree consists of an item name, a TWU value and a support count. IHUP algorithm has

three steps: 1) construction of IHUP-Tree, 2) generation of HTWUIs, and 3) identification of high utility item

sets.

In step 1, items in transactions are rearranged in a fixed order such as lexicographic order, support descending

order or TWU descending order. Then the rearranged transactions are inserted into an IHUP-Tree.

• In the framework of frequent itemset mining, the importance of items to users is not considered. Thus,

the topic called weighted association rule mining was brought to attention [4], [26], [28], [31], [37], [38], [39].

• Cai et al. first proposed the concept of weighted items and weighted association rules [4].

• However, since the framework of weighted association rules does not have downward closure property,

mining performance cannot be improved. To address this problem, Tao et al. proposed the concept of weighted

downward closure property [28].

• There are also many studies [6], [26], [37] that have developed different weighting functions for

weighted pattern mining.Survey on The MapReduce Framework for Handling Big Datasets [21]

Google's MapReduce [25] was first proposed in 2004 for massive parallel data analysis in shared-nothing

clusters. Literature [26] evaluates the performance in Hadoop/HBase for Electroencephalogram (EEG) data and

Utility Mining Algorithm for High Utility Item sets from Transactional Databases

www.iosrjournals.org 36 | Page

saw promising performance regarding latency and throughput. Karim et al. [27] proposed a Hadoop/MapReduce

framework for mining maximal contiguous frequent patterns (which was first introduced at literature in

RDBMS/single processor-main memory based computing) from the large DNA sequence dataset and showed

outstanding performance in terms of throughput and scalability [21].

 Literature [28] proposes a MapReduce framework for mining-correlated, associated-correlated and

independent patterns synchronously by using the improved parallel FP-growth on Hadoop from transactional

databases for the first times ever. Although it shows better performance, however, it also did not consider the

overhead of null transactions. Woo et al. [29], [30], proposed market basket analysis algorithm that runs on

Hadoop based traditional Map Reduce framework with transactional dataset stored on HDFS. This work

presents a Hadoop and HBase schema to process transaction data for market basket analysis technique. First it

sorts and converts the transaction dataset to <key, value> pairs, and stores the data back to the HBase or HDFS.

However, sorting and grouping of items then storing back it to the original nodes does not take trivial time.

Hence, it is not capable to find the result in a faster way; besides this work also not so useful to analyze the

complete customer's preference of purchase behavior or rules [21].

III. PROPOSED APPROACH FRAMEWORK AND DESIGN
In the literature we have studied the different methods proposed for high utility mining from large datasets. But

all this methods frequently generate a huge set of PHUIs and their mining performance is degraded

consequently. Further in case of long transactions in dataset or low thresholds are set, then this condition may

become worst. The huge number of PHUIs forms a challenging problem to the mining performance since the

more PHUIs the algorithm generates, the higher processing time it consumes. Thus to overcome this challenges

the efficient algorithms presented recently in [1]. These methods in [1] outperform the state-of-the-art

algorithms almost in all cases on both real and synthetic data set. However this approach in [1] is still needs to

be improved in case of less memory based systems.

major contributions of this work are summarized as follows:

1. A novel algorithm, called UP-Growth (Utility Pattern Growth), is proposed for discovering high utility

itemsets. Correspondingly, a compact tree structure, called UP-Tree (Utility Pattern Tree), is proposed to

maintain the important information of the transaction database related to the utility patterns. High utility

itemsets are then generated from the UP-Tree efficiently with only two scans of the database.

2. Four strategies are proposed for efficient construction of UP-Tree and the processing in UP-Growth. By

these strategies, the estimated utilities of candidates can be well reduced by discarding the utilities of the items

which are impossible to be high utility or not involved in the search space. The proposed strategies can not only

efficiently decrease the estimated utilities of the potential high utility itemsets but also effectively reduce the

number of candidates.

3. Both of synthetic and real datasets are used in experimental evaluations to compare the performance of UP-

Growth with the state-of-the-art utility mining algorithms. The experimental results show that UP-Growth

outperforms other algorithms substantially in terms of execution time, especially when the database contains lots

of long transactions.

3.1 Proposed Work

When data sets go beyond a single storage capacity, it is necessary to distribute them to multiple independent

computers. Trans-computer network storage file management system is called distributed file system. A typical

Hadoop distributed file system contains thousands of servers, each server stores partial data of file system.

