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Abstract: Internet worms pose a serious threat to computer security.Traditional approaches using signatures 

to detect worms pose little danger to the zero day attacks. The focus of malware research is shifting from using 

signature patterns to identifying the malicious behavior displayed by the malwaresThis paper presents a novel 

idea of extracting variable length instruction sequences that can identify worms from clean programs using data 

mining techniques.The analysis is facilitated by the program control flow information contained in the 

instruction sequences. Based upon general statistics gathered from these instruction sequences we formulated 

the problem as a binary classification problem and built tree based classifiers including C5.0, boosting and 

random forest. Our approach showed 99.5% detection rate on novel worms whose data was not used in the 

model building process. 
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I. Introduction 
Computer virus detection has evolved into malware detection since Cohen first formalized the term 

computer virus in 1983 [13]. Malicious programs, commonly termed as malwares, can be classified into virus, 

worms, trojans, spywares, adwares and a variety of other classes and subclasses that sometimes overlap and blur 

the boundaries among these groups [24]. The most common detection method is the signature based detection 

that makes the core of every commercial anti-virus program. To avoid detection by the traditional signature 

based algorithms, a number of stealth techniques have been developed by the malware writers. The inability of 

traditional signature based detection approaches to catch these new breed of malwares has shifted the focus of 

malware research to find more generalized and scalable features that can identify malicious behavior as a 

process instead of a single static signature. The analysis can roughly be divided into static and dynamicanalysis. 

In the static analysis the code of the program is examined without actually running the program while in 

dynamic analysis the program is executed in a real or virtual environment. The static analysis, while free from 

the execution overhead, has its limitation when there is a dynamic decision point in the programs control flow. 

Dynamic analysis monitors the execution of program to identify behavior that might be deemed malicious. 

These two approaches are combined also [23] where dynamic analysis is applied only at the decision-making 

points in the program control flow. In this paper we present a static analysis method using data mining 

techniques to automatically extract behavior from worms and clean programs. We introduce the idea of using 

sequence of instructions extracted from the disassembly of worms and clean programs as the primary 

classification feature. Unlike fixed length instructions or n-grams, the variable length instructions inherently 

capture the programs control flow information as each sequence reflects a control flow block. The difference 

among our approach and other static analysis approaches mentioned in the related research section are as 

follows. First, the proposed approach applied data mining as a complete process from data preparation to model 

building. Although data preparation is a very important step in a data mining process, almost all existing static 

analysis techniques mentioned in the related research section did not discuss this step in detail except [25]. 

Second, all features were sequences of instructions extracted by the disassembly instead of using fixed length of 

bytes such as n-gram. The advantages are:  

 The instruction sequences include program control flow information, not present in n-grams. 

 The instruction sequences capture information from the program at a semantic level rather than syntactic 

level. 

 These instruction sequences can be traced back to their original location in the program for further analysis 
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of their associated operations. 

 These features can be grouped together to form additional derived features to increase classification 

accuracy. 

 A significant number of sequences that appeared in only clean program or worms can be eliminated to 

speed up the modeling process. 

 The classifier obtained can achieve 95% detection rate for new and unseen worms. 

 It is worth noting that a dataset prepared for a neural network classifier might not be suitable for other data 

mining techniques such as decision tree or random forest. 

  

II. Related Research 
[18] Divided worm detection into three main categories; Traffic monitoring, honey pots and signature 

detection. Traffic analysis includes monitoring network traffic for anomalies like sudden increase in traffic 

volume or change in traffic pattern for some hosts etc. Honeypots are dedicated systems installed in the network 

to collect data that is passively analyzed for potential malicious activities. Signature detection is the most 

common method of worm detection where network traffic logs, system logs or files are searched for worm 

signatures. 

Data mining has been the focus of many malware researchers in the recent years to detect unknown 

malwares.  

A number of classifiers have been built and shown to have very high accuracy rates. Data mining 

provides the means for analysis and detection of malwares for the categories defined above. Most of these 

classifiers use n-gram or API calls as their primary feature. An n-gram is a sequence of bytes of a given length 

extracted from the hexadecimal dump of the file. Besides file dumps, network traffic data and honey pot data is 

mined for malicious activities. [17] introduced the idea of using tell-tale signs to use general program patterns 

instead of specific signatures. The tell-tale signs reflect specific program behaviors and actions that identify a 

malicious activity. Though a telltale sign like a sequence of specific function calls seems a promising identifier, 

yet they did not provide any experimental results for unknown malicious programs. The idea of tell-tale signs 

was furthered by [10] and they included program control and data flow graphs in the analysis. Based upon the 

tell-tale signs idea, they defined a security policy using a security automata. The flow graphs are subjected to 