Figure 1: System architecture

Utility Mining Algorithm for High Utility Item sets from Transactional Databases

www.iosrjournals.org 37 | Page

3.2Aims and Objectives

In this project we have main aim is to present improved methods UP-Growth and UP-Growth+ with aim of

improving its performance in terms of scalability and time:

- To present literature review different methods of frequent set mining over transactional datasets.

- To present the present new framework and methods.

- To present the practical simulation of proposed algorithms and evaluate its performances.

- To present the comparative analysis of existing and proposed algorithms in order to claim the

efficiency.

3.3 Map Reduce Overview.
In distributed data storage, when parallel processing the data, we need to consider much, such as

synchronization, concurrency, load balancing and other details of the underlying system. It makes the simple

calculation become very complex. MapReduce programming model was proposed in 2004 by the Google, which

is used in processing and generating large data sets implementation. This framework solves many problems,

such as data distribution, job scheduling, fault tolerance, machine to machine communication, etc. MapReduce

is applied in Google's Web search. Programmers need to write many programs for the specific purpose to deal

with the massive data distributed and stored in the server cluster, such as crawled documents, web request logs,

etc., in order to get the results of different data, such as inverted indices, web document, different views, worms

collected the number of pages for each host a summary of a given date within the collection of the most

common queries and so on.

We use Two algorithms, named utility pattern growth (UPGrowth) and UP-Growth+, and a compact

tree structure, called utility pattern tree (UP-Tree), for high utility itemsets discovery and to maintain important

information related to utility patterns within databases.scheduling, fault tolerance, machine to machine

communication, etc. MapReduce is applied in Google's Web search. Programmers need to write many programs

for the specific purpose to deal with the massive data distributed and stored in the server cluster, such as crawled

documents, web request logs, etc., in order to get the results of different data, such as inverted indices, web

document, different views, worms collected the number of pages for each host a summary of a given date within

the collection of the most common queries and so on.

We use Two algorithms, named utility pattern growth (UPGrowth) and UP-Growth+, and a compact tree

structure, called utility pattern tree (UP-Tree), for high utility itemsets discovery and to maintain important

information related to utility patterns within databases.

UP-Growth algorithm

Input: UP-Tree , Header Table , minimum utility threshold , Item set = { 1, 2, . . , }.

Process:

1. For each entry in do

2. Trace links of each item. And calculate sum of node utility .

3. If ≥ t

4. Generate Potential High Utility Itemset (PHUI)

= ∪

5. Put Potential Utility of as approximated utility of

6. Construct Conditional Pattern Based .

7. Put local promising items into .

8. Apply Discarding Local Unpromising (DLU) to minimize path utilities of paths.

9. Apply DLU with _ _ ℎ to insert path into .

10. If ≠ ∅ then call to UP-Growth.

11. End if

12. End for.

Output: All PHUI’s in

UP-Growth+ algorithm

UP-Growth+ algorithm

In UP-Growth, minimum item utility table is used to reduce theoverestimated utilities. In UP-

Growth+algorithm we replaceDiscarding Local Unpromising (DLU) with Discarding NodeUtility (DNU), DLN

is replace with Decreasing local Node utilities for the nodes of local UP-Tree (DNN) and

𝐼𝑛𝑠𝑒𝑟𝑡_𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑_𝑃𝑎𝑡ℎ is replace by𝐼𝑛𝑠𝑒𝑟𝑡_𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑_𝑃𝑎𝑡ℎ𝑚𝑖𝑢 In the data mining process, when a

path is retrieved, minimal node utility of each node in the path is also retrieved. Thus, we can simply replace

minimum item utility with minimal node utility as follows,

Utility Mining Algorithm for High Utility Item sets from Transactional Databases

www.iosrjournals.org 38 | Page

Assume, 𝑝 is the path in item 𝑖𝑚 − 𝐶𝑃𝐵 and 𝑈𝐼 𝑖𝑚 − 𝐶𝑃𝐵 is

the set of unpromising items in 𝑖𝑚 − 𝐶𝑃𝐵. The path utility of 𝑝 in 𝑖𝑚 − 𝐶𝑃𝐵, i.e.,(𝑝, 𝑖𝑚 − 𝐶𝑃𝐵), 𝑖𝑚 − 𝐶𝑃𝐵, is

recalculated as:

𝑝𝑢 𝑝, 𝑖𝑚 − 𝐶𝑃𝐵

= 𝑝. 𝑖𝑚 . 𝑛𝑢

− 𝑚𝑖𝑢 𝑖 × 𝑝. 𝑐𝑜𝑢𝑛𝑡
∀𝑖 ∈𝑈𝐼{𝑖𝑚 }−𝐶𝑃𝐵∧𝑖⊆𝑝

Where 𝑝. 𝑐𝑜𝑢𝑛𝑡 is the support count of 𝑝 in 𝑖𝑚 − 𝐶𝑃𝐵.

Assume, a reorganized path 𝑝 = < 𝑁′𝑖1 , 𝑁′𝑖2 , … , 𝑁′𝑖𝑚 > in

𝑖𝑚 − 𝐶𝑃𝐵 inserted into < 𝑁′𝑖1 , 𝑁′𝑖2 , … , 𝑁′𝑖𝑚 > path in

𝑖𝑚 − 𝑡𝑟𝑒𝑒. Thus node utility of item node is recalculated as:

𝑁𝑖𝑘 . 𝑛𝑢𝑛𝑒𝑤 = 𝑁𝑖𝑘 . 𝑛𝑢𝑜𝑙𝑑 + 𝑝𝑢 𝑝, 𝑖𝑚 − 𝐶𝑃𝐵

− 𝑚𝑖𝑢 𝑖𝑗 × 𝑝. 𝑐𝑜𝑢𝑛𝑡
𝑚′

𝑗=𝑘+1

Where 𝑁 . 𝑛𝑢𝑜𝑙𝑑 is the node utility of 𝑁𝑖𝑘 in 𝑖𝑚 − 𝑡𝑟𝑒𝑒before

adding 𝑝.

IV. Experimental Evaluation
In this section the Performance of the proposed algorithms evaluated[10]. The experiments were done on

a 2.80 GHz Intel Pentium D Processor with 3.5 GB memory. The operating system is Microsoft Windows 7.

The algorithms are implemented in Java language. In the experiments Both real (Table. 5) and synthetic datasets

(Table. 6) are used.

Table 1 Parameter Settings of Synthetic Datasets

Table 2 : Characteristics of Real Datasets

a) Evaluation on Real datasets In this part, on three real datasets we show the performance comparison

is done: Chess and Chain-store. First, Chess and Chain-store we show the result in Fig. 2. In Fig. 2 (a), we the

runtime of IHUPT&FPG is the worst, followed by UPT&FPG, UPT&UPG and UPT&UPG+ is the best. In Fig.

3 experimental results on real sparse datasets are shown. In Fig. 3 (a) and (b) performance on Chain-store

dataset is shown. In Fig. 3 (a), the runtime of IHUPT&FPG is the worst, followed by UPT&FPG, UPT&UPG

and UPT&UPG+ is the best. As more candidates are generated the performance of IHUPT&FPG is the worst.

Among the three methods the execution timeof UPT&FPG is the worst since UP Growth+ and UP-Grow the

efficiently prune the search space of local UP-Trees. We can observe that by comparing the performance of

previous method to the performanceOf proposed methods substantially out performs.

In Fig. 4 Experimental results of phase II are shown. Runtime for phase II is very long for large

databases such as Chain-store so we only show the result of chess. We can observe in Fig. 4, that the runtime for

phase II is not only proportional to number of candidates in phase II but also increases fiercely. Therefore in

phase II the performance is highly dependent on the runtime, since the overhead of scanning databases is huge.

Utility Mining Algorithm for High Utility Item sets from Transactional Databases

www.iosrjournals.org 39 | Page

Figure 2: Performance Comparison on Dense Dataset

In this part, we show the performance comparison on three real data sets: dense data set Chess and sparse data sets

Chain-store and Foodmart. First, we show the results on real dense data set Chess in Fig. 7.1. In Fig. 7.1a, we can observe that the

performance of proposed methods substantially outperforms that of previous methods. The runtime of IHUPT&FPG is the worst,

followed by UPT&FPG, UPT& UPG, and UPT&UPG+ is the best. The main reason is the performance of IHUPT&FPG and

UPT&FPG is decided by the number of generated candidates. In Fig. 7.1, runtime of the methods is just proportional to their

number of candidates, that is, the more candidates the method produces, the greater its execution time.

Figure 3 : Performance Comparison on Sparse Datasets

Experimental results on real sparse data sets are shown in Fig. 7.2. The performance on Chain-store data set is shown in

Figs. 10a and 10b. In Fig. 7.2a, the runtime of IHUPT&FPG is the worst, followed by UPT&FPG, UPT& UPG, and

UPT&UPG+ is the best. The performance of IHUPT&FPG is the worst since it generates the most candidates. Besides, although

the number of candidates of UPT&FPG, UPT&UPG, and UPT&UPG+ are almost the same, the execution time of UPT&FPG

is the worst among the three methods since UP-Growth+ and UP-Growth efficiently prune the search space of local UP-Trees.