these security automata to verify against any malicious activity. The method is applied to only one malicious 

program. No other experimental results were reported to describe algorithm efficiency, especially on unseen 

data. In another data mining approach, [20] used three different types of features and a variety of classifiers to 

detect malicious programs. Their primary dataset contained 3265 malicious and 1001 clean programs. They 

applied RIPPER (a rule based system) to the DLL dataset. Strings data was used to fit a Naive Bayes classifier 

while n-grams were used to train a Multi-Naive Bayes classifier with a voting strategy. No n-gram reduction 

algorithm was reported to be used. Instead data set partitioning was used and 6 Naive-Bayes classifiers were 

trained on each partition of the data. They used different features to built different classifiers that do not pose a 

fair comparison among the classifiers. Naive-Bayes using strings gave the best accuracy in their model. A 

similar approach was used by [15], where they built different classifiers including Instance-based Learner, 

TFIDF, Naive-Bayes, Support vector machines, Decision tree, boosted Naive-Bayes, SVMs and boosted 

decision tree. Their primary dataset consisted of 1971 clean and 1651 malicious programs. Information gain was 

used to choose top 500 n-grams as features. Best efficiency was reported using the boosted decision tree J48 

algorithm. [9] used n-grams to build class profiles using KNN algorithm. Their dataset was small with 25 

malicious and 40 benign programs. As the dataset is relatively small, no ngram reduction was reported. They 

reported 98% accuracy rate on a three-fold cross validation experiment. It would be interesting to see how the 

algorithm scale as a bigger dataset is used. [22] proposed a signature based method called SAVE (Static 

Analysis of Vicious Executables) that used behavioral signatures indicating malicious activity. The signatures 

were represented in the form of API calls and Euclidean distance was used to compare these signatures with 

sequence of API calls from programs under inspection. Besides data mining, other popular methods includes 

activity 

Monitoring and file scanning. [19] proposed a system to detect scanning worms using the premises that 

scanning worms tend to reside on hosts with low successful connections rates. Each unsuccessful or successful 

connection attempt was assigned a score that signals a host to be infected if past a threshold. [14] proposed 

behavioral signatures to detect worms in network traffic data. [16] developed Honeycomb, that used honeypots 

to generate network signatures to detect worms.  oneycomb used anomalies in the traffic data to generate 

signatures. All of this work stated above, that does not include data mining as a process, used very few samples 

to validate their techniques. The security policies needed human experts to devise general characteristics of 

malicious programs. 

Data preparation is a very important step in a data mining process. Except [25], none of the authors 

presented above have discussed their dataset in detail. Malicious programs used by these researchers are very 
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eclectic in nature exhibiting different program structures and applying the same classifier to every program does 

not guarantee similar results. 

 

III. Data Processing 
Our collection of worms and clean programs consisted of 2775 Windows PE files, in which 1444 were 

worms and the 1330 were clean programs. The clean programs were obtained from a PC running Windows XP. 

These include small Windows applications such as calc, notepad, etc and other application programs running on 

the machine. The worms were downloaded from [8]. The dataset was thus 

consisted of a wide range of programs, created using different compilers and resulting in a sample set of uniform 

representation. Figure 3 displays the data processing steps. 

 

 Malware Analysis 

We ran PEiD [5] and ExEinfo PE [2] on our data collection to detect compilers, common packers and cryptors, 

used to compile and/or modify the programs. Table 1 displays 

 

 
 

 
The distribution of different packers and compilers on the worm collection. The clean programs in our 

collection were also subjected to PEiD and ExeInfo PE to gather potential packers / crytpors information. No 

packed programs were detected in the clean collection. Table 2 displays the number of packed, not packed and 

unidentified worms and clean 

programs. Before further processing, packed worms were unpacked using specific unpackers such as UPX (with 

-d switch) [6], and generic unpackers such as Generic Unpacker Win32 

[3] and VMUnpacker [7]. 

 

 File Size Analysis 

Before disassembling the programs to extract instruction sequences, a file size analysis was performed 

to ensure that the number of instructions extracted from clean programs and worms is approximately equal. 

Table 3 displays the file size statistics for worms and clean programs. Table 3 indicates the that the average size 

of the clean programs is twice as large as average worm size. These large programs were removed from the 

collection to get an equal file size distribution for worms and clean programs. 
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Figure 1. Portion of the output of disassembled Netsky.A worm. 

 

 
Figure 2. Instruction sequences extracted from the disassembled Netsky.A worm. 