4.1Expected Results

Practical work done is as shown in figure given below. Following figure shows the graphical

representation of time verses algorithms. Performance is computed according to the time required for set of

transactions.

Figure 2: Performance comparison.

 Experimental results show that UP-Growth and UP-Growth+ outperform other algorithms

Utility Mining Algorithm for High Utility Item sets from Transactional Databases

www.iosrjournals.org 40 | Page

substantially in terms of execution time. But these algorithms further needs to be extend so that system with less

memory will also able to handle large datasets efficiently. The algorithms presented in [1] are practically

implemented with memory 3.5 GB, but if memory size is 2 GB or below, the performance will again degrade in

case of time. In this project we are presenting new approach which is extending these algorithms to overcome

the limitations using the MapReduce framework on Hadoop.

V. Conclusion And Future Work
In this paper, we have proposed two efficient algorithms named UP-Growth and UP-Growth+ for

mining high utility itemsets from transaction databases. For maintaining the information of high utility itemsets

a data structure named UP-Tree was proposed. With only two database scans, from UP-Tree Potential high

utility itemsets can be efficiently generated. To perform a thorough performance evaluation both real and

synthetic datasets were used in the experiments. Results show that the strategies considerably improved

performance by reducing both the search space and the number of candidates. we have proposed two efficient

algorithms named UP-Growth and UP-Growth+ for mining high utility itemsets from transaction databases. For

maintaining the information of high utility itemsets a data structure named UP-Tree was proposed. With only

two database scans, from UP-Tree Potential high utility itemsets can be efficiently generated. To perform a

thorough performance evaluation both real and synthetic datasets were used in the experiments. Results show

that the strategies considerably improved performance by reducing both the search space and the number of

candidate.

Acknowledgement
We the author gives special thanks to Dr. S. T. Singh sir to contributed this paper and Fellow for their

valuable comments and sharing their knowledge.

REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the 20th Int'l Conf. on Very Large Data Bases,

pp. 487-499, 1994.

[2] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee. Efficient tree structures for high utility pattern mining in incremental

databases. In IEEE Transactions on Knowledge and Data Engineering, Vol. 21, Issue 12, pp. 1708-1721, 2009.
[3] R. Chan, Q. Yang, and Y. Shen. Mining high utility itemsets. In Proc. of Third IEEE Int'l Conf. on Data Mining, pp. 19-26, Nov.,

2003.

[4] A. Erwin, R. P. Gopalan, and N. R. Achuthan. Efficient mining of high utility itemsets from large datasets. In Proc. of PAKDD

2008, LNAI 5012, pp. 554-561.

[5] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In Proc. of the ACM-SIGMOD Int'l Conf. on

Management of Data, pp. 1-12, 2000.
[6] Y.-C. Li, J.-S. Yeh, and C.-C. Chang. Isolated items discarding strategy for discovering high utility itemsets. In Data & Knowledge

Engineering, Vol. 64, Issue 1, pp. 198-217, Jan., 2008.

[7] Y. Liu, W. Liao, and A. Choudhary. A fast high utility itemsets mining algorithm. In Proc. of the Utility-Based Data Mining
Workshop, 2005.

[8] B.-E. Shie, V. S. Tseng, and P. S. Yu. Online mining of temporal maximal utility itemsets from data streams. In Proc.of the 25th

Annual ACM Symposium on Applied Computing, Switzerland, Mar., 2010.
[9] H. Yao, H. J. Hamilton, L. Geng, A unified framework for utility-based measures for mining itemsets. In Proc. of ACM SIGKDD

2nd Workshop on Utility-Based Data Mining, pp. 28-37, USA, Aug., 2006.

[10] Sadak Murali & Kolla Morarjee” A Novel Mining Algorithm for High Utility Itemsets from Transactional Databases” Volume 13
Issue 11 Version 1.0 Year 2013 Online ISSN: 0975-4172 & Print ISSN: 0975-4350.

[11] Y. Liu, W. Liao, and A. Choudhary, “A Fast High Utility Itemsets Mining Algorithm,” Proc. Utility-Based Data Mining Workshop,

2005.
[12] F. Tao, F. Murtagh, and M. Farid, “Weighted Association Rule Mining Using Weighted Support and Significance Framework,”

Proc. ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD ’03), pp. 661-666, 2003.

[13] J. Han and Y. Fu, “Discovery of Multiple-Level Association Rules from Large Databases,” Proc. 21th Int’l Conf. Very Large Data
Bases, pp. 420-431, Sept. 1995.