 

 Disassembly 

Binaries were transformed to a disassembly representation that is parsed to extract features. The 

disassembly was obtained using Datarescues’ IDA Pro [4]. From these disassembled files we extracted 

sequences of instructions that served as the primary source for the features in our dataset. A sequence is defined 

as instructions in succession until a conditional or unconditional branch instruction and/or a function boundary 

is reached. Instruction sequences thus obtained are of various lengths. We only considered the opcode and the 

operands were discarded from the analysis. Figure 1 shows a portion of the disassembly of the Netsky.A worm. 

 

 Parsing 

A parser written in PHP translates the disassembly in figure 1 to instruction sequences. Figure 2 

displays the output of the parser. Each row in the parsed output represented a single instruction sequence. The 

raw disassembly of the worm and clean programs resulted in 1972920 instruction sequences. 47% of these 

sequences belonged to worms while 53% belonged to clean programs. 

 

Feature Extraction  
The parsed output was processed through our Feature Extraction Mechanism. Among them 1972920 

instruction sequences, 213330 unique sequences were identified with different frequencies of occurrence. We 

removed the sequences that were found in one class only as they will reduce the classifier to a signature 

detection technique. This removed 94% of the sequences and only 23738 sequences were found common to both 

worms and clean programs. 

Each sequence was considered as a potential feature. 

 

 
Figure 3. Data preprocessing steps. 



Efficient Detection of Internet Worms Using Data Mining Techniques 

www.iosrjournals.org                                                    44 | Page 

 Feature Selection 

Feature selection is the problem of choosing a small subset of features that ideally is necessary and 

sufficient to describe the target concept (Kiraand Rendell, 1992). The terms features, variables, measurements, 

and attributes are used interchangeably in the literature. Selecting the appropriate set of features is extremely 

important since the feature set selected is the only source of information for any learning algorithm using the 

data of interest. A goal of feature selection is to avoid selecting too many or too few features than is necessary. 

If too few features are selected, there is a good chance that the information content in this set of features is low. 

On the other hand, if too many (irrelevant) features are selected, the effects due to noise present in (most real-

world) data may overshadow the information present. Hence, this is a tradeoff which must be addressed by any 

feature selection method. In statistical analyses, forward and backward stepwise multiple regressions (SMR) are 

widely used to select features, with forward SMR being used more often due to the lesser magnitude of 

calculations involved. The output here is the smallest subset of features resulting in an R2 (correlation 

coefficient) value that explains a significantly large amount of the variance. In forward SMR, the analyses 

proceeds by adding features to a subset until the addition of a new feature no longer results in a significant 

(usually at the 0.05 level) increment in explained variance (R2 value). In backward SMR, the full set of features 

are used to start with, while seeking to eliminate features with the smallest contribution to R2. 

 

 Independence Test 

A Chi-Square test of independence was performed for each feature to determine if a relationship exists 

between the feature and the target variable. The variables were transformed 

to their binary representation on a found/not found basis to get a 2-way contingency table. Using a p-value of 

0.01 for the test resulted in the removal of about half of the features that did not showed any statistically 

significant relationship with the target. The resulting number of variables after this step was 268. 

 

IV. Experiments 
The data was partitioned into 70% training and 30% testdata. Similar experiments showed best results 

with tree based models for the count data [21]. We built decision tree, bagging and Random forest models using 

R [1]. 

 

 C5.0 CLASSIFIER 

The C5.0 algorithm is a new generation of Machine Learning Algorithms (MLAs) based on decision 

trees [16]. It means that the decision trees are built from list of possible attributes and set of training cases, and 

then the trees can be used to classify subsequent sets of test cases. C5.0 was developed as an improved version 

of well-known and widely used C4.5 classifier and it has several important advantages over its ancestor [17]. 

The generated rules are more accurate and the time used to generate them is lower (even around 360 times on 

some data sets). In C5.0 several new techniques were introduced: _ boosting: several decision trees are 

generated and combined to improve the predictions. _ Variable misclassification costs: it makes it possible to 

avoid errors which can result in a harm._ new attributes: dates, times, timestamps, ordered discrete attributes. _ 

values can be marked as missing or not applicable for particular cases. _ supports sampling and cross-validation. 

Here, the threshold was lowered and the fractional usage is shown. 

C5.0 algorithm by embedding “boosting” technology in cost matrix and cost-sensitive tree to establish a new 

model  C5.0 Better Than C4.5 The major differences are the tree sizes and computation times; C5.0's trees are 

noticeably smaller and C5.0 is faster  

The error rate on unseen cases is reduced for all three datasets, substantially so in the case of forest for 

which the error rate of boosted classifiers is about half that of the corresponding C4.5 classifier. Unfortunately, 

boosting doesn't always help -- when the training cases are noisy, boosting can actually reduce classification 

accuracy. C5.0 uses a novel variant of boosting that is less affected by noise, thereby partly overcoming this 

limitation.  

 

 New functionality 

C5.0 incorporates several new facilities such as variable misclassification costs. In C4.5, all errors are treated as 

equal, but in practical applications some classification errors are more serious than others. C5.0 allows a 

separate cost to be defined for each predicted/actual class pair; if this option is used, C5.0 then constructs 

classifiers to minimize expected misclassification costs rather than error rates. 

The cases themselves may also be of unequal importance. In an application that classifies individuals as 

likely or not likely to "churn," for example, the importance of each case may vary with the size of the account. 

C5.0 has provision for a case weight attribute that quantifies the importance of each case; if this appears, C5.0 

attempts to minimize the weighted predictive error rate. 

C5.0 has several new data types in addition to those available in C4.5, including dates, times, 
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timestamps, ordered discrete attributes, and case labels. In addition to missing values, C5.0 allows values to be 

noted as not applicable. Further, C5.0 provides facilities for defining new attributes as functions of other 

attributes. 

Some recent data mining applications are characterized by very high dimensionality, with hundreds or 

even thousands of attributes. C5.0 can automatically winnow the attributes before a classifier is constructed, 

discarding those that appear to be only marginally relevant. For high-dimensional applications, winnowing can 

lead to smaller classifiers and higher predictive accuracy, and can often reduce the time required to generate 

rulesets. 

C5.0 is also easier to use. Options have been simplified and extended -- to support sampling and cross-

validation, for instance -- and C4.5's programs for generating decision trees and rulesets have been merged into 

a single program. 

 

 Boosting 

Boosting – Combines models of the same type (e.g., decision tree) and it is iterative, i.e., a new 

model is influenced by the performance of the previously built model 

• Boosting – Uses voting or averaging (similar to bagging) 

• Different boosting algorithms exist Assumption: Learning algorithm can handle weighted instances (usually 

handled by randomization schemes for selection of training data subsets) 

• By weighting instances, the learning algorithm can concentrate on instances with high weights (called 

“hard” instances), i.e., incorrectly classified All instances are equally weighted 

• A learning algorithm is applied 

• The weight of incorrectly classified examples is increased (“hard” instances), correctly – decreased (“easy” 

instances) ( easy. 

• The algorithm concentrates on incorrectly classified “hard” instances 

• Some “had” instances become “harder” some “softer” 

• A series of diverse experts (classifiers) is generated based on the reweighed data 

The concept of boosting applies to the area of predictive data mining, to generate multiple models or 

classifiers (for prediction or classification. 

Boosting will generate a sequence of classifiers, where each consecutive classifier in the sequence is an 

"expert" in classifying observations that were not well classified by those preceding it. During deployment (for 

prediction or classification of new cases), the predictions from the different classifiers can then be combined 

(e.g., via voting, or some weighted voting procedure) to derive a single best prediction or classification. 

 Random Forest 

Random forest provides a degree of improvement over Bagging by minimizing correlation between 

classifiers in the ensemble. This is achieved by using bootstraping to generate multiple versions of a classifier as 

in Bagging but employing only a random subset of the variables to split at each node, instead of all the variables 

as in Bagging. Using a random selection of features to split each node yields error rates that compare favorably 

to Adaboost, but are more robust with respect to noise.[12] 

We grew 100 classification trees in the Random forest model. The number of variables sampled at each split 

was 22. 

 

V. Results 

Classifier 

Detection 

Rate 

False Alarm 

Rate 

Overall 

Accuracy 

C 5.0 97.6 2.8 99.5 

Randam 
Forest 95.6 3.8 96 

Boosting 95.3 5.6 93.8 

 

 



Efficient Detection of Internet Worms Using Data Mining Techniques 

www.iosrjournals.org                                                    46 | Page 

 

VI. Conclusion 
 

Classifier AUC 

C 5.0 99.5 

Randam Forest 96.0 

Boosting 93.8 

 

In this paper we presented a data mining framework to detect worms. The primary feature used for the 

process was the frequency of occurrence of variable length instruction sequences. The effect of using such a 

feature set is twofold as the instruction sequences can be traced back to the original code for further analysis in 

addition to being used in the classifier. We used the sequences common to both worms and clean programs to 

remove any biases caused by the features that have all their occurrences in one class only. We showed 99.5% 

detection rate with a 2.8% false positive rate. 

 

VII. Future Work 
The information included for this analysis was extracted from the executable section of the PE file. To 

achieve a better detection rate this information will be appended from information from other sections of the 

file. This will include Import Address Table and the PE header. API calls analysis has proven to be an effective 

tool in malware detection [22]. Moreover header information has been used in heuristic detection [24]. Our next 

step is to include this information in our feature set. 
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